JPH0529129B2 - - Google Patents
Info
- Publication number
- JPH0529129B2 JPH0529129B2 JP61275976A JP27597686A JPH0529129B2 JP H0529129 B2 JPH0529129 B2 JP H0529129B2 JP 61275976 A JP61275976 A JP 61275976A JP 27597686 A JP27597686 A JP 27597686A JP H0529129 B2 JPH0529129 B2 JP H0529129B2
- Authority
- JP
- Japan
- Prior art keywords
- substrate
- scanning
- distortion
- exposure
- mask
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000000758 substrate Substances 0.000 description 40
- 230000003287 optical effect Effects 0.000 description 14
- 238000000034 method Methods 0.000 description 6
- 238000010586 diagram Methods 0.000 description 3
- 239000004065 semiconductor Substances 0.000 description 3
- 230000000694 effects Effects 0.000 description 2
- 238000010438 heat treatment Methods 0.000 description 2
- 229910000831 Steel Inorganic materials 0.000 description 1
- 238000005452 bending Methods 0.000 description 1
- 238000006073 displacement reaction Methods 0.000 description 1
- 230000006870 function Effects 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000010959 steel Substances 0.000 description 1
Classifications
-
- G—PHYSICS
- G03—PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
- G03F—PHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
- G03F7/00—Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
- G03F7/70—Microphotolithographic exposure; Apparatus therefor
- G03F7/70216—Mask projection systems
- G03F7/70358—Scanning exposure, i.e. relative movement of patterned beam and workpiece during imaging
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Description
【発明の詳細な説明】
産業上の利用分野
本発明は、半導体製造工程等に用いられる反射
型投影露光機のデイストーシヨン補正方法に関す
るものである。DETAILED DESCRIPTION OF THE INVENTION Field of the Invention The present invention relates to a distortion correction method for a reflection type projection exposure machine used in semiconductor manufacturing processes and the like.
従来の技術
近年、反射型投影露光機のデイストーシヨン補
正は、露光走査用のリニア・エア・ベアリングの
空気圧力制御によつて行われている。2. Description of the Related Art In recent years, distortion correction in reflective projection exposure machines has been performed by controlling the air pressure of a linear air bearing for exposure scanning.
以下図面を参照しながら、上述した従来の走査
型露光装置のデイストーシヨン補正装置の一例に
ついて説明する。第4図、第5図は従来の反射型
投影露光装置の主要部を示すものである。第4図
第5図において、1は凹面鏡、2は凸面鏡、3は
2つの平面鏡を有する台形ミラー、4はマスク、
5は露光される基板、6はマスク4と基板5とを
平行に保持し、露光光学系の光軸7に平行に走査
する走査枠、8はマスク4と基板5の位置ズレを
測定するためのアライメント光学系、9は円弧形
露光エリアである。10,11は走査枠6のガイ
ドレール、12,13は走査枠6のリニア・エ
ア・ベアリング、14,15は同上下方向制御空
気ポート、16は左右方向制御空気ポートであ
る。 An example of a distortion correction device for the above-mentioned conventional scanning exposure apparatus will be described below with reference to the drawings. 4 and 5 show the main parts of a conventional reflection type projection exposure apparatus. 4 and 5, 1 is a concave mirror, 2 is a convex mirror, 3 is a trapezoidal mirror with two plane mirrors, 4 is a mask,
5 is a substrate to be exposed; 6 is a scanning frame that holds the mask 4 and the substrate 5 in parallel and scans parallel to the optical axis 7 of the exposure optical system; 8 is for measuring the positional deviation between the mask 4 and the substrate 5; 9 is an alignment optical system, and 9 is an arcuate exposure area. 10 and 11 are guide rails of the scanning frame 6; 12 and 13 are linear air bearings of the scanning frame 6; 14 and 15 are vertical control air ports; and 16 are horizontal control air ports.
以上のように構成された反射型投影露光機のデ
イストーシヨン補正装置について、第6図、第7
図を参照しながら、以下その動作について説明す
る。 FIGS. 6 and 7 show the distortion correction device for the reflection type projection exposure machine configured as described above.
