JPH05291845A - Differential amplifier - Google Patents

Differential amplifier

Info

Publication number
JPH05291845A
JPH05291845A JP4087117A JP8711792A JPH05291845A JP H05291845 A JPH05291845 A JP H05291845A JP 4087117 A JP4087117 A JP 4087117A JP 8711792 A JP8711792 A JP 8711792A JP H05291845 A JPH05291845 A JP H05291845A
Authority
JP
Japan
Prior art keywords
constant current
temperature coefficient
current source
differential amplifier
differential
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4087117A
Other languages
Japanese (ja)
Inventor
Eiju Fukuda
英寿 福田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Olympus Corp
Original Assignee
Olympus Optical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Olympus Optical Co Ltd filed Critical Olympus Optical Co Ltd
Priority to JP4087117A priority Critical patent/JPH05291845A/en
Publication of JPH05291845A publication Critical patent/JPH05291845A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Amplifiers (AREA)

Abstract

PURPOSE:To reduce a drift of the differential amplifier employing MOSFETs (metal-oxidefilm-semiconductor (MOS) type field effect transistors) for a differential input pair by providing a negative temperature coefficient for a constant current source supplying a constant current to the MOSFET. CONSTITUTION:The amplifier is provided with P-channel MOSFETsM1,M2 being components for a differential input pair, NPN transistors(TRs) Q1,Q2 being components of a current mirror circuit being a load of the P-channel MOSFETsN1,M2 and a constant current source I. Then the temperature coefficient of the constant current source I being a component of the differential amplifier circuit employing the P-channel MOSFETsM1,M2 as the differential input pair is selected negative. That is, Since the temperature coefficient of an input offset voltage VIO is cancelled by selecting the temperature coefficient of the constant current source I to be negative, no drift is produced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は差動増幅器に関し、特に
金属−酸化物−半導体(MOS)型電界効果トランジス
タ(以下、MOS FETと呼ぶ)を入力とする差動増
幅器の入力オフセット電圧温度ドリフト(以下、単にド
リフトと呼ぶ)を低減する回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a differential amplifier, and more particularly to an input offset voltage temperature drift of a differential amplifier having a metal-oxide-semiconductor (MOS) type field effect transistor (hereinafter referred to as MOS FET) as an input. The present invention relates to a circuit for reducing (hereinafter, simply referred to as drift).

【0002】[0002]

【従来の技術】従来のMOS FETを差動入力対とす
る差動増幅器として例えば特公昭53−39238号公
報がある。この公報によれば、差動入力対を構成するM
OSFETの特性を整合させるための製法が述べられて
いるが、ドリフトについては示されていない。
2. Description of the Related Art As a conventional differential amplifier using a MOS FET as a differential input pair, there is, for example, Japanese Patent Publication No. 53-39238. According to this publication, M constituting a differential input pair
A manufacturing method for matching the characteristics of the OSFET is described, but the drift is not shown.

【0003】また、米国特許4,724,397号公報
にはバイポーラトランジスタで構成された差動増幅器の
オフセット電圧のトリミング及び低ドリフト化について
示されているが、MOS FETを差動入力対とする差
動増幅器については触れていない。
Further, US Pat. No. 4,724,397 discloses trimming of offset voltage and reduction of drift of a differential amplifier composed of bipolar transistors, but a MOS FET is used as a differential input pair. No mention is made of differential amplifiers.

【0004】[0004]

【発明が解決しようとする課題】ところで、MOS F
ETを差動入力対とする差動増幅器においては、バイポ
ーラトランジスタで構成した場合に比べて入力オフセッ
ト電圧が大きくなること、MOS FETを構成するた
めにマスク枚数が増加しコストが高くなる等の問題があ
るため、微小電流測定用の演算増幅器といった特殊な用
途にしか使用されないこともあり、低ドリフト化につい
て充分な考察はなされていなかった。
By the way, MOS F
In a differential amplifier using ET as a differential input pair, the input offset voltage becomes larger than that in the case where it is composed of bipolar transistors, and the number of masks is increased to form a MOS FET, resulting in higher cost. Therefore, since it may be used only for a special purpose such as an operational amplifier for measuring a small current, sufficient consideration has not been given to reducing the drift.

