JPH05293000A - Fermentation in highly viscous system - Google Patents

Fermentation in highly viscous system

Info

Publication number
JPH05293000A
JPH05293000A JP10430692A JP10430692A JPH05293000A JP H05293000 A JPH05293000 A JP H05293000A JP 10430692 A JP10430692 A JP 10430692A JP 10430692 A JP10430692 A JP 10430692A JP H05293000 A JPH05293000 A JP H05293000A
Authority
JP
Japan
Prior art keywords
fermentation
viscosity
aeration
agitation
amount
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP10430692A
Other languages
Japanese (ja)
Other versions
JP2888465B2 (en
Inventor
Kenji Yamamura
健治 山村
Hideki Inaba
英樹 稲葉
Shoji Morinaga
昌二 森永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP10430692A priority Critical patent/JP2888465B2/en
Publication of JPH05293000A publication Critical patent/JPH05293000A/en
Application granted granted Critical
Publication of JP2888465B2 publication Critical patent/JP2888465B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

PURPOSE:To provide a method for controlling the aeration and agitation conditions in a biopolymer fermentation process containing fermentation liquid having gradually increasing viscosity, to improve the productivity of biopolymer and to supply just enough power for aeration and agitation in contrast with conventional process performing the agitation and aeration at constant rates without using an efficient controlling method. CONSTITUTION:The relationship between the viscosity of a fermentation liquid and the fermentation time in the biopolymer fermentation is shown in the figure. There is little variation of viscosity during the period I. In the period II, the aeration and agitation rates are increased corresponding to the abrupt increase of the viscosity. The aeration and agitation rates are maintained at constant levels in the period III in which the variation rate of viscosity is constant. The rate of viscosity variation decreases in the period IV and the aeration and agitation are unnecessary in the period. The aeration and agitation are controlled based on a continuously detected viscosity data according to a program including the above operation conditions.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、発酵液の粘度が高くな
るバイオポリマ発酵における制御方法に関し、詳しく
は、生産物であるバイオポリマの発酵液中の濃度を連続
して検出し、発酵生産性を高めた高粘性発酵方法に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for controlling biopolymer fermentation in which the viscosity of a fermentation liquor becomes high. More specifically, the concentration of the biopolymer as a product in the fermentation liquor is continuously detected to perform fermentation production. The present invention relates to a highly viscous fermentation method with improved properties.

【0002】[0002]

【従来の技術】微生物が作る多糖類、蛋白質、核酸、脂
質等のバイオポリマの発酵生産においては、発酵の経過
と共に発酵液の粘度が非常に高くなることが多い。これ
らのバイオポリマの発酵生産のような高粘性発酵におい
ては、発酵液の粘度の変動により好気性微生物の生育環
境を均一に保つための攪拌混合が不十分になると共に酸
素供給速度が低下するため、発酵生産性が低く抑えられ
る。このような不都合をなくすために、従来、バイオポ
リマの発酵生産においては一般の好気性微生物に対する
供給量よりも多めの酸素を供給しながら発酵しており、
通常、一定の通気量や攪拌速度で発酵を行っている。
2. Description of the Related Art In the fermentation production of biopolymers such as polysaccharides, proteins, nucleic acids and lipids produced by microorganisms, the viscosity of the fermented solution often becomes very high with the progress of fermentation. In highly viscous fermentation such as fermentative production of these biopolymers, fluctuations in the viscosity of the fermentation liquor result in insufficient agitation and mixing to keep the growth environment of aerobic microorganisms uniform, and the oxygen supply rate decreases. , Fermentation productivity can be kept low. In order to eliminate such inconvenience, conventionally, in fermentative production of biopolymers, fermentation is performed while supplying a larger amount of oxygen than the supply amount for general aerobic microorganisms,
Fermentation is usually carried out with a constant aeration rate and stirring speed.