The operation will be explained below with reference to the drawings.
反射型投影露光機には一般に第6図aに示すよ
うな、ガイドレール10,11の上下方向の曲り
による、第7図a補正前に示すような、走査方向
の倍率誤差のデイストーシヨンと、光軸7と走査
方向の平行度誤差による、第7図b補正前に示す
ような直角度誤差のデイストーシヨンがある。走
査方向の倍率誤差を補正するためには、第6図c
に示す如く、リニア・エア・ベアリング12,1
3の上下方向制御空気ポート14,15への供給
空気圧Pを走査枠6の位置に応じて制御し、第6
図bに示す如く、エアベアリング12,13を光
軸7に平行に走査させる。また直角度誤差を補正
するためには、同様に、リニア・エア・ベアリン
グ13の左右方向制御空気ポート16への供給空
気圧力を走査枠6の位置に応じて制御し、走査枠
6を光軸7に平行に走査させる。 Reflective projection exposure machines generally have distortion of magnification error in the scanning direction as shown in FIG. 7a before correction due to vertical bending of the guide rails 10 and 11 as shown in FIG. 6a. , due to the parallelism error between the optical axis 7 and the scanning direction, there is distortion due to the squareness error as shown before correction in FIG. 7b. In order to correct the magnification error in the scanning direction, see Figure 6c.
As shown, the linear air bearing 12,1
The supply air pressure P to the vertical control air ports 14 and 15 of No. 3 is controlled according to the position of the scanning frame 6, and
As shown in FIG. b, the air bearings 12 and 13 are scanned parallel to the optical axis 7. In addition, in order to correct the squareness error, similarly, the air pressure supplied to the left-right control air port 16 of the linear air bearing 13 is controlled according to the position of the scanning frame 6, and the scanning frame 6 is aligned with the optical axis. 7 to scan in parallel.
発明が解決しようとする問題点
しかしながら上記のような構成では、デイスト
ーシヨン補正装置の目的はあくまでも走査枠6の
光軸7に対する走査誤差を無くして歪みのない完
全な投影露光を行うためのものであり、仮にその
機能を用いて、基板パターン自体の熱処理等によ
る均一な歪み補正は行えたとしても、補正量の調
整は専用テストマスクと基板を用いてアライメン
トテスト又はテスト露光を行うものであり、大変
な手数を要し、基板のロツト毎や1枚毎に自動的
に基板の歪みに合わせて補正できるものではなか
つた。またエアベアリングの供給空気圧を制御す
る機構を必要とし、さらにその調整範囲はエアベ
アリングのすき間を増減させるものであるので通
常1μm以下の狭い範囲の調整しかできないという
欠点を有していた。Problems to be Solved by the Invention However, in the above-described configuration, the purpose of the distortion correction device is to eliminate scanning errors with respect to the optical axis 7 of the scanning frame 6 and perform perfect projection exposure without distortion. Even if it were possible to use this function to uniformly correct distortion by heat treatment of the substrate pattern itself, adjusting the amount of correction would involve performing an alignment test or test exposure using a dedicated test mask and substrate. However, this required a great deal of effort, and it was not possible to automatically correct the distortion of each board for each lot or each board. In addition, it requires a mechanism to control the air pressure supplied to the air bearing, and since the adjustment range is to increase or decrease the gap between the air bearings, it has the disadvantage that it can only be adjusted within a narrow range of 1 μm or less.
本発明は上記問題点に鑑み、装置の誤差を補正
すると共に、基板の熱処理等による不均一な歪み
に対しても補正を容易とする、走査型露光機のデ
イストーシヨン補正方法を提供するものである。 In view of the above-mentioned problems, the present invention provides a distortion correction method for a scanning exposure machine, which not only corrects errors in the apparatus but also facilitates correction of non-uniform distortion caused by heat treatment of a substrate, etc. It is.
