JPH0529149B2 - - Google Patents

Info

Publication number
JPH0529149B2
JPH0529149B2 JP61260941A JP26094186A JPH0529149B2 JP H0529149 B2 JPH0529149 B2 JP H0529149B2 JP 61260941 A JP61260941 A JP 61260941A JP 26094186 A JP26094186 A JP 26094186A JP H0529149 B2 JPH0529149 B2 JP H0529149B2
Authority
JP
Japan
Prior art keywords
gate electrode
region
film
present
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP61260941A
Other languages
Japanese (ja)
Other versions
JPS63114266A (en
Inventor
Seiichiro Kawamura
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP26094186A priority Critical patent/JPS63114266A/en
Publication of JPS63114266A publication Critical patent/JPS63114266A/en
Publication of JPH0529149B2 publication Critical patent/JPH0529149B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/786Thin film transistors, i.e. transistors with a channel being at least partly a thin film

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Thin Film Transistor (AREA)

Description

【発明の詳細な説明】 (概 要〕 本発明は、ゲート電極を形成した後に該ゲート
電極の上方から不純物イオンを打ち込むことによ
り、バツクチヤネル防止用の不純物領域を形成す
ることを特徴とする。
Detailed Description of the Invention (Summary) The present invention is characterized in that after forming a gate electrode, impurity ions are implanted from above the gate electrode to form an impurity region for preventing backchannels.

本発明によればゲート電極の厚みを利用するこ
とにより該ゲート電極の下方の絶縁膜/半導体層
の界面付近にのみ不純物領域を形成することがで
きるので、特別のマスクを必要としないで高耐圧
のSOI/MOSFETを容易に製造することができ
る。
According to the present invention, by utilizing the thickness of the gate electrode, it is possible to form an impurity region only near the interface between the insulating film and the semiconductor layer below the gate electrode. SOI/MOSFET can be easily manufactured.

〔産業上の利用分野〕[Industrial application field]

本発明は半導体装置の製造方法に関するもので
あり、更に詳しく言えば高耐圧のSOI/
MOSFETを形成する半導体装置の製造方法に関
するものである。
The present invention relates to a method for manufacturing a semiconductor device, and more specifically, the present invention relates to a method for manufacturing a semiconductor device, and more specifically, a method for manufacturing a semiconductor device.
The present invention relates to a method of manufacturing a semiconductor device forming a MOSFET.

〔従来の技術〕[Conventional technology]

第2図は従来の製造方法を説明するSOI/
MOSFETの断面図である。1はSi基板、2は
SiO2膜、3は多結晶Si層を再結晶化したp型Si
層、4はソース領域、5はドレイン領域、6はオ
フセツト領域に形成された低濃度領域、7はゲー
ト酸化膜、8はゲート電極である。また9はソー
ス・ドレイン間のリーク電流の原因となるバツク
チヤネルを防止するために、ゲート電極8の下方
でSi/SiO2の界面近くに形成された高濃度のp
型領域である。
Figure 2 shows SOI/
FIG. 3 is a cross-sectional view of a MOSFET. 1 is Si substrate, 2 is
SiO 2 film, 3 is p-type Si obtained by recrystallizing polycrystalline Si layer
4 is a source region, 5 is a drain region, 6 is a low concentration region formed in an offset region, 7 is a gate oxide film, and 8 is a gate electrode. In addition, 9 is a high-concentration p-oxide layer formed near the Si/SiO 2 interface below the gate electrode 8 to prevent back channels that cause leakage current between the source and drain.
It is a type area.

〔発明が解決しようとする問題点〕[Problem that the invention seeks to solve]

ところで従来例の製造方法によれば、高濃度の
p型領域9は、p型Si層3の上方から、例えばボ
ロンイオン(B+)を打ち込むことによつて形成
されるが、打ち込む位置が深いため、ゲート電極
8の下方に正確に形成することが難しい。
By the way, according to the conventional manufacturing method, the highly doped p-type region 9 is formed by implanting, for example, boron ions (B + ) from above the p-type Si layer 3, but the implantation position is deep. Therefore, it is difficult to form it accurately below the gate electrode 8.

このためバツクチヤネルによるリーク電流を十
分に抑えることができなかつたり、あるいはp型
領域9がドレイン領域5や低濃度領域6に接近し
てこれらの領域との間でp−n接合が形成されて
耐圧が低くなる場合がある。
For this reason, the leakage current due to the back channel cannot be suppressed sufficiently, or the p-type region 9 approaches the drain region 5 and the low concentration region 6, and a p-n junction is formed between these regions, resulting in a breakdown voltage. may be lower.