【0003】[0003]

【発明が解決しようとする課題】好気性微生物の増殖の
ためには酸素は必要であるが、その微生物によるバイオ
ポリマの生成には必ずしも、その微生物の増殖と同じ程
度の酸素が必要かどうかは疑問である。しかしながら、
前記のようにバイオポリマの発酵生産では通気量や攪拌
強度を一定で行うことが多く、無駄なエネルギーを投入
していると考えられる。
Oxygen is required for the growth of aerobic microorganisms, but whether the production of biopolymers by the microorganisms does not necessarily require the same level of oxygen as the growth of the microorganisms. I doubt. However,
As described above, in the fermentation production of biopolymers, the amount of aeration and the stirring strength are often constant, and it is considered that wasteful energy is input.

【0004】また生産物であるバイオポリマの発酵液中
の濃度はリアルタイムでの定量が難しく、バイオポリマ
の生産速度などをモニタリングしながらその発酵条件の
コントロールを行うことができないため、生産性を高め
るための対策はこれといって講じられていないのが現状
である。そこで本発明は、上記のバイオポリマ発酵のよ
うな高粘性発酵における生産性の低さを改良するため
に、生産性を高めることができる通気攪拌条件の制御を
した高粘性発酵方法を提供することを目的とする。
The concentration of the biopolymer, which is a product, in the fermentation liquor is difficult to quantify in real time, and the fermentation conditions cannot be controlled while monitoring the production rate of the biopolymer, thus increasing the productivity. The current situation is that no measures have been taken for this. Therefore, the present invention provides a high-viscosity fermentation method with controlled aeration and stirring conditions capable of increasing productivity in order to improve the low productivity in high-viscosity fermentation such as biopolymer fermentation. With the goal.

【0005】[0005]

【課題を解決するための手段】本発明は上記目的を達成
するため、発酵液の粘度が経時的に変化する高粘性発酵
方法において、発酵液の粘度変化を連続的に検出し、そ
の変化量を経時的に算出し、該変化量の増減に基づいて
通気量及び攪拌強度の制御を行うことを特徴とする高粘
性発酵方法とするものである。
Means for Solving the Problems To achieve the above object, the present invention continuously detects a change in the viscosity of a fermented liquid in a highly viscous fermentation method in which the viscosity of the fermented liquid changes with time, and determines the amount of change. Is calculated over time, and the aeration amount and stirring strength are controlled based on the increase / decrease in the amount of change, which is a highly viscous fermentation method.

【0006】本発明において、発酵液の粘度に着目した
理由は、バイオポリマ発酵では発酵の経過とともに発酵
液の粘度が高くなり、しかも、生産物であるバイオポリ
マの濃度と発酵液の粘度には相関があるからである。す
なわち、発酵液の粘度変化を検知することによってバイ
オポリマの生産速度を間接的に知ることができる。そこ
でこの粘度変化を知り、この粘度変化と関連のあるバイ
オポリマの生産速度を高く保つように発酵液に通気する
通気量及び発酵液を攪拌する攪拌強度を制御することに
より、バイオポリマの生産性を大きく向上させることが
できるものと考え本発明に至った。
In the present invention, the reason for paying attention to the viscosity of the fermentation liquor is that in the biopolymer fermentation, the viscosity of the fermentation liquor increases with the progress of fermentation, and the concentration of the biopolymer as the product and the viscosity of the fermentation liquor are different. This is because there is a correlation. That is, the production rate of the biopolymer can be indirectly known by detecting the change in the viscosity of the fermentation liquid. Therefore, by knowing this viscosity change, and controlling the aeration rate to aerate the fermentation solution and the stirring strength to stir the fermentation solution so as to keep the production rate of the biopolymer, which is related to this viscosity change, high The present invention was thought to be able to be greatly improved and the present invention was achieved.