問題点を解決するための手段
上記問題点を解決するために本発明の走査型露
光機デイストーシヨン補正方法は、マスクと基板
の初期位置合せ後、露光走査を行いながら、走査
位置に応じて、マスク又は基板の微小送り機構を
用いてマスクと基板の位置関係を相対的にずらす
というものであり、また、さらにその位置ずらし
量を定めるために、あらかじめ走査方向に複数の
個所でデイストーシヨンによる位置ズレ量を測つ
ておくか、露光を行いながら、位置ズレ量を測り
つつ補正を行うという要件を備えたものである。Means for Solving the Problems In order to solve the above-mentioned problems, the scanning exposure machine distortion correction method of the present invention, after the initial alignment of the mask and the substrate, while performing exposure scanning, adjusts the distortion according to the scanning position. , the positional relationship between the mask and the substrate is shifted relative to each other using a micro-feeding mechanism for the mask or substrate, and in order to further determine the amount of positional shift, distortion is created in advance at multiple locations in the scanning direction. This requires that the amount of positional deviation be measured in advance, or that the correction be performed while measuring the amount of positional deviation while performing exposure.
作 用
本発明は上記した構成によつて、単に装置の誤
差によるデイストーシヨンを補正するのみなら
ず、基板の不均一な歪みに対しても、マスクと基
板の位置関係を露光走査を行いつつずらすことに
より補正を行うことができるものである。Effects With the above-described configuration, the present invention not only corrects distortion caused by errors in the apparatus, but also corrects uneven distortion of the substrate while performing exposure scanning to adjust the positional relationship between the mask and the substrate. Correction can be made by shifting.
実施例
以下本発明の一実施例の走査型露光機のデイス
トーシヨン補正方法について図面を参照しながら
説明する。Embodiment A distortion correction method for a scanning exposure machine according to an embodiment of the present invention will be described below with reference to the drawings.
第1図は本発明の一実施例における走査型露光
機のデイストーシヨン補正装置のたて断面図を示
すものであり、第2図は同下平面図を示すもので
ある。 FIG. 1 shows a vertical sectional view of a distortion correction device for a scanning type exposure machine according to an embodiment of the present invention, and FIG. 2 shows a bottom plan view of the same.
第1図、第2図において、21は凹面鏡、22
は凸面鏡、23は2つの平面鏡を有する台形ミラ
ー、24はマスク、25は露光される基板、26
は露光光学系の光軸27に平行にマスク24と基
板25を保持して走査する走査枠、28はマスク
24と基板25の位置ズレを測定するためのアラ
イメント光学系、29は円弧形露光エリアであ
る。30,31は走査枠26のガイドレール、3
2,33は走査枠26のリニア・エア・ベアリン
グである。34は微小送り機構であり、可動枠3
5には3方にローラー36,37,38が取付け
られ、鋼球群39を介して走査枠26の下面にバ
ネ(図示せず)により懸垂されており、可動枠3
5の下面には基板25が真空吸着されている。4
0,41,42はパルスモーターであり各々ボー
ルネジ43,44,45によりクサビ46,4
7,48をスライドさせる。クサビ46,47,
48には各々前記ローラー36,37,38がバ
ネ49により押圧されており、モーター40,4
1,42の動作により、マスク25の位置を第2
図に示すxyθ方向に微動させることができる。5
0は走査枠26の走査位置を検出するためのリニ
アスケールであり、51はその検出器である。5
2は基板25の裏面に設けたアライメント光学系
であり、基板25が透光性である場合マスク24
に対する基板25の位置ズレを観測できるもので
ある。 In FIGS. 1 and 2, 21 is a concave mirror, 22
is a convex mirror, 23 is a trapezoidal mirror having two plane mirrors, 24 is a mask, 25 is a substrate to be exposed, 26
28 is an alignment optical system for measuring the positional deviation between the mask 24 and the substrate 25; 29 is a circular arc exposure frame; area. 30 and 31 are guide rails of the scanning frame 26;
2 and 33 are linear air bearings of the scanning frame 26. 34 is a minute feed mechanism, and the movable frame 3
Rollers 36, 37, and 38 are attached to three sides of the movable frame 3, and are suspended from the lower surface of the scanning frame 26 via a group of steel balls 39 by springs (not shown).
