JPH05291025A - Magnetic device - Google Patents
Magnetic deviceInfo
- Publication number
- JPH05291025A JPH05291025A JP9325092A JP9325092A JPH05291025A JP H05291025 A JPH05291025 A JP H05291025A JP 9325092 A JP9325092 A JP 9325092A JP 9325092 A JP9325092 A JP 9325092A JP H05291025 A JPH05291025 A JP H05291025A
- Authority
- JP
- Japan
- Prior art keywords
- magnetic
- permanent magnet
- thin film
- magnetic field
- magnetostatic wave
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Control Of Motors That Do Not Use Commutators (AREA)
- Non-Reversible Transmitting Devices (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、YIGの磁気スピン共
鳴を利用した静磁波素子の磁気装置に関わり、任意の共
振周波数において広い温度範囲で温度補償を行うもので
ある。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic device of a magnetostatic wave device utilizing magnetic spin resonance of YIG, and performs temperature compensation in a wide temperature range at an arbitrary resonance frequency.
【0002】[0002]
【従来の技術】GGG(ガドリニウム・ガリウム・ガ−
ネット)非磁性基板上に、液相エピタキシャル成長させ
たYIG(イットリウム・鉄・ガ−ネット)単結晶磁性
薄膜を所要の形状に加工し、マイクロストリップライン
等によりマイクロ波にて磁性膜内部に静磁波を励起、伝
搬、共振させる各種のマイクロ波用静磁波素子が提案さ
れている。このような静磁波素子は非常に高い選択性Q
を持つ特徴があり、また磁性薄膜にかけるバイアス磁場
の強さを変えることにより共振周波数を幅広く変えられ
る特徴がある。高い選択性を持つマイクロ波用静磁波素
子としては、YIG単結晶球のスピン共鳴を使った素子
が従来使われてきたが、周囲温度が低くなると共鳴点が
消失する欠点があるため、恒温槽内に置き温度の低下を
防ぐなどの必要があり大きな障害になっていた。また、
YIG単結晶を球形に加工することは難しく、加工費が
高価になる問題もあり実用分野は限られていた。一方、
YIG薄膜を使う静磁波素子は、その共鳴の機構から低
温でも使用可能であり、写真蝕刻技術により素子を作製
するため比較的安価にできる可能性がある。このような
静磁波素子に外部からYIG薄膜に対して垂直な方向に
バイアス磁界が印加されると静磁前進体積波が励起され
る。その共振周波数foはYIG薄膜の内部磁場をH
i、飽和磁化を4πMs、磁気回転係数をγ、外部磁場
の強さをHoとすれば膜面による反磁場を考慮して2. Description of the Related Art GGG (gadolinium gallium gas)
(Net) A YIG (yttrium, iron, garnet) single crystal magnetic thin film grown by liquid phase epitaxial growth on a non-magnetic substrate is processed into a desired shape, and a magnetostatic wave is generated inside the magnetic film by a microwave using a microstrip line or the like. Various magnetostatic wave devices for microwaves that excite, propagate, and resonate are proposed. Such a magnetostatic wave element has a very high selectivity Q.
In addition, the resonance frequency can be widely changed by changing the strength of the bias magnetic field applied to the magnetic thin film. As a magnetostatic wave device for microwaves with high selectivity, a device using spin resonance of a YIG single crystal sphere has been conventionally used, but there is a drawback that the resonance point disappears when the ambient temperature becomes low. It was a big obstacle because it was necessary to put it inside and prevent the temperature from dropping. Also,
It is difficult to process the YIG single crystal into a spherical shape, and there is a problem that the processing cost becomes high, so that the practical fields have been limited. on the other hand,
The magnetostatic wave device using the YIG thin film can be used even at a low temperature due to its resonance mechanism, and the device can be made relatively inexpensive because it is manufactured by the photoetching technique. When a bias magnetic field is externally applied to such a magnetostatic wave element in a direction perpendicular to the YIG thin film, magnetostatic forward volume waves are excited. The resonance frequency fo is the internal magnetic field of the YIG thin film to H
i, saturation magnetization 4πMs, gyromagnetic coefficient γ, and external magnetic field strength Ho, the demagnetizing field due to the film surface is taken into consideration.