【0007】本発明を図に基づいてさらに詳細に以下に
説明する。図1は、発酵制御装置の構成例を示す。1は
発酵槽であり、微生物の生育環境を均一にするための攪
拌機4が設けられている。また、発酵槽1は、一定温度
に保温ができるように、ジャケット3で覆われている。
発酵槽1の下部には、空気を発酵槽内へ供給するための
通気装置5が配置され、流量計8により流量が調整され
た空気が供給されるようになっている。流量計8の値は
演算装置13へ入力されるように接続されており、演算
装置13で供給されるべき適切な空気量が計算され、そ
の計算値に基づき電磁弁9の開閉を指示し、適切な空気
量となるようコントロールされている。
The invention is explained in more detail below on the basis of the drawings. FIG. 1 shows a configuration example of a fermentation control device. Reference numeral 1 denotes a fermenter, which is provided with a stirrer 4 for making the growth environment of microorganisms uniform. The fermenter 1 is covered with a jacket 3 so that it can be kept warm at a constant temperature.
An aeration device 5 for supplying air into the fermentation tank is arranged in the lower portion of the fermentation tank 1, and air whose flow rate is adjusted by a flow meter 8 is supplied. The value of the flow meter 8 is connected so as to be input to the arithmetic unit 13, an appropriate amount of air to be supplied by the arithmetic unit 13 is calculated, and the opening / closing of the solenoid valve 9 is instructed based on the calculated value. It is controlled to have an appropriate amount of air.

【0008】循環経路に配置された循環ポンプ10は、
発酵槽1内の発酵液2の一部を取り出し、再び発酵槽1
へ戻す働きをする。その循環経路中には、発酵液2の粘
度を連続的に測定するための粘度計11が配置されてお
り、その粘度計11にはプロセス粘度計が用いられる。
さらに、その粘度計11には、測定された粘度をアナロ
グ値からディジタル値に変換するA−D変換器12が接
続されており、A−D変換器12で変換されたディジタ
ル値が演算装置13に入力されるよう接続されている。
演算装置13で計算された適切な通気量と攪拌強度は、
通気量と攪拌強度を変化させる手段7へ伝えられるよう
接続されている。その通気量と攪拌強度を変化させる手
段7はモータ6を適切な回転で運転させ、適切な攪拌と
通気量となるように攪拌機4を回転させるようになって
いる。
The circulation pump 10 arranged in the circulation path is
A part of the fermented liquid 2 in the fermenter 1 is taken out, and the fermenter 1 is again used.
Works to return to. A viscometer 11 for continuously measuring the viscosity of the fermentation liquid 2 is arranged in the circulation path, and a process viscometer is used for the viscometer 11.
Further, the viscometer 11 is connected to an AD converter 12 for converting the measured viscosity from an analog value to a digital value, and the digital value converted by the AD converter 12 is calculated by the arithmetic unit 13. Connected to be input to.
The appropriate aeration rate and stirring strength calculated by the computing device 13 are
It is connected so as to be transmitted to the means 7 for changing the aeration amount and the stirring strength. The means 7 for changing the aeration amount and the agitation strength operates the motor 6 at an appropriate rotation, and rotates the agitator 4 so that the agitation and the aeration amount are appropriate.

【0009】以下に、本発明の機能(作用)を説明す
る。図2は、バイオポリマ発酵における発酵時間に対す
る発酵液粘度の関係の一般的な変化パターンを示すグラ
フである。図2に示されるように、発酵液の粘度変化は
大きく4つの期間I、II、III、IVに分けられ
る。期間Iは、発酵液粘度(μで示される)の変化が殆
どない期間であり、通気量(Qで示される)、攪拌強度
(Nで示される)とも小さくて良い時期である。
The function (action) of the present invention will be described below. FIG. 2 is a graph showing a general change pattern of the relationship between the fermentation solution viscosity and the fermentation time in biopolymer fermentation. As shown in FIG. 2, the change in the viscosity of the fermentation liquor is roughly divided into four periods I, II, III and IV. The period I is a period in which there is almost no change in the viscosity of the fermentation broth (indicated by μ), and both the aeration amount (indicated by Q) and the stirring strength (indicated by N) may be small.