A substrate 25 is vacuum-adsorbed on the lower surface of the substrate 5 . 4
0, 41, 42 are pulse motors, and wedges 46, 4 are connected by ball screws 43, 44, 45, respectively.
Slide 7 and 48. Wedge 46, 47,
The rollers 36, 37, 38 are pressed by springs 49, respectively, and the motors 40, 4
By the operations 1 and 42, the position of the mask 25 is changed to the second position.
It can be moved slightly in the xyθ directions shown in the figure. 5
0 is a linear scale for detecting the scanning position of the scanning frame 26, and 51 is its detector. 5
2 is an alignment optical system provided on the back surface of the substrate 25, and when the substrate 25 is translucent, a mask 24 is provided.
It is possible to observe the positional deviation of the substrate 25 with respect to the substrate 25.
以上のように構成された走査型投影露光機のデ
イストーシヨン補正装置について、以下第3図を
用いてその動作を説明する。第3図は第2図の基
板25の部分の詳細図であり、53a,53b,
53c,54a,54b,54cの十字マーク
は、前工程で基板25に加工されたアライメント
マークであり、55a,55b,55c,56
a,56b,56cのカギ十字マークはマスク2
4のアライメントマークが投影光学系により基板
25上に投影されたものであり、露光走査の前に
走査枠26を動かして露光エリア29をAの位置
に合わせてアライメント光学系、52又は28に
より観測して投影されたマスクアライメントマー
ク55a,56aに対し基板のアライメントマー
ク53a,54aを基板の微小送り機構34によ
り各々中央に位置合せする。 The operation of the distortion correction device for a scanning projection exposure machine constructed as described above will be described below with reference to FIG. FIG. 3 is a detailed view of the substrate 25 in FIG. 2, with 53a, 53b,
The cross marks 53c, 54a, 54b, 54c are alignment marks processed on the substrate 25 in the previous process, and the cross marks 55a, 55b, 55c, 56
The swastika marks a, 56b, and 56c are mask 2
The alignment mark 4 is projected onto the substrate 25 by the projection optical system, and before exposure scanning, the scanning frame 26 is moved to align the exposure area 29 to the position A and observed by the alignment optical system 52 or 28. The alignment marks 53a and 54a of the substrate are aligned to the center of each of the mask alignment marks 55a and 56a projected by the microscopic feeding mechanism 34 of the substrate.
次に走査枠26を動かして露光エリア29をB
の位置合わせて、アライメント光学系52又は2
8により観測して基板のアライメントマーク53
b,54bに対する投影されたマスクのアライメ
ントマーク55b,56bの位置ズレ量xbとybを
測定する。次に同様に走査枠26を動かしてcの
位置における位置ズレ量xcとycを測定する。位置
ズレ量xb・xcは走査方向の倍率誤差のデイストー
シヨンに相当し、yb・ycは直角度誤差のデイスト
ーシヨンに相当する。 Next, move the scanning frame 26 to move the exposure area 29 to B.
alignment optical system 52 or 2
8 to observe the alignment mark 53 on the board.
The amount of positional deviation x b and y b of the projected mask alignment marks 55b, 56b with respect to b, 54b is measured. Next, the scanning frame 26 is similarly moved to measure the positional deviation amounts x c and y c at the position c. The positional deviation amounts x b and x c correspond to the distortion of the magnification error in the scanning direction, and y b and y c correspond to the distortion of the squareness error.