本発明はかかる従来の問題点に鑑みて創作され
たものであり、バツクチヤネルの確実な防止を可
能とする高耐圧のSOI/MOSFETを形成する半
導体装置の製造方法の提供を目的とする。
The present invention was created in view of such conventional problems, and an object of the present invention is to provide a method for manufacturing a semiconductor device forming a high-voltage SOI/MOSFET that can reliably prevent back channels.

〔問題点を解決するための手段〕[Means for solving problems]

本発明の半導体装置の製造方法は、絶縁膜上に
一導電型の多結晶又は非晶質の半導体層を形成す
る工程と、前記半導体層を再結晶化する工程と、
前記再結晶化半導体層をパターニングして該半導
体層を各MOSFET形成領域に分離する工程と、
分離された再結晶化半導体層の表面にゲート酸化
膜を形成する工程と、前記ゲート酸化膜上にゲー
ト電極を形成する工程と、前記ゲート電極の上方
から一導電型の不純物イオンを打ち込み、該ゲー
ト電極の下方で前記絶縁膜と前記半導体層の界面
付近に高濃度の一導電型の不純物領域を形成する
工程と、前記半導体層にソース・ドレイン領域を
形成する工程とを有することを特徴とする。
The method for manufacturing a semiconductor device of the present invention includes a step of forming a polycrystalline or amorphous semiconductor layer of one conductivity type on an insulating film, a step of recrystallizing the semiconductor layer,
patterning the recrystallized semiconductor layer to separate the semiconductor layer into MOSFET formation regions;
A step of forming a gate oxide film on the surface of the separated recrystallized semiconductor layer, a step of forming a gate electrode on the gate oxide film, and a step of implanting impurity ions of one conductivity type from above the gate electrode. The method comprises the steps of: forming a highly concentrated impurity region of one conductivity type near the interface between the insulating film and the semiconductor layer below the gate electrode; and forming a source/drain region in the semiconductor layer. do.

〔作 用〕[Effect]

前記ゲート電極の上方から打ち込む不純物イオ
ンのエネルギーを、該ゲート電極の存在する領域
を透過して注入された不純物イオンが半導体層/
絶縁膜の界面付近に留まるように調節しておく。
このときゲート電極の存在しない領域を介して注
入された不純物イオンは、半導体層/絶縁膜の界
面を超えて絶縁膜中に注入される。
The energy of impurity ions implanted from above the gate electrode is transmitted through the region where the gate electrode is present, and the implanted impurity ions form a semiconductor layer/
Adjust so that it remains near the interface of the insulating film.
At this time, the impurity ions implanted through the region where the gate electrode does not exist are implanted into the insulating film beyond the semiconductor layer/insulating film interface.

このようにして、ゲート電極の下方のみに自己
整合的に不純物イオンを注入することができるの
で、バツクチヤネル防止用の高濃度の不純物領域
を所定の位置に確実に形成することができる。
In this way, impurity ions can be implanted only under the gate electrode in a self-aligned manner, so that a high concentration impurity region for back channel prevention can be reliably formed at a predetermined position.

〔実施例〕〔Example〕

次に図を参照しながら本発明の実施例について
説明する。第1図は本発明の実施例に係る半導体
装置の製造方法を説明する図である。
Next, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a diagram illustrating a method for manufacturing a semiconductor device according to an embodiment of the present invention.

(1) まずSi基板10の上に膜厚1μmのSiO2膜11
を形成した後に0.4μmのボロンドープの多結晶
Si層12を減圧CVD法で形成する(同図a)。
(1) First, a SiO 2 film 11 with a thickness of 1 μm is placed on the Si substrate 10.
0.4μm boron-doped polycrystal after forming
The Si layer 12 is formed by a low pressure CVD method (FIG. 1a).

(2) 次いでレーザ光を多結晶Si層12に照射して
溶融し、再結晶化してp型Si層13を形成す
る。その後該p型Si層13をパターニングして
各MOSFET形成領域分離する(同図b)。な
お以下の図においては、Si基板10は省略して
いる。
(2) Next, the polycrystalline Si layer 12 is irradiated with laser light to melt and recrystallize to form the p-type Si layer 13. Thereafter, the p-type Si layer 13 is patterned to separate each MOSFET formation region (FIG. 2(b)). Note that the Si substrate 10 is omitted in the following figures.