【0010】期間IIは、粘度変化量(Δμで示され
る)が経時的に増加する期間であり、この期間において
は、発酵液の粘度が急激に増加し、それに伴い酸素供給
量を増大させながら発酵させる必要があるため、通気量
Q、攪拌強度Nを増加させる。期間IIIは、粘度変化
量Δμが一定の期間であり、ある一定量の通気量Q、攪
拌強度Nを与えてやれば良い。この時、先に述べたよう
にバイオポリマの生産に酸素をあまり必要としない場合
もあるので、通気量Q、攪拌強度Nは減少させる方向で
制御を加えることになる。
Period II is a period in which the amount of change in viscosity (indicated by Δμ) increases with time, and during this period, the viscosity of the fermentation liquor sharply increases, and the oxygen supply amount increases accordingly. Since it is necessary to ferment, the aeration amount Q and the stirring strength N are increased. Period III is a period in which the amount of change in viscosity Δμ is constant, and it is sufficient to give a certain amount of aeration amount Q and stirring strength N. At this time, as described above, oxygen may not be required so much for the production of the biopolymer, so that the aeration amount Q and the stirring strength N are controlled so as to be decreased.

【0011】期間IVは、粘度変化量Δμが減少する期
間で通気量Q、攪拌強度Nを必要としない発酵終了期で
ある。但し、粘度変化量Δμが減少する原因が、通気量
Q、攪拌強度Nが不足しているための場合もあるので、
粘度変化量Δμが減少のときはまず通気量Q、攪拌強度
Nを増加する操作を先行する。本発明の高粘性発酵の制
御を図3に示すフローチャートの制御例に基づいて説明
する。通気量Q、攪拌強度Nを初期値に設定して発酵を
開始すると同時に、発酵層1内の発酵液の一部を循環ポ
ンプ10により粘度計11を経由して再び発酵層1へ戻
して循環させる。この粘度計11で連続的に発酵液粘度
μの計測を開始する。この発酵液粘度μのアナログ値を
A−D変換器12でディジタル値に変換し、その変換さ
れたディジタル値を演算装置13に入力する。演算装置
13では、単位時間あたりの粘度変化量Δμを計算す
る。
A period IV is a period in which the amount of change in viscosity Δμ decreases, and is an end stage of fermentation in which the aeration amount Q and the stirring strength N are not required. However, the reason why the amount of change in viscosity Δμ decreases may be that the air flow rate Q and the stirring strength N are insufficient.
When the viscosity change amount Δμ decreases, the operation of increasing the aeration amount Q and the stirring strength N first precedes. The control of the highly viscous fermentation of the present invention will be described based on the control example of the flowchart shown in FIG. At the same time as starting the fermentation by setting the aeration amount Q and the stirring strength N to the initial values, a part of the fermentation liquid in the fermentation layer 1 is returned to the fermentation layer 1 again by the circulation pump 10 via the viscometer 11 and circulated. Let The viscometer 11 continuously starts measuring the fermentation liquid viscosity μ. The analog value of the fermentation liquid viscosity μ is converted into a digital value by the AD converter 12, and the converted digital value is input to the arithmetic unit 13. The arithmetic unit 13 calculates the viscosity change amount Δμ per unit time.

【0012】Δμ=0のときは、なにも出力せず次の発
酵液粘度μの入力を待つ。Δμ≠0のときは、前回の粘
度変化量Δμn-1 と今回の粘度変化量Δμn を比較す
る。Δμn =Δμn-1 のときは、通気量Q、攪拌強度N
を予め設定しておいた所定量だけ減少させて終了し、発
酵液粘度μの測定値の入力の最初の状態に戻る。
When Δμ = 0, nothing is output and the next fermentation liquid viscosity μ is waited for. When Δμ ≠ 0, the previous viscosity change amount Δμ n-1 and the current viscosity change amount Δμ n are compared. When Δμ n = Δμ n-1 , the air flow rate Q and the stirring strength N
Is reduced by a predetermined amount set in advance, and the process is terminated, and the process returns to the initial state of input of the measured value of the fermentation liquid viscosity μ.

