JPH0530962A - Method for culturing microorganism - Google Patents

Method for culturing microorganism

Info

Publication number
JPH0530962A
JPH0530962A JP3214598A JP21459891A JPH0530962A JP H0530962 A JPH0530962 A JP H0530962A JP 3214598 A JP3214598 A JP 3214598A JP 21459891 A JP21459891 A JP 21459891A JP H0530962 A JPH0530962 A JP H0530962A
Authority
JP
Japan
Prior art keywords
microorganism
shear stress
culturing
stirrer
controlled
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP3214598A
Other languages
Japanese (ja)
Inventor
Konosuke Matsushita
幸之助 松下
Yasutoshi Shimizu
康利 清水
Kenichi Shimodera
健一 下寺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toto Ltd
Original Assignee
Toto Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toto Ltd filed Critical Toto Ltd
Priority to JP3214598A priority Critical patent/JPH0530962A/en
Publication of JPH0530962A publication Critical patent/JPH0530962A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/06Nozzles; Sprayers; Spargers; Diffusers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M29/00Means for introduction, extraction or recirculation of materials, e.g. pumps
    • C12M29/20Degassing; Venting; Bubble traps
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/42Means for regulation, monitoring, measurement or control, e.g. flow regulation of agitation speed

Landscapes

  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

PURPOSE:To stir a microbial suspension under a shearing force within the range so as not result in destruction of microorganisms. CONSTITUTION:A microbial suspension 2 is filled in a vessel 1 of an apparatus for culture and then stirred with a stirrer 4 rotated with a motor 3. In the process, the viscosity of the microbial suspension 2 is measured with a rheometer 8. Measured values of the rheometer 8 are then inputted to a controller 9, where ON.OFF signals or control signals of the number of revolutions are outputted to the motor 3 based on the measured viscosity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は攪拌機を備えた培養槽内
での微生物の培養方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for culturing microorganisms in a culture tank equipped with a stirrer.

【0002】[0002]

【従来の技術】微生物に対し形質転換、遺伝子組替え或
いは細胞融合を施すことで、有用物質を大量に生産し得
る技術の研究が盛んである。特に微生物は動物や植物に
比べ増殖速度が速く、死滅しにくいので有利である。
2. Description of the Related Art Research on a technique capable of producing a large amount of a useful substance by subjecting a microorganism to transformation, gene recombination or cell fusion has been actively conducted. In particular, microorganisms are advantageous because they have a higher growth rate and are less likely to die than animals and plants.

【0003】斯かる微生物の培養法としては、栄養源と
なる基質を含んだ培養液を槽内に入れ、更にこの培養液
に微生物を投入した懸濁液を攪拌することで懸濁状態
(微生物濃度)の均一化を図るとともに微生物と溶存酸
素とを接触させて増殖を促進するようにしている。
As a method for culturing such microorganisms, a culture solution containing a substrate serving as a nutrient source is placed in a tank, and the suspension obtained by adding microorganisms to this culture solution is stirred to obtain a suspended state (microorganisms). The concentration is made uniform, and the microorganisms are brought into contact with dissolved oxygen to promote the growth.

【0004】[0004]

【発明が解決しようとする課題】ところで、微生物懸濁
液を攪拌すると剪断応力が発生し、この剪断応力が大き
いと微生物の細胞が破壊されてしまう。逆に攪拌しない
と前記したように溶存酸素との接触が図れない等の不利
が生じる。このため、微生物懸濁液に作用する剪断応力
を所定範囲にして攪拌を継続することが必要となるが、
個々の微生物によって剪断応力耐性値が異なり、そのコ
ントロールが困難である。
By the way, when the microbial suspension is stirred, shear stress is generated, and if the shear stress is large, the cells of the microorganism are destroyed. On the contrary, if stirring is not carried out, disadvantages such as contact with dissolved oxygen cannot be achieved as described above. Therefore, it is necessary to keep the stirring within a predetermined range of shear stress acting on the microbial suspension,
It is difficult to control the shear stress resistance value depending on individual microorganisms.