【0005】本発明の差動増幅器はこのような課題に着
目してなされたもので、その目的とするところは、MO
S FETを差動入力対とする差動増幅器の低ドリフト
化を実現可能な差動増幅器を提供することにある。
The differential amplifier of the present invention has been made in view of such a problem, and its purpose is to make MO
An object of the present invention is to provide a differential amplifier that can realize low drift of a differential amplifier that uses S FET as a differential input pair.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明の差動増幅器は、差動入力対として動作す
る金属−酸化膜−半導体(MOS)型電界効果トランジ
スタと、このMOS型電界効果トランジスタに定電流を
供給する定電流源とを具備し、前記定電流源が負の温度
係数を有する。
To achieve the above object, a differential amplifier of the present invention comprises a metal-oxide film-semiconductor (MOS) type field effect transistor which operates as a differential input pair, and this MOS. Constant field source for supplying a constant current to the field effect transistor, the constant current source having a negative temperature coefficient.

【0007】[0007]

【作用】すなわち、本発明においては、MOS型電界効
果トランジスタを差動入力対とする差動増幅器におい
て、負の温度係数を有する定電流源を用いる。
That is, according to the present invention, a constant current source having a negative temperature coefficient is used in a differential amplifier having a MOS field effect transistor as a differential input pair.

【0008】[0008]

【実施例】まず、本発明の一実施例の概略を説明する。
本発明の一実施例においては、MOS FETを差動入
力対とする差動増幅器を構成する定電流源の温度係数を
負とすることを特徴とする。すなわち、入力オフセット
電圧VI0は、
First, an outline of an embodiment of the present invention will be described.
One embodiment of the present invention is characterized in that the temperature coefficient of a constant current source forming a differential amplifier having a MOS FET as a differential input pair is made negative. That is, the input offset voltage V I0 is

【0009】[0009]

【数1】 I:定電流、μ:キャリア移動度であり、μは負の温度
係数を持つ。そこで、定電流Iの温度係数を負とするこ
とにより入力オフセット電圧VI0の温度係数はキャンセ
ルされるためドリフトは発生しない。図1に本発明の一
実施例による差動増幅回路を示す。
[Equation 1] I: constant current, μ: carrier mobility, and μ has a negative temperature coefficient. Therefore, by making the temperature coefficient of the constant current I negative, the temperature coefficient of the input offset voltage V I0 is canceled, so that no drift occurs. FIG. 1 shows a differential amplifier circuit according to an embodiment of the present invention.

【0010】図1においてM1,M2は差動入力対を構
成するPチャンネルMOS FETである。Q1,Q2
はM1,M2の負荷となるカレントミラー回路を構成す
るNPNトランジスタ、Iは定電流源であり、I1 +I
2 =Iである。M1,M2のゲート・ソース間の電圧を
それぞれVGS1 ,VGS2 とすると入力オフセット電圧V
I0は以下のようになる。
In FIG. 1, M1 and M2 are P-channel MOS FETs forming a differential input pair. Q1, Q2
Is an NPN transistor forming a current mirror circuit that serves as a load for M1 and M2, I is a constant current source, and I 1 + I
2 = I. If the gate-source voltages of M1 and M2 are V GS1 and V GS2 , respectively, the input offset voltage V
I0 is as follows.

【0011】[0011]

【数2】 [Equation 2]

【0012】式(1)〜(5)において添字1,2はそ
れぞれM1,M2のパラメータであることを示してい
る。k=μp Coxであり、μp は正孔移動度、Coxは単
位面積当たりのゲート酸化膜容量である。またWはチャ
ンネル幅、Lはチャンネル長を表す。
The subscripts 1 and 2 in the equations (1) to (5) indicate that they are parameters of M1 and M2, respectively. k = μ p Cox, μ p is the hole mobility, and Cox is the gate oxide film capacitance per unit area. W is the channel width and L is the channel length.