このデイストーシヨンを実際の露光走査時に補
正するためには、走査枠26に取付けたリニアス
ケール50,51から検出する第3図のA位置か
らの走査距離lに応じ、A〜B間について基板を
x方向にx=xb×l/lb,y方向にy=yb×l/
lbだけ微小送り機構34により微小送りし、B〜
C間については、基板をx方向にx=(xc−xb)×
(l−lb)/(lc−lb),y方向に、y=(yc−yb)×
(l−lb)/(lc−lb)だけ微小送りして補正す
る。微動は連続送りが望ましいが最小限のステツ
プ送りでも可能である。また補正量の式は直線補
間で示したが、曲線補間や、位置ズレ測定個所を
増して統計処理した補正量を与えても良い。この
補正量は露光機又は基板の個有の値いとして、露
光機の記憶装置に記憶しておき、次の基板の露光
に対しくり返し、同じ補正を行う。 In order to correct this distortion during actual exposure scanning, it is necessary to scan the substrate between A and B according to the scanning distance l from the position A in FIG. In the x direction, x=x b ×l/l b , in the y direction, y=y b ×l/
l Fine feed by the fine feed mechanism 34 by b , and
For C, move the board in the x direction x = (x c - x b ) x
(l-l b )/(l c -l b ), in the y direction, y = (y c - y b )×
Correction is made by micro-feeding by (l-l b )/(l c -l b ). Continuous feed is preferable for fine movement, but minimal step feed is also possible. Further, although the formula for the correction amount is shown by linear interpolation, it is also possible to use curve interpolation or increase the number of positions where the positional deviation is measured and provide the correction amount through statistical processing. This correction amount is stored in the storage device of the exposure machine as a value unique to the exposure machine or the substrate, and the same correction is repeated for the exposure of the next substrate.
以上のように本実施例によれば、露光走査を行
いながら、マスク又は基板の微小送り機構により
マスクと基板の位置をあらかじめ測定して定めた
最適の変位パターンで相対的にずらしてデイスト
ーシヨンを補正するので、特別な補正機構を必要
とせず、その補正範囲も広くとることができる。 As described above, according to this embodiment, while performing exposure scanning, distortion is achieved by relatively shifting the positions of the mask and substrate in an optimal displacement pattern determined by measuring the positions of the mask or substrate in advance using a micro-feeding mechanism for the mask or substrate. Since it corrects, a special correction mechanism is not required and the correction range can be widened.
以下本発明の第2の実施例について説明する。
この実施例はデイストーシヨンの量を、露光の直
前に走査枠26を複数の位置に動かしてアライメ
ント光学系によりマスクと基板の位置ズレ量を測
定し、基板ごとに最適のデイストレーシヨン補正
量を決定して、露光走査時に第一の実施例と同様
の補正を行う。以上のように1枚づつの基板に対
し、露光の前に基板上の複数の位置でアライメン
トマークの位置ズレ量を測定し、微小送り機構に
より最適のデイストーシヨン補正を施すことによ
り、基板毎に特有のデイストーシヨンを容易に補
正することができる。 A second embodiment of the present invention will be described below.
In this embodiment, the amount of distortion is determined by moving the scanning frame 26 to a plurality of positions immediately before exposure, and measuring the amount of positional deviation between the mask and the substrate using an alignment optical system, and determining the amount of distortion correction that is optimal for each substrate. is determined, and the same correction as in the first embodiment is performed during exposure scanning. As described above, for each substrate, the amount of positional deviation of the alignment mark is measured at multiple positions on the substrate before exposure, and the optimal distortion correction is performed using the micro-feed mechanism. Distortion peculiar to can be easily corrected.
以下本発明の第3図の実施例について説明す
る。この実施例については、透明基板に対する裏
面からのアライメント光学系52のように露光照
明を遮らないアライメント光学系を用いて、第3
図A初期の基板アライメントマークと投影された
マスクアライメントを位置合せした後、露光走査
を行いながら多数設けられたアライメントマーク
の位置ずれ量をアライメント光学系52に取付け
た画像メモリー付テレビカメラ装置等で観測し、
デイストーシヨン補正量を決定し、マスク又は基
板の微小送り機構34で補正を行うものである。
露光走査を行いながら補正が可能で、露光前の複
数個所での位置ズレ量観測が不要なので、露光機
の能率が高い。 The embodiment of the present invention shown in FIG. 3 will be described below. In this embodiment, the third
Figure A After aligning the initial substrate alignment mark and the projected mask alignment, while performing exposure scanning, the amount of positional deviation of the many alignment marks is measured using a television camera device with an image memory attached to the alignment optical system 52, etc. observe,
The amount of distortion correction is determined, and the correction is performed by a minute movement mechanism 34 for the mask or substrate.