【0013】Δμn ≠Δμn-1 のときは、通気量Q、攪
拌強度Nを所定量増加させ、次のΔμn+1 を算出する。
Δμn+1 <Δμn のときは、通気量Q、攪拌強度Nを予
め設定しておいた所定量を減少させて終了する。Δμ
n+1 >Δμn のときは、そのまま終了し、発酵液粘度μ
の測定値の入力の最初の状態に戻る。
When Δμ n ≠ Δμ n−1 , the ventilation amount Q and the stirring strength N are increased by a predetermined amount, and the next Δμ n + 1 is calculated.
When Δμ n + 1 <Δμ n , the ventilation amount Q and the stirring strength N are reduced by predetermined amounts set in advance, and the process is ended. Δμ
When n + 1 > Δμ n, the process ends as it is, and the fermentation solution viscosity μ
Return to the initial state of inputting the measured value of.

【0014】[0014]

【実施例1】発酵液の粘度が高くなるバイオポリマ発酵
の例としてキサンタンガム発酵を選定した。発酵条件は
以下の通りである。 使用菌株:Xanthomonas campestris IFO 13551 培地:グルコースを主成分とする合成培地 発酵槽:仕込容量2Lの通気攪拌型発酵槽,温調用ジャ
ケット付き 発酵温度:30℃ 攪拌回転数:50〜500rpm 通気量:0.5〜1.5vvm 以上の条件で、図3に示すフローチャートに従って、粘
度変化量に応じた通気攪拌制御を行って、キサンタンガ
ム発酵を行った。その発酵の制御の状況を図4に示す。
図4は、横軸に発酵時間をとり、縦軸に発酵液粘度μ、
微生物の増殖度OD、通気量Q及び攪拌強度Nをとった
グラフである。なおODは微生物の濃度を示す指標で発
酵液の濁度である。図4に示されるように、通気量Qと
攪拌強度Nは、極め細かく制御されている。このように
制御することにより、最終的な発酵液粘度μは3000
cp弱に達した。
Example 1 Xanthan gum fermentation was selected as an example of biopolymer fermentation in which the fermentation liquor has a high viscosity. The fermentation conditions are as follows. Strains used: Xanthomonas campestris IFO 13551 Medium: Synthetic medium containing glucose as a main component Fermentor: Aeration-stirring type fermenter with a preparation volume of 2 L, with temperature control jacket Fermentation temperature: 30 ° C Stirring speed: 50-500 rpm Aeration rate: 0 Xanthan gum fermentation was carried out under conditions of 0.5 to 1.5 vvm or more according to the flow chart shown in FIG. The control situation of the fermentation is shown in FIG.
In FIG. 4, the horizontal axis represents fermentation time, the vertical axis represents fermentation liquid viscosity μ,
6 is a graph showing the growth rate OD of a microorganism, the aeration amount Q, and the stirring strength N. The OD is an index showing the concentration of microorganisms and is the turbidity of the fermentation broth. As shown in FIG. 4, the ventilation amount Q and the stirring strength N are controlled extremely finely. By controlling in this way, the final fermentation solution viscosity μ is 3000
It reached a little less than cp.

【0015】これに対して、比較例として、通気量Qと
攪拌強度Nをそれぞれ1.0vvm、400rpmで一
定とした場合の発酵時間に対する発酵液粘度μ及び微生
物の増殖度ODの変化を図5に示す。本実施例1と比較
例とを比較すると、発酵を停止した90時間後の発酵液
粘度μは本実施例1による制御を行った場合の方が高
く、また粘度の上昇速度も大きい。図に示していないが
最終のキサンタンガム濃度は通気量Q及び攪拌強度Nが
一定の場合で1.0%で、通気量Q及び攪拌強度Nに制
御を加えた発酵では1.4%となることから、通気量Q
及び攪拌強度Nを制御することによりキサンタンガムの
生産性が向上することが実証された。
On the other hand, as a comparative example, changes in the fermentation liquid viscosity μ and the growth rate OD of the microorganism with respect to the fermentation time are shown in FIG. 5 when the aeration amount Q and the stirring intensity N are constant at 1.0 vvm and 400 rpm, respectively. Shown in. Comparing Example 1 with Comparative Example, the fermentation liquid viscosity μ 90 hours after the fermentation was stopped is higher when the control according to Example 1 is performed, and the rate of increase in viscosity is also higher. Although not shown in the figure, the final xanthan gum concentration is 1.0% when the aeration amount Q and the stirring strength N are constant, and 1.4% in the fermentation in which the aeration amount Q and the stirring strength N are controlled. From the air flow Q
It was demonstrated that the productivity of xanthan gum is improved by controlling the stirring strength N and the stirring strength N.