【0013】式(4)からa=b=c=1、即ちI1
2 、k1 =k2 、(W/L)1 =(W/L)2 であれ
ばオフセット電圧VI0=0であり、更にaは温度変動が
小さくb,cは温度変動が無視できることからドリフト
も殆ど発生しないことがわかる。
From equation (4), a = b = c = 1, that is, I 1 =
If I 2 , k 1 = k 2 , and (W / L) 1 = (W / L) 2 , then the offset voltage V I0 = 0. Further, a has a small temperature fluctuation, and b and c have a negligible temperature fluctuation. From this, it can be seen that drift hardly occurs.

【0014】しかし、実際にはカレントミラー回路Q
1、Q2の誤差、IC製造時のホトマスクのずれ等によ
り、(1−a/bc)1/2 =0にならないためオフセッ
ト電圧が生じる。ここで、ドリフトに着目すると式
(5)は
However, in reality, the current mirror circuit Q
(1-a / bc) 1/2 due to the error of 1, Q2, the shift of the photomask during IC manufacturing, etc. Since = 0 is not obtained, an offset voltage is generated. Here, focusing on the drift, Equation (5) is

【0015】[0015]

【数3】 [Equation 3]

【0016】となる。vi0は温度によって変化しないこ
とから、ドリフトは(I1 /k1 1/2 の温度変動が原
因であることが示される。k=μp Coxであり、μp
負の温度係数を持ち、Coxは温度係数を持たない。従っ
てkは負の温度係数を持つ。一方、I1 の温度係数は回
路によって自由に設計することが可能である。I1 の温
度係数をk1 の温度係数と等しくなるように設定すれば
温度係数はキャンセルされるためVI0のドリフトは生じ
なくなる。図2に本発明の差動増幅器を用いて構成した
OPアンプと従来のOPアンプのドリフトを示す。
[0016] Since v i0 does not change with temperature, the drift is (I 1 / k 1 ) 1/2 It is shown that this is due to the temperature fluctuation of. k = μ p Cox, where μ p has a negative temperature coefficient and Cox has no temperature coefficient. Therefore, k has a negative temperature coefficient. On the other hand, the temperature coefficient of I 1 can be freely designed by the circuit. If the temperature coefficient of I 1 is set to be equal to the temperature coefficient of k 1 , the temperature coefficient is canceled and the drift of V I0 does not occur. FIG. 2 shows drifts of an OP amplifier configured using the differential amplifier of the present invention and a conventional OP amplifier.

【0017】従来のOPアンプでは定電流源として例え
ば(kT/qR)ln Nで表される特性のものを用い
る。kはボルツマン定数、Tは絶対温度、qは電子の電
荷、Rは電流値設定用の抵抗値、Nは定数である。図2
から明らかなように、本発明によればドリフトを低減す
ることができる。
In the conventional OP amplifier, a constant current source having a characteristic represented by (kT / qR) ln N is used. k is a Boltzmann constant, T is an absolute temperature, q is an electron charge, R is a resistance value for setting a current value, and N is a constant. Figure 2
As is apparent from the above, according to the present invention, the drift can be reduced.

【0018】[0018]

【発明の効果】以上の説明から明らかなように、本発明
によれば、MOS型電界効果トランジスタを差動入力対
とする差動増幅器のドリフトを低減することができる。
As is apparent from the above description, according to the present invention, it is possible to reduce the drift of a differential amplifier having a MOS field effect transistor as a differential input pair.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例による差動増幅回路を示す図
である。
FIG. 1 is a diagram showing a differential amplifier circuit according to an embodiment of the present invention.