【0005】[0005]

【課題を解決するための手段】上記課題を解決すべく本
願の第1発明は、微生物懸濁液に加えられる剪断応力を
微生物懸濁液の粘度等の流動特性から算出し、この剪断
応力が個々の微生物に応じて設定した所定値を超えない
ように攪拌機の回転数を制御するようにした。
In order to solve the above-mentioned problems, the first invention of the present application is to calculate the shear stress applied to a microbial suspension from flow characteristics such as viscosity of the microbial suspension. The rotation speed of the stirrer was controlled so as not to exceed a predetermined value set according to each microorganism.

【0006】また本願の第2発明は培養槽内の微生物の
剪断破壊量を直接測定し、この剪断破壊量が所定値を超
えないように攪拌機の回転数を制御するようにした。
In the second invention of the present application, the shear fracture amount of the microorganism in the culture tank is directly measured, and the rotation speed of the stirrer is controlled so that the shear fracture amount does not exceed a predetermined value.

【0007】[0007]

【作用】培養槽中の微生物懸濁液に作用する剪断応力
は、槽の大きさ、攪拌機の形式及び攪拌機の回転速度に
よって決定される。そして、一旦培養槽を製作した後に
剪断応力を制御できるパラメータは攪拌機の回転速度の
みとなる。そこで、剪断応力が所定値を超えないように
するには攪拌機の回転数を制御すればよいことになる。
The shear stress acting on the microbial suspension in the culture tank is determined by the size of the tank, the type of stirrer and the rotation speed of the stirrer. The parameter that can control the shear stress after the culture tank is once manufactured is only the rotation speed of the stirrer. Therefore, in order to prevent the shear stress from exceeding a predetermined value, the rotation speed of the stirrer may be controlled.

【0008】[0008]

【実施例】以下に本発明の実施例を添付図面に基づいて
説明する。ここで、図1は本願の第1発明に係る培養方
法の実施に用いる培養装置の概略図であり、培養装置は
槽1内に微生物を混入した培養液すなわち微生物懸濁液
2を満たし、この微生物懸濁液2をモータ3にて回転せ
しめられる攪拌機4にて攪拌するようにしている。
Embodiments of the present invention will be described below with reference to the accompanying drawings. Here, FIG. 1 is a schematic view of a culturing apparatus used for carrying out the culturing method according to the first invention of the present application. The culturing apparatus fills a tank 1 with a culture solution containing a microorganism, that is, a microbial suspension 2. The microbial suspension 2 is agitated by an agitator 4 rotated by a motor 3.

【0009】また、槽1の底部には多孔質なガス供給プ
レート5を配置し、フィルタ6及びガス供給プレート5
を介して外部から酸素ガス等を微生物懸濁液2に供給す
るようにし、槽1の上部にはフィルタを備えたガス抜き
パイプ7を設け、更に微生物懸濁液2の粘度をレオメー
タ8で測定し、このレオメータ8の測定値を制御装置9
に入力し、制御装置9では測定粘度に基づき、モータ3
にオン・オフ信号或いは回転数の制御信号を出力するよ
うにしている。
A porous gas supply plate 5 is arranged at the bottom of the tank 1, and the filter 6 and the gas supply plate 5 are arranged.
Oxygen gas or the like is supplied to the microbial suspension 2 from the outside via a gas outlet pipe 7 provided with a filter at the upper part of the tank 1, and the viscosity of the microbial suspension 2 is measured by a rheometer 8. Then, the measured value of this rheometer 8 is set to the control device 9
To the motor 3 based on the measured viscosity.
An on / off signal or a control signal for the number of revolutions is output to.