Correction can be made while performing exposure scanning, and there is no need to observe the amount of positional deviation at multiple locations before exposure, so the efficiency of the exposure machine is high.
発明の効果
以上のように本発明は、走査型露光機におい
て、マスクと基板の初期位置合せ後、露光走査を
行いながら、微小送り機構によりマスクと基板の
相対的位置をずらしてデイストーシヨンを補正す
る方法であるので、単に装置の誤差を補正するの
みならず、個々の基板の歪みに対してもデイスト
ーシヨンの補正が容易で、露光機として能率が高
く、また特別な補正機構を付加する必要の無い経
済的な露光装置を提供することができる。Effects of the Invention As described above, the present invention uses a scanning exposure machine to shift the relative positions of the mask and the substrate using a minute feed mechanism while performing exposure scanning after initial alignment of the mask and substrate to prevent distortion. Since this is a correction method, it is easy to correct distortion not only for equipment errors, but also for distortion of individual substrates, making it highly efficient as an exposure machine, and a special correction mechanism has been added. It is possible to provide an economical exposure apparatus that does not require
第1図は本発明の第1の実施例における走査型
露光装置のたて断面図、第2図は第1図の下平面
図、第3図は走査型露光装置のデイストーシヨン
の説明図、第4図は従来の反射型投影露光機のた
て断面図、第5図は第4図の上平面図、第6図は
第4図の装置のデイストーシヨン補正の原理図、
第7図は同デイストーシヨン補正の説明図であ
る。
21……凹面鏡、22……凸面鏡、23……台
形ミラー、24……マスク、25……基板、26
……走査枠、30,31……ガイドレール、3
2,33…リニア・エア・ベアリング、34……
微小送り機構。
FIG. 1 is a vertical sectional view of a scanning exposure apparatus according to a first embodiment of the present invention, FIG. 2 is a bottom plan view of FIG. 1, and FIG. 3 is an explanatory diagram of distortion of the scanning exposure apparatus. , FIG. 4 is a vertical sectional view of a conventional reflection type projection exposure machine, FIG. 5 is a top plan view of FIG. 4, and FIG. 6 is a diagram of the principle of distortion correction of the apparatus shown in FIG. 4.
FIG. 7 is an explanatory diagram of the distortion correction. 21... Concave mirror, 22... Convex mirror, 23... Trapezoidal mirror, 24... Mask, 25... Substrate, 26
...Scanning frame, 30, 31...Guide rail, 3
2, 33...Linear air bearing, 34...
Micro feed mechanism.