【0016】さらに、図4に示されるように制御を加え
た発酵では微生物の増殖度ODが定常に達した辺りから
通気量Qと攪拌強度Nが低下しており、本実施例1の投
入エネルギーは、図5に示される制御しない発酵に比較
して小さいことが明らかである。以上のように、キサン
タンガム発酵では微生物の増殖には酸素を多く必要とす
るが、増殖後のキサンタンガム生成時には酸素をあまり
必要としないことが分かる。このような発酵系では通気
攪拌の動力を過不足なく投入しようとする本制御は特に
その有効性が発揮される。
Further, in the controlled fermentation as shown in FIG. 4, the aeration amount Q and the agitation strength N are decreased from when the growth rate OD of the microorganism reaches a steady state. Is smaller than the uncontrolled fermentation shown in FIG. As described above, it is understood that in xanthan gum fermentation, a large amount of oxygen is required for the growth of microorganisms, but oxygen is not required so much during the production of xanthan gum after the growth. In such a fermentation system, the effectiveness of the present control, in which the aeration and agitation power is supplied without excess or deficiency, is particularly effective.

【0017】[0017]

【発明の効果】本発明は、発酵液の粘度を連続的にモニ
タリングして一定時間毎に粘度変化量を算出し、その粘
度の増加速度が大きくなる方向に通気量Qと攪拌強度N
を増減させることにより、生産速度を最大に保持すると
ともに通気及び攪拌の動力を低く抑えようとするもので
あるから、バイオポリマ生産性は高く、更に通気及び攪
拌のための動力を過不足なく投入できるので、エネルギ
ー消費の面からも生産性の向上が図れる。
According to the present invention, the viscosity of the fermentation broth is continuously monitored, the amount of change in viscosity is calculated at regular intervals, and the aeration amount Q and the stirring strength N are increased in the direction of increasing the viscosity increasing rate.
By increasing or decreasing the amount, the production rate is kept at a maximum and the aeration and agitation powers are kept low.Therefore, the biopolymer productivity is high, and the aeration and agitation powers are input without excess or deficiency. Therefore, productivity can be improved in terms of energy consumption.

【図面の簡単な説明】[Brief description of drawings]

【図1】発酵制御装置の構成例を示す。FIG. 1 shows a configuration example of a fermentation control device.

【図2】バイオポリマ発酵における発酵時間に対する発
酵液粘度の関係の一般的な変化パターンを示す。
FIG. 2 shows a general pattern of change in the relationship between fermentation liquid viscosity and fermentation time in biopolymer fermentation.

【図3】本発明の高粘性発酵の制御のフローチャートを
示す。
FIG. 3 shows a flowchart of control of high-viscosity fermentation of the present invention.

【図4】実施例1のキサンタンガム発酵の制御の状況を
示す。
FIG. 4 shows the control situation of xanthan gum fermentation of Example 1.

【図5】比較例の、通気量Qと攪拌強度Nを一定とした
場合の発酵時間に対する発酵液粘度μ及び微生物の増殖
度ODの変化を示す。
FIG. 5 shows changes in the fermentation liquid viscosity μ and the growth rate OD of microorganisms with respect to the fermentation time when the aeration amount Q and the stirring strength N are constant in the comparative example.