【0010】図2はモータの回転数を粘度に応じて変化
せしめた本発明方法と一定の回転数とした従来の培養法
とを菌体濃度と生成物濃度において比較したものであ
る。菌体としてはMicromonospora olivasterospora(KY
-11587)を用い、この菌体からアミノグロシド系抗生物
質であるフォーチミン−Aを生成するものとする。
FIG. 2 shows a comparison between the method of the present invention in which the rotation speed of the motor is changed according to the viscosity and the conventional culture method in which the rotation speed is constant, in terms of bacterial cell concentration and product concentration. As a microbial cell, Micromonospora olivasterospora (KY
-11587) is used to produce the aminogloside antibiotic Fortimine-A.

【0011】上記のフォーチミン−Aの生成の条件は、
槽1を100リットル、攪拌翼は1段式6枚タービン羽
根とし、攪拌翼の長さを280mm、高さを60mm、
攪拌翼の長さ/槽径=0.51とし、運転液量は80リ
ットルで運転量当りの通気量は0.7vvmとした。
The conditions for the production of Fortimine-A are:
The tank 1 is 100 liters, the stirring blade is a single-stage 6-blade turbine blade, and the stirring blade has a length of 280 mm and a height of 60 mm.
The length of the stirring blade / tank diameter = 0.51, the operating liquid amount was 80 liters, and the aeration amount per operating amount was 0.7 vvm.

【0012】そして、本発明方法の実施においては培養
開始とともに菌体濃度は上昇し、それにともなって粘度
も上昇した。特に粘度は培養開始の1cpから培養開始
後10時間で600cpと大巾に増加したので、剪断応
力による微生物の破壊を防ぐために攪拌機4の回転数を
当初の600rpmから2時間後に500rpm、6時
間後に400rpm、8時間後に200rpmに変更し
た。
In the practice of the method of the present invention, the bacterial cell concentration increased with the start of culture, and the viscosity also increased accordingly. In particular, the viscosity greatly increased from 1 cp at the start of the culture to 600 cp at 10 hours after the start of the culture. Therefore, in order to prevent the destruction of microorganisms due to shear stress, the rotation speed of the stirrer 4 was changed from the initial 600 rpm to 500 rpm after 2 hours and after 6 hours It was changed to 400 rpm and 200 rpm after 8 hours.

【0013】培養結果は本発明方法による場合は培養開
始後10時間で菌体濃度が最大値の7.4×107cells
/mlとなり、成生物であるフォーチミン−Aの培養液中
での濃度は354mg/lであった。一方、従来法による場
合は菌体濃度の最大値は6.0×107cells/mlで、フ
ォーチミン−Aの培養液中での濃度は290mg/lで収率
は本発明方法の82%でしかなかった。
According to the method of the present invention, the culturing result shows that the cell concentration reached a maximum value of 7.4 × 10 7 cells 10 hours after the start of culturing.
/ ml, and the concentration of adult fortimin-A in the culture solution was 354 mg / l. On the other hand, according to the conventional method, the maximum cell concentration was 6.0 × 10 7 cells / ml, the concentration of Fortimin-A in the culture solution was 290 mg / l, and the yield was 82% of that of the method of the present invention. It was only.

【0014】図3〜図5はそれぞれ酵母、大腸菌及び枯
草菌に対する剪断応力と破壊率との関係についての実験
結果を示すグラフである。これらのグラフから微生物の
剪断応力に対する耐性値は個々の微生物毎に異なり、酵
母は1.3kN/m2、大腸菌は2.2kN/m2、枯草
菌は3.0kN/m2が剪断応力耐性値であることが判
明した。
FIGS. 3 to 5 are graphs showing the results of experiments on the relationship between shear stress and destruction rate for yeast, Escherichia coli and Bacillus subtilis, respectively. Resistance values for the shear stress of microorganisms from these graphs differ for each individual microorganism, yeast 1.3kN / m 2, E. coli 2.2kN / m 2, Bacillus subtilis 3.0 kN / m 2 is the shear stress resistance It turned out to be a value.