1 XおよびY方向にそれぞれ独立して移動する
X−Yステージ上に半導体ウエハーを載置し、ス
テツプアンドリピート動作により、フオトマスク
像を前記半導体ウエハー面に投影露光させる投影
露光装置において、前記X−Yステージの位置を
計測する位置計測器と、この位置計測器からの出
力に基づいて前記フオトマスク像を微小回動させ
る手段とを備えたことを特徴とする投影露光装置
におけるステージ誤差測定装置。
1. A projection exposure apparatus in which a semiconductor wafer is placed on an X-Y stage that moves independently in the X and Y directions, and a photomask image is projected onto the semiconductor wafer surface by step-and-repeat operation. 1. A stage error measuring device for a projection exposure apparatus, comprising: a position measuring device for measuring the position of a Y stage; and means for slightly rotating the photomask image based on an output from the position measuring device.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61275976A JPS63128713A (en) | 1986-11-19 | 1986-11-19 | Correction of distortion in scanning aligner |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP61275976A JPS63128713A (en) | 1986-11-19 | 1986-11-19 | Correction of distortion in scanning aligner |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS63128713A JPS63128713A (en) | 1988-06-01 |
JPH0529129B2 true JPH0529129B2 (en) | 1993-04-28 |
Family
ID=17563043
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP61275976A Granted JPS63128713A (en) | 1986-11-19 | 1986-11-19 | Correction of distortion in scanning aligner |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPS63128713A (en) |
Families Citing this family (22)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH0752712B2 (en) * | 1989-12-27 | 1995-06-05 | 株式会社東芝 | Exposure equipment |
JP2830492B2 (en) | 1991-03-06 | 1998-12-02 | 株式会社ニコン | Projection exposure apparatus and projection exposure method |
US5477304A (en) | 1992-10-22 | 1995-12-19 | Nikon Corporation | Projection exposure apparatus |
USRE38113E1 (en) | 1993-04-02 | 2003-05-06 | Nikon Corporation | Method of driving mask stage and method of mask alignment |
US6753948B2 (en) | 1993-04-27 | 2004-06-22 | Nikon Corporation | Scanning exposure method and apparatus |
US5854671A (en) | 1993-05-28 | 1998-12-29 | Nikon Corporation | Scanning exposure method and apparatus therefor and a projection exposure apparatus and method which selectively chooses between static exposure and scanning exposure |
US5729331A (en) | 1993-06-30 | 1998-03-17 | Nikon Corporation | Exposure apparatus, optical projection apparatus and a method for adjusting the optical projection apparatus |
JP3477838B2 (en) | 1993-11-11 | 2003-12-10 | 株式会社ニコン | Scanning exposure apparatus and exposure method |
USRE37762E1 (en) | 1994-04-12 | 2002-06-25 | Nikon Corporation | Scanning exposure apparatus and exposure method |
JP3484684B2 (en) * | 1994-11-01 | 2004-01-06 | 株式会社ニコン | Stage apparatus and scanning type exposure apparatus |
US5850280A (en) | 1994-06-16 | 1998-12-15 | Nikon Corporation | Stage unit, drive table, and scanning exposure and apparatus using same |
US6721034B1 (en) | 1994-06-16 | 2004-04-13 | Nikon Corporation | Stage unit, drive table, and scanning exposure apparatus using the same |
US6235438B1 (en) | 1997-10-07 | 2001-05-22 | Nikon Corporation | Projection exposure method and apparatus |
TW396395B (en) | 1998-01-07 | 2000-07-01 | Nikon Corp | Exposure method and scanning-type aligner |
EP3226073A3 (en) | 2003-04-09 | 2017-10-11 | Nikon Corporation | Exposure method and apparatus, and method for fabricating device |
TWI457712B (en) | 2003-10-28 | 2014-10-21 | 尼康股份有限公司 | Optical illumination device, projection exposure device, exposure method and device manufacturing method |
TWI612338B (en) | 2003-11-20 | 2018-01-21 | 尼康股份有限公司 | Optical illuminating apparatus, exposure device, exposure method, and device manufacturing method |
TWI494972B (en) | 2004-02-06 | 2015-08-01 | 尼康股份有限公司 | Polarization changing device, optical illumination apparatus, light-exposure apparatus and light-exposure method |
EP2660852B1 (en) | 2005-05-12 | 2015-09-02 | Nikon Corporation | Projection optical system, exposure apparatus and exposure method |