【図2】本発明の差動増幅器を用いて構成したOPアン
プと従来のOPアンプのドリフトを比較して示す図であ
る。
FIG. 2 is a diagram showing a comparison between drifts of an OP amplifier configured using the differential amplifier of the present invention and a conventional OP amplifier.

【符号の説明】[Explanation of symbols]

M1、M2…PチャンネルMOS FET、Q1、Q2
…NPNトランジスタ、I…定電流源。
M1, M2 ... P-channel MOS FET, Q1, Q2
… NPN transistor, I… Constant current source.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 差動入力対として動作する金属−酸化膜
−半導体(MOS)型電界効果トランジスタと、 このMOS型電界効果トランジスタに定電流を供給する
定電流源とを具備し、 前記定電流源が負の温度係数を有することを特徴とする
差動増幅器。
1. A constant current source for supplying a constant current to a metal-oxide film-semiconductor (MOS) type field effect transistor which operates as a differential input pair, and a constant current source for supplying a constant current to the MOS type field effect transistor. A differential amplifier characterized in that the source has a negative temperature coefficient.
JP4087117A 1992-04-08 1992-04-08 Differential amplifier Withdrawn JPH05291845A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4087117A JPH05291845A (en) 1992-04-08 1992-04-08 Differential amplifier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4087117A JPH05291845A (en) 1992-04-08 1992-04-08 Differential amplifier

Publications (1)

Publication Number Publication Date
JPH05291845A true JPH05291845A (en) 1993-11-05

Family

ID=13906012

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4087117A Withdrawn JPH05291845A (en) 1992-04-08 1992-04-08 Differential amplifier

Country Status (1)

Country Link
JP (1) JPH05291845A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030830A (en) * 2011-07-26 2013-02-07 New Japan Radio Co Ltd Operational amplifier
JP2017169092A (en) * 2016-03-17 2017-09-21 富士電機株式会社 Offset correction circuit and transconductance proportional current generation circuit

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030830A (en) * 2011-07-26 2013-02-07 New Japan Radio Co Ltd Operational amplifier
JP2017169092A (en) * 2016-03-17 2017-09-21 富士電機株式会社 Offset correction circuit and transconductance proportional current generation circuit
US9917552B2 (en) 2016-03-17 2018-03-13 Fuji Electric Co., Ltd. Offset correction circuit and transconductance proportional current generation circuit

Similar Documents

Publication Publication Date Title
US6529066B1 (en) Low voltage band gap circuit and method
US6459326B2 (en) Method for generating a substantially temperature independent current and device allowing implementation of the same
US6507180B2 (en) Bandgap reference circuit with reduced output error
JP3039611B2 (en) Current mirror circuit
JPH08234853A (en) Ptat electric current source
JPH02117208A (en) Circuit device by complementary mos technique
US7518437B2 (en) Constant current circuit and constant current generating method
WO2002087072A2 (en) Bias method and circuit for distortion reduction
JPH0640290B2 (en) Stabilized current source circuit
US6605998B2 (en) Linear transconductance amplifier
JPH03244207A (en) Current mirror functioning as compensation of base current in combination
JP2765319B2 (en) Constant voltage circuit
JPH05291845A (en) Differential amplifier
JP2000278053A (en) Bias circuit
JPH10229311A (en) Mos line transconductance amplifier
JP2550871B2 (en) CMOS constant current source circuit
JP2000175441A (en) Charge pump circuit
US6377114B1 (en) Resistor independent current generator with moderately positive temperature coefficient and method
US6400185B2 (en) Fixed transconductance bias apparatus
JP2666620B2 (en) Temperature sensor circuit
US6731159B2 (en) Mirroring circuit for operation at high frequencies
JPH10283040A (en) Voltage dividing circuit, differential amplifier circuit and semiconductor integrated circuit device
JP2808855B2 (en) Constant voltage circuit
JP2798022B2 (en) Reference voltage circuit
JP2551387B2 (en) Square root circuit

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608