【0015】また、微生物の培養においては少なくとも
剪断力は破壊率が50%以下となるものでなければなら
ない。このことを考慮すれば、酵母については攪拌によ
って加えられる剪断応力が8,000N/m2を超えな
いように、大腸菌については攪拌によって加えられる剪
断応力が9,000N/m2を超えないように、また枯
草菌については攪拌によって加えられる剪断応力が1
0,000N/m2を超えないように攪拌機の回転数を
制御すべきである。
Further, in culturing microorganisms, at least the shearing force must have a breaking rate of 50% or less. Taking this into consideration, for yeast, the shear stress applied by stirring should not exceed 8,000 N / m 2 , and for E. coli, the shear stress applied by stirring should not exceed 9,000 N / m 2. For Bacillus subtilis, the shear stress applied by stirring is 1
The rotation speed of the stirrer should be controlled so as not to exceed 10,000 N / m 2 .

【0016】図6は第2発明に係る培養方法の実施に用
いる培養装置の概略図であり、この培養装置にあっては
前記第1発明ではレオメータ8を用いて微生物懸濁液の
粘度を測定し、この粘度から剪断応力を算出し、剪断応
力と破壊率との関係から攪拌機の回転数を制御するよう
にしていたが、この第2発明にあっては酵素等を組込ん
だ検出器10で直接微生物の破壊量を測定し、この測定
値を制御装置9に入力してモータ3を制御するようにし
ている。このようにした場合、第1発明の方法よりも対
応に遅れが多少生じるが正確な制御が可能になる。
FIG. 6 is a schematic diagram of a culturing apparatus used for carrying out the culturing method according to the second invention. In this culturing apparatus, the viscosity of the microbial suspension is measured using the rheometer 8 in the first invention. Then, the shear stress was calculated from this viscosity, and the rotation speed of the stirrer was controlled from the relationship between the shear stress and the fracture rate. However, in the second invention, the detector 10 incorporating an enzyme or the like is used. The amount of destruction of the microorganisms is directly measured with and the measured value is input to the control device 9 to control the motor 3. In such a case, accurate control can be performed although a slight delay occurs in correspondence with the method of the first aspect of the invention.

【0017】[0017]

【発明の効果】以上に説明した如く本発明によれば、培
養槽内に設けられる攪拌機の回転数を、微生物に対する
剪断応力が所定値を超えないようにしたので、微生物の
増殖を効果的に行なうことができ、特に当該剪断応力を
微生物懸濁液の粘度から算出するようにすれば、制御遅
れもなく、微生物増殖の自動運転が可能となる。
As described above, according to the present invention, the rotation speed of the agitator provided in the culture tank is set so that the shear stress against microorganisms does not exceed a predetermined value. If the shear stress is calculated from the viscosity of the microbial suspension, the microbial growth can be automatically operated without control delay.

【図面の簡単な説明】[Brief description of drawings]

【図1】本願の第1発明に係る培養方法の実施に用いる
培養装置の概略図
FIG. 1 is a schematic view of a culture device used for carrying out a culture method according to a first invention of the present application.

【図2】本発明方法と従来法によって菌株を培養した場
合の培養時間と菌体濃度、微生物懸濁液の粘度、攪拌機
の回転数、生成物濃度との関係を示すグラフ
FIG. 2 is a graph showing the relationship between the culture time, the bacterial cell concentration, the viscosity of the microbial suspension, the rotation speed of the stirrer, and the product concentration when the strains are cultured by the method of the present invention and the conventional method.

【図3】酵母に対する剪断応力と破壊率との関係を示す
グラフ
FIG. 3 is a graph showing the relationship between shear stress and fracture rate for yeast.

【図4】大腸菌に対する剪断応力と破壊率との関係を示
すグラフ
FIG. 4 is a graph showing the relationship between shear stress and fracture rate for E. coli.

【図5】枯草菌に対する剪断応力と破壊率との関係を示
すグラフ
FIG. 5 is a graph showing the relationship between shear stress and fracture rate against Bacillus subtilis.

【図6】本願の第2発明に係る培養方法の実施に用いる
培養装置の概略図
FIG. 6 is a schematic view of a culture device used for carrying out the culture method according to the second invention of the present application.