JP5267029B2 (en) | 2007-10-12 | 2013-08-21 | 株式会社ニコン | Illumination optical apparatus, exposure apparatus, and device manufacturing method |
US8379187B2 (en) | 2007-10-24 | 2013-02-19 | Nikon Corporation | Optical unit, illumination optical apparatus, exposure apparatus, and device manufacturing method |
US9116346B2 (en) | 2007-11-06 | 2015-08-25 | Nikon Corporation | Illumination apparatus, illumination method, exposure apparatus, and device manufacturing method |
Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58108745A (en) * | 1981-12-23 | 1983-06-28 | Canon Inc | Erroneous transcription adjusting device |
JPS59132621A (en) * | 1982-12-21 | 1984-07-30 | エスヴィージー・リトグラフィー・システムズ・インコーポレイテッド | Positioning system for scanning mask aligner and focus adjusting system |
JPS60182444A (en) * | 1984-03-01 | 1985-09-18 | Canon Inc | Semiconductor exposing device |
JPS6125102A (en) * | 1984-07-16 | 1986-02-04 | Akai Electric Co Ltd | Formation of optical film |
JPS61247026A (en) * | 1985-04-25 | 1986-11-04 | Canon Inc | Exposure equipment |
JPS61251025A (en) * | 1985-04-30 | 1986-11-08 | Canon Inc | Projection exposing apparatus |
JPS61283121A (en) * | 1985-06-10 | 1986-12-13 | Nippon Telegr & Teleph Corp <Ntt> | Charged beam projecting exposure device |
-
1986
- 1986-11-19 JP JP61275976A patent/JPS63128713A/en active Granted
Patent Citations (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58108745A (en) * | 1981-12-23 | 1983-06-28 | Canon Inc | Erroneous transcription adjusting device |
JPS59132621A (en) * | 1982-12-21 | 1984-07-30 | エスヴィージー・リトグラフィー・システムズ・インコーポレイテッド | Positioning system for scanning mask aligner and focus adjusting system |
JPS60182444A (en) * | 1984-03-01 | 1985-09-18 | Canon Inc | Semiconductor exposing device |
JPS6125102A (en) * | 1984-07-16 | 1986-02-04 | Akai Electric Co Ltd | Formation of optical film |
JPS61247026A (en) * | 1985-04-25 | 1986-11-04 | Canon Inc | Exposure equipment |
JPS61251025A (en) * | 1985-04-30 | 1986-11-08 | Canon Inc | Projection exposing apparatus |
JPS61283121A (en) * | 1985-06-10 | 1986-12-13 | Nippon Telegr & Teleph Corp <Ntt> | Charged beam projecting exposure device |
Also Published As
Publication number | Publication date |
---|---|
JPS63128713A (en) | 1988-06-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JPH0529129B2 (en) | ||
KR100330069B1 (en) | Scanning exposure apparatus and its exposure method | |
JP3336649B2 (en) | Exposure apparatus, exposure method, device manufacturing method including the exposure method, and device manufactured by the device manufacturing method | |
JPH01161243A (en) | Apparatus and method for manufacturing large-area electronic device such as flat panel type display using aligned dual optical system with correlationship | |
JPH0584663B2 (en) | ||
US5850291A (en) | Projection exposure apparatus and method for controlling a stage on the basis of a value corrected by ABBE error | |
JPH0257333B2 (en) | ||
JPH097921A (en) | Positioning method | |
US20030063289A1 (en) | Switching type dual wafer stage | |
JP4280523B2 (en) | Exposure apparatus and method, device manufacturing method | |
JP3316706B2 (en) | Projection exposure apparatus and element manufacturing method using the apparatus | |
JP4214849B2 (en) | Exposure method and exposure apparatus | |
JPH09106941A (en) | Scanning exposure device and exposure | |
JPH04122013A (en) | Exposure device | |
JPH09139340A (en) | Positional discrepancy correcting method | |
JPH10294257A (en) | Method and apparatus for control of face position of substrate as well as method and apparatus for exposure | |
JP2000012422A (en) | Aligner | |
JPH1097987A (en) | Method and device for scanning type exposure | |
JP2670984B2 (en) | Device manufacturing method | |
JPH088175A (en) | Aligner and align method | |
JPH08330219A (en) | Scanning-type exposure device | |
USRE37762E1 (en) | Scanning exposure apparatus and exposure method | |
JPH1070065A (en) | Aligner | |
JPH10144587A (en) | Exposure method | |
JPS61247026A (en) | Exposure equipment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EXPY | Cancellation because of completion of term |