(3) 同図cに示すように、p型Si層13を酸化し
て膜厚500ÅのゲートSiO2膜14を形成する。
(3) As shown in Figure c, the p-type Si layer 13 is oxidized to form a gate SiO 2 film 14 with a thickness of 500 Å.

(4) 次いで同図dに示すように、膜厚0.4μmの多
結晶Si膜を全面に形成した後にパターニングし
てゲート電極15を形成する。このときオフセ
ツト型にするため、ゲートSiO2膜14上の多
結晶Si膜の一部は除去されている。
(4) Next, as shown in Figure d, a polycrystalline Si film with a thickness of 0.4 μm is formed on the entire surface and then patterned to form the gate electrode 15. At this time, a part of the polycrystalline Si film on the gate SiO 2 film 14 is removed to make it an offset type.

(5) 次に同図eに示すように、上方からダブルチ
ヤージのボロンイオン(B+)を180KeV、1×
1012/cm2で注入する。このときRPはほぼ
0.8μm、△RPは0.1μmである。これによりボロ
ンイオンはゲート電極の下方のSi/SiO2界面
付近に注入される。一方、ゲート電極15の領
域以外に打ち込まれたボロンイオンはSi/
SiO2界面を透過してSiO2膜11中に注入され
る。
(5) Next, as shown in figure e, double-charge boron ions (B + ) are applied from above at 180 KeV, 1×
Inject at 10 12 /cm 2 . At this time, R P is approximately
0.8 μm, ΔR P is 0.1 μm. As a result, boron ions are implanted near the Si/SiO 2 interface below the gate electrode. On the other hand, boron ions implanted in areas other than the gate electrode 15 are Si/
It is injected into the SiO 2 film 11 through the SiO 2 interface.

(6) この後、同図fに示すように、ソース・ドレ
イン形成用のイオン等を注入した後、熱処理を
施すことにより各注入イオンを活性化してp型
領域16、ソース・ドレイン領域17,18お
よび低濃度領域19を形成する。このようにし
て所定の高耐圧のSOI/MOSFETが形成され
る。
(6) After this, as shown in FIG. 18 and a low concentration region 19 are formed. In this way, a predetermined high breakdown voltage SOI/MOSFET is formed.

以上説明したように、本発明の実施例によれば
自己整合的にゲート電極15の下方のみにp型領
域16を形成することができるので、該p型領域
16がドレイン領域18や低濃度領域19に接近
しすぎてp−n接合が形成され耐圧が低下するこ
ともない。
As explained above, according to the embodiment of the present invention, the p-type region 16 can be formed only under the gate electrode 15 in a self-aligned manner, so that the p-type region 16 can be formed in the drain region 18 or in the low concentration region. 19, a pn junction will be formed and the withstand voltage will not be lowered.

またp型領域19はゲート電極15を利用して
自己整合的に形成されるので、特別のマスクを必
要としない。
Furthermore, since p-type region 19 is formed in a self-aligned manner using gate electrode 15, no special mask is required.

なお実施例ではnチヤネルMOSFETについて
説明したが、pチヤネルMOSFETについても適
用できることは明らかである。
In the embodiment, an n-channel MOSFET has been described, but it is clear that the present invention can also be applied to a p-channel MOSFET.

〔発明の効果〕〔Effect of the invention〕

以上説明したように、本発明によればバツクチ
ヤネルによるリーク電流防止用の不純物領域を自
己整合的にゲート電極の下方に確実に形成するこ
とができるので、高性能で高耐圧のSOI/
MOSFETの製造が容易となる。
As explained above, according to the present invention, an impurity region for preventing leakage current due to back channels can be reliably formed below the gate electrode in a self-aligned manner.
It becomes easier to manufacture MOSFETs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の実施例に係る半導体装置の製
造方法を説明する断面図、第2図は従来例に係る
半導体装置の製造方法を説明する断面図である。 (符号の説明) 1,10…Si基板、2,11
…SiO2膜、3,13…p型Si層、4,17…ソ
ース領域、5,18…ドレイン領域、6,19…
低濃度領域、7,14…ゲートSiO2膜、8,1
5…ゲート電極、9,16…中間濃度領域、12
…ボロンドープ多結晶Si層。
FIG. 1 is a sectional view illustrating a method of manufacturing a semiconductor device according to an embodiment of the present invention, and FIG. 2 is a sectional view illustrating a method of manufacturing a semiconductor device according to a conventional example. (Explanation of symbols) 1, 10...Si substrate, 2, 11
...SiO 2 film, 3,13...p-type Si layer, 4,17...source region, 5,18...drain region, 6,19...
Low concentration region, 7, 14... Gate SiO 2 film, 8, 1
5... Gate electrode, 9, 16... Intermediate concentration region, 12
...Boron-doped polycrystalline Si layer.