【符号の説明】[Explanation of symbols]

1…槽、2…微生物懸濁液、3…モータ、4…攪拌機、
8…レオメータ、9…制御装置。
1 ... Tank, 2 ... Microbial suspension, 3 ... Motor, 4 ... Stirrer,
8 ... Rheometer, 9 ... Control device.

フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 (C12N 1/00 C12R 1:125) Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location (C12N 1/00 C12R 1: 125)

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 培養槽内の微生物懸濁液を攪拌機によっ
て攪拌しつつ微生物を培養する方法において、前記微生
物懸濁液に加えられる剪断応力を微生物懸濁液の粘度等
の流動特性から算出し、この剪断応力が所定値を超えな
いように攪拌機の回転数を制御するようにしたことを特
徴とする微生物の培養方法。
1. A method for culturing a microorganism while stirring the microorganism suspension in a culture tank with a stirrer, wherein the shear stress applied to the microorganism suspension is calculated from the flow characteristics such as viscosity of the microorganism suspension. A method for culturing a microorganism, characterized in that the rotational speed of the stirrer is controlled so that the shear stress does not exceed a predetermined value.
【請求項2】 前記微生物は酵母であり、攪拌によって
加えられる剪断応力は8,000N/m2を超えないよ
うに攪拌機の回転数を制御するようにした請求項1に記
載の微生物の培養方法。
2. The method for culturing a microorganism according to claim 1, wherein the microorganism is yeast, and the rotation speed of the agitator is controlled so that the shear stress applied by stirring does not exceed 8,000 N / m 2. .
【請求項3】 前記微生物は大腸菌であり、攪拌によっ
て加えられる剪断応力は9,000N/m2を超えない
ように攪拌機の回転数を制御するようにした請求項1に
記載の微生物の培養方法。
3. The method for culturing a microorganism according to claim 1, wherein the microorganism is Escherichia coli, and the rotation speed of the agitator is controlled so that the shear stress applied by the agitation does not exceed 9,000 N / m 2. .
【請求項4】 前記微生物は枯草菌であり、攪拌によっ
て加えられる剪断応力は10,000N/m2を超えな
いように攪拌機の回転数を制御するようにした請求項1
に記載の微生物の培養方法。
4. The rotation speed of the stirrer is controlled so that the microorganism is Bacillus subtilis and the shear stress applied by stirring does not exceed 10,000 N / m 2.
The method for culturing a microorganism according to 1.
【請求項5】 培養槽内の微生物懸濁液を攪拌機によっ
て攪拌しつつ微生物を培養する方法において、前記微生
物の剪断破壊量を測定し、この剪断破壊量が所定値を超
えないように攪拌機の回転数を制御するようにしたこと
を特徴とする微生物の培養方法。
5. A method for culturing a microorganism while stirring a microbial suspension in a culture tank with a stirrer, wherein the shear fracture amount of the microorganism is measured, and the shear fracture amount of the stirrer is controlled so as not to exceed a predetermined value. A method for culturing a microorganism, characterized in that the number of rotations is controlled.
JP3214598A 1991-07-31 1991-07-31 Method for culturing microorganism Withdrawn JPH0530962A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3214598A JPH0530962A (en) 1991-07-31 1991-07-31 Method for culturing microorganism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3214598A JPH0530962A (en) 1991-07-31 1991-07-31 Method for culturing microorganism

Publications (1)

Publication Number Publication Date
JPH0530962A true JPH0530962A (en) 1993-02-09

Family

ID=16658372

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3214598A Withdrawn JPH0530962A (en) 1991-07-31 1991-07-31 Method for culturing microorganism

Country Status (1)