【符号の説明】[Explanation of symbols]

1 発酵槽 2 発酵液 3 ジャケット 4 攪拌機 5 通気装置 6 モータ 7 通気量と攪拌強度を変化させる手段 8 流量計 9 電磁弁 10 循環ポンプ 11 粘度計 12 A−D変換器 13 演算装置 DESCRIPTION OF SYMBOLS 1 Fermenter 2 Fermentation liquid 3 Jacket 4 Stirrer 5 Aeration device 6 Motor 7 Means to change aeration amount and stirring intensity 8 Flowmeter 9 Electromagnetic valve 10 Circulation pump 11 Viscometer 12 A-D converter 13 Computing device

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 発酵液の粘度が経時的に変化する高粘性
発酵方法において、発酵液の粘度変化を連続的に検出
し、その変化量を経時的に算出し、該変化量の増減に基
づいて通気量及び攪拌強度の制御を行うことを特徴とす
る高粘性発酵方法。
1. In a highly viscous fermentation method in which the viscosity of a fermentation liquor changes with time, a change in the viscosity of the fermentation liquor is continuously detected, the amount of change is calculated over time, and based on the increase or decrease in the amount of change. A highly viscous fermentation method, characterized by controlling the amount of aeration and the stirring strength.
JP10430692A 1992-04-23 1992-04-23 High viscosity fermentation method Expired - Fee Related JP2888465B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10430692A JP2888465B2 (en) 1992-04-23 1992-04-23 High viscosity fermentation method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10430692A JP2888465B2 (en) 1992-04-23 1992-04-23 High viscosity fermentation method

Publications (2)

Publication Number Publication Date
JPH05293000A true JPH05293000A (en) 1993-11-09
JP2888465B2 JP2888465B2 (en) 1999-05-10

Family

ID=14377243

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10430692A Expired - Fee Related JP2888465B2 (en) 1992-04-23 1992-04-23 High viscosity fermentation method

Country Status (1)

Country Link
JP (1) JP2888465B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017042131A (en) * 2015-08-28 2017-03-02 株式会社神鋼環境ソリューション Method for culturing algae and facility for paramylon production

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017042131A (en) * 2015-08-28 2017-03-02 株式会社神鋼環境ソリューション Method for culturing algae and facility for paramylon production

Also Published As

Publication number Publication date
JP2888465B2 (en) 1999-05-10

Similar Documents

Publication Publication Date Title
US4935348A (en) Method for the carrying out of a microbiological or enzymatic process
Hiruta et al. Application of Maxblend Fermentor® for microbial processes
Li et al. Effect of fluid rheological properties on mass transfer in a bioreactor
Malfait et al. Cultivation of a filamentous mold in a glass pilot‐scale airlift fermentor
JPH05293000A (en) Fermentation in highly viscous system
EP0074775A2 (en) Production of xanthan gum by emulsion fermentation
Serrano-Carreón et al. Prediction of xanthan fermentation development by a model linking kinetics, power drawn and mixing
US4891318A (en) Method for the fermentative preparation of polysaccharides, in particular xanthane
CN101522883B (en) Dissolved oxygen profile to increase fermentation productivity and economics
US3281329A (en) Fermentation process for producing a heteropolysaccharide
Segers et al. Product patterns of non-axenic sucrose fermentation as a function of pH
Ko et al. Transient kinetics of yeast growth in batch and continous culture with an inhibitory carbon and energy source
CN210367717U (en) Stirring device for producing kojic acid through biological fermentation
Boodhoo et al. Intensification of gas–liquid mass transfer using a rotating bed of porous packings for application to an E. coli batch fermentation process
US3912585A (en) Process for aerobic cultivation of microorganism
Ryu et al. A reassessment of mixing cost in fermentation processes
JPH06153909A (en) Method for controlling fermentation
JPH0530962A (en) Method for culturing microorganism
KR101483790B1 (en) Anaerobic Continuous Culture Method of Organism and Apparatus Therefor
Peña et al. Effectiveness factor in biological external convection: study in high viscosity systems
CN213012888U (en) Continuous saccharification device for producing low DE value glucose syrup
CN207175937U (en) A kind of microculture agitating device
Timmermans et al. GETTING A GRIP ON OXYGEN TRANSFER IN BIOREACTORS: AUTOMATED kLa DETERMINATION USING THE SOFTWARE LUCULLUS®
JPH04234981A (en) Method for high-density culture of bacillus subtilis and apparatus for culture
CN106868065A (en) The continuous producing method and device of a kind of sodium gluconate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990204

LAPS Cancellation because of no payment of annual fees