【特許請求の範囲】[Claims]

1 半導体基板上に少なくとも浮遊ゲートと制御
ゲートとが積み重ねられて構成されるスタツクト
ゲート構造部を有する紫外線消去型不揮発性メモ
リセルと、 前記スタツクトゲート構造部を覆うように形成
され、紫外線が透過するようにリンを含む第1の
二酸化シリコン膜と、 少なくとも前記スタツクトゲート構造部の側壁
上に前記第1の二酸化シリコン膜を介して形成さ
れ、前記スタツクトゲート部により生ずる段差を
緩和するように構成された、前記第1の二酸化シ
リコン膜よりも融点が低くなるようにボロンおよ
びリンを含む第2の二酸化シリコン膜と を具備したことを特徴とする半導体装置。
1. An ultraviolet erasable nonvolatile memory cell having a stacked gate structure formed by stacking at least a floating gate and a control gate on a semiconductor substrate; a first silicon dioxide film containing phosphorus so as to be transparent; and a first silicon dioxide film formed on at least a side wall of the stacked gate structure via the first silicon dioxide film to alleviate a step difference caused by the stacked gate structure. 1. A semiconductor device comprising: a second silicon dioxide film containing boron and phosphorus so as to have a melting point lower than that of the first silicon dioxide film.

JP26094186A 1986-10-31 1986-10-31 Manufacture of semiconductor device Granted JPS63114266A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP26094186A JPS63114266A (en) 1986-10-31 1986-10-31 Manufacture of semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP26094186A JPS63114266A (en) 1986-10-31 1986-10-31 Manufacture of semiconductor device

Publications (2)

Publication Number Publication Date
JPS63114266A JPS63114266A (en) 1988-05-19
JPH0529149B2 true JPH0529149B2 (en) 1993-04-28

Family

ID=17354904

Family Applications (1)

Application Number Title Priority Date Filing Date
JP26094186A Granted JPS63114266A (en) 1986-10-31 1986-10-31 Manufacture of semiconductor device

Country Status (1)

Country Link
JP (1) JPS63114266A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4950618A (en) * 1989-04-14 1990-08-21 Texas Instruments, Incorporated Masking scheme for silicon dioxide mesa formation
JP2782781B2 (en) * 1989-05-20 1998-08-06 富士通株式会社 Method for manufacturing semiconductor device

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126914A (en) * 1980-03-11 1981-10-05 Fujitsu Ltd Manufacture of semiconductor device

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS56126914A (en) * 1980-03-11 1981-10-05 Fujitsu Ltd Manufacture of semiconductor device

Also Published As

Publication number Publication date
JPS63114266A (en) 1988-05-19

Similar Documents

Publication Publication Date Title
US4013484A (en) High density CMOS process
JPH07508371A (en) Threshold adjustment in vertical DMOS devices
JP3319215B2 (en) Insulated gate semiconductor device and method of manufacturing the same
JP3455452B2 (en) Semiconductor device and manufacturing method thereof
US6599782B1 (en) Semiconductor device and method of fabricating thereof
US4788158A (en) Method of making vertical inverter
US5397727A (en) Method of forming a floating gate programmable read only memory cell transistor
JPH0529149B2 (en)
JPS62104172A (en) Manufacture of semiconductor device
JPS6359258B2 (en)
JP2672184B2 (en) Method for manufacturing semiconductor device
JP2793141B2 (en) Method of manufacturing semiconductor device having trench element isolation film
JPS6253952B2 (en)
US6709908B2 (en) Methods for making semiconductor devices
JPH0487374A (en) Manufacture of nonvolatile memory element
JP3253992B2 (en) Semiconductor device and manufacturing method thereof
JPH01143357A (en) Semiconductor device and manufacture thereof
JPS63114264A (en) Manufacture of semiconductor device
JP3848782B2 (en) Manufacturing method of semiconductor device
JPH0590396A (en) Semiconductor device and manufacture thereof
JPS63114265A (en) Manufacture of semiconductor device
KR950000152B1 (en) Manufacturing method of gate overlap ldd cmos
JP2864581B2 (en) Method for manufacturing semiconductor device
JPS62140464A (en) Mos type semiconductor device
JP2660013B2 (en) Method for manufacturing semiconductor device