Country Link
JP (1) JPH0530962A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000055295A1 (en) * 1999-03-12 2000-09-21 Shinko Pantec Co., Ltd. Agitation tank for storing yeast solution, method of producing fermented foods such as beer using the agitation tank, and agitating vanes provided in the agitation tank
JP2014124139A (en) * 2012-12-26 2014-07-07 Hitachi Ltd Culture control method, cell culture apparatus, and apparatus for evaluation of cellular characteristics
CN112265150A (en) * 2020-10-21 2021-01-26 湖南机电职业技术学院 Mixing drum rotating speed self-adaptive control device, method, equipment and storage medium
FR3112147A1 (en) * 2020-07-02 2022-01-07 Universite De Paris Method of calibrating a fluidic system for the production of extracellular vesicles and associated production fluidic system

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2000055295A1 (en) * 1999-03-12 2000-09-21 Shinko Pantec Co., Ltd. Agitation tank for storing yeast solution, method of producing fermented foods such as beer using the agitation tank, and agitating vanes provided in the agitation tank
US7368283B1 (en) 1999-03-12 2008-05-06 Kobelco Eco-Solutions Co. Ltd. Agitation tank for storing beer yeast slurry
JP2014124139A (en) * 2012-12-26 2014-07-07 Hitachi Ltd Culture control method, cell culture apparatus, and apparatus for evaluation of cellular characteristics
EP2749635A3 (en) * 2012-12-26 2016-07-27 Hitachi, Ltd. Culture control method, cell culture apparatus, and apparatus for evaluation of cellular characteristics
US10011812B2 (en) 2012-12-26 2018-07-03 Hitachi, Ltd. Culture control method, cell culture apparatus, and apparatus for evaluation of cellular characteristics
FR3112147A1 (en) * 2020-07-02 2022-01-07 Universite De Paris Method of calibrating a fluidic system for the production of extracellular vesicles and associated production fluidic system
CN112265150A (en) * 2020-10-21 2021-01-26 湖南机电职业技术学院 Mixing drum rotating speed self-adaptive control device, method, equipment and storage medium

Similar Documents

Publication Publication Date Title
Cheng et al. Cultivation of Acetobacter xylinum for bacterial cellulose production in a modified airlift reactor
Amanullah et al. Effects of agitation intensity on mycelial morphology and protein production in chemostat cultures of recombinant Aspergillus oryzae
Park et al. Efficient Production of l‐(+)‐Lactic Acid Using Mycelial Cotton‐like Flocs of Rhizopusoryzae in an Air‐Lift Bioreactor
Kouda et al. Effects of oxygen and carbon dioxide pressures on bacterial cellulose production by Acetobacter in aerated and agitated culture
AU780625B2 (en) Bioreactor for fermenting solids
Brown et al. The effect of acid pH on the growth kinetics of Trichoderma viride
Dronawat et al. The effects of agitation and aeration on the production of gluconic acid by Aspergillus niger
CA2011845A1 (en) Biosynthesis of hyaluronic acid
EP2231848A2 (en) Anaerobic process
JPH0530962A (en) Method for culturing microorganism
Ferrer et al. Lipase production by immobilized Candida rugosa cells
US5869117A (en) Immobilized-cell carrageenan bead production and a brewing process utilizing carrageenan bead immobilized yeast cells
JP2775161B2 (en) Liquid flow biochemical reactor
US5278058A (en) Process for the production of lignolytical enzymes by means of phanerochaete chrysosporium
CN2236493Y (en) Biologic reactor for cell culture
Kalaichelvan et al. Bioprocess technology
Karkare et al. Continuous fermentation with fluidized slurries of immobilized microorganisms
GB1526758A (en) Aerobic fermentation process and apparatus
EP0253774A1 (en) A process for biological reactions using support-immobilized cells and an apparatus for carrying out the same
Kelly et al. Culture media for large-scale production of micrococcin
JPH02203780A (en) Biochemical reaction
Genovefa et al. Improvement of lipase production by addition of catalase during fermentation
US5403723A (en) Process for the production of lignolytic enzymes by means of white rot fungi
Converti et al. The effects of mixing on bioprocesses. Concentration distributions and mechanical shear stress
CN1124292A (en) Biological reactor for cell culture

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19981008