【数1】 fo=γHi =γ(Ho−4πMs) で表される。ここで4πMsには温度特性があるため、
温度が変化すると共振周波数foも変動する。したがっ
て、以下のようにバイアス磁界発生のための永久磁石の
温度係数を合わせることで温度補償を行っていた。数1
の両辺を温度Tで微分すると## EQU1 ## It is represented by fo = γHi = γ (Ho-4πMs). Here, since 4πMs has a temperature characteristic,
When the temperature changes, the resonance frequency fo also changes. Therefore, temperature compensation is performed by adjusting the temperature coefficient of the permanent magnet for generating the bias magnetic field as described below. Number 1
If both sides of are differentiated by temperature T
【数2】 を得る。ここで温度により周波数が変化しないためには
数2の左辺が0となり[Equation 2] To get Here, since the frequency does not change with temperature, the left side of Equation 2 becomes 0
【数3】 を得る。したがって、例えば9GHzにおいて温度補償
に必要な永久磁石の温度係数をαHとすれば、4πMs
=0.176テスラ、4πMsの温度係数を−0.22
4%/℃、また外部磁界の強さは数1より0.4974
テスラであるから[Equation 3] To get Therefore, if the temperature coefficient of the permanent magnet required for temperature compensation at 9 GHz is αH, then 4πMs
= 0.176 tesla, temperature coefficient of 4πMs is -0.22
4% / ℃, and the strength of the external magnetic field is 0.4974 from the number 1
Because it's Tesla
【数4】 となる。[Equation 4] Becomes
【0003】[0003]
【発明が解決しようとする課題】しかしながら、実際問
題として、工業的に得られる永久磁石材料の種類は限ら
れており、静磁波素子の共振周波数を広い温度範囲で一
定に保つようにYIG薄膜の飽和磁化の温度特性を考慮
して永久磁石に要求される温度係数を求め温度補償しよ
うとしても、既知の磁石を用いるため要求される温度係
数を持つ永久磁石を得ることは困難であった。本発明の
目的は、静磁波素子の任意の共振周波数において広い温
度範囲で温度補償を行うことのできる磁気装置を提供す
ることである。However, as a practical problem, the types of permanent magnet materials that can be industrially obtained are limited, and YIG thin films are used to keep the resonance frequency of the magnetostatic wave device constant over a wide temperature range. Even if an attempt is made to obtain the temperature coefficient required for the permanent magnet in consideration of the temperature characteristics of the saturation magnetization, it is difficult to obtain a permanent magnet having the required temperature coefficient because a known magnet is used. An object of the present invention is to provide a magnetic device capable of temperature compensation in a wide temperature range at an arbitrary resonance frequency of a magnetostatic wave element.
【0004】[0004]
【課題を解決するための手段】本発明は、非磁性基板上
に作成した磁性薄膜、該磁性薄膜の内部にマイクロ波に
て静磁波を励起、伝搬、共鳴を起こさせる構造、および
前記磁性薄膜に磁場を与えるため対向する端部あるいは
両端に永久磁石を装着するとともに、中間部にコイルを
巻回した軟磁性材料からなる磁場発生手段において、前
記永久磁石に温度係数の異なる2種類以上の永久磁石を
使用することを特徴とした磁気装置である。すなわち、
従来の技術では例えば共振周波数9GHz時において磁
石に要求される温度係数αH=−0.079%/℃を持
つ磁石として既知の磁石ネオジウム・鉄・ボロン永久磁
石(温度係数:−0.13%/℃)やサマリウム・コバ
ルト永久磁石(温度係数:−0.035%/℃)等の中
からαHに近いサマリウム・コバルト永久磁石を選んで
もαHと約0.04%/℃差があるため完全な補償はで
きない。そこで本発明ではαHに見合うように、既知の
磁石を2種類以上ある比率で組み合わせて使用する方法
を見い出した。前述の例では、ネオジウム・鉄・ボロン
永久磁石とサマリウム・コバルト永久磁石をそれぞれ
7:8の比率の厚さで用いれば−0.0793%/℃の
温度係数が得られ、αHに極めて近い温度係数を得るこ
とができるので、従来に比べ温度補償精度が著しく向上
する。The present invention provides a magnetic thin film formed on a non-magnetic substrate, a structure for exciting, propagating, and resonating a magnetostatic wave with a microwave in the magnetic thin film, and the magnetic thin film. In order to apply a magnetic field to the permanent magnets, permanent magnets are attached to the opposite ends or both ends, and in the magnetic field generating means made of a soft magnetic material, a coil is wound around the middle part. It is a magnetic device characterized by using a magnet. That is,
In the prior art, for example, a magnet known as a magnet having a temperature coefficient αH = −0.079% / ° C. required for a magnet at a resonance frequency of 9 GHz, neodymium / iron / boron permanent magnet (temperature coefficient: −0.13% / ℃) and samarium-cobalt permanent magnets (temperature coefficient: -0.035% / ° C), etc., even if a samarium-cobalt permanent magnet close to αH is selected, there is a difference of about 0.04% / ° C from αH. No compensation is possible. Therefore, in the present invention, a method has been found in which two or more known magnets are used in combination at a certain ratio so as to meet αH. In the above example, if neodymium / iron / boron permanent magnets and samarium / cobalt permanent magnets are used at a thickness of 7: 8, a temperature coefficient of -0.0793% / ° C is obtained, and the temperature is very close to αH. Since the coefficient can be obtained, the temperature compensation accuracy is significantly improved as compared with the conventional case.
【0005】[0005]
【実施例】以下本発明を実施例に基づいて詳しく説明す
る。 (比較例)図2は従来技術による磁気装置を示す図であ
る。コの字型をした軟磁性材料4の両端に断面積200
mm2、厚さ1.5mm、残留磁束密度1テスラのサマ
リウム・コバルト永久磁石8が設置され、永久磁石8の
間の空隙に、GGG基板上にLPEにて形成されたYI
G薄膜およびマイクロ波を出入りさせるマイクロストリ
ップラインと共振構造を有する静磁波素子1が置かれて
いる。また、軟磁性材料4の中間部には共振周波数変更
のためのコイル5が設置されコイル制御電源6によりコ
イル5に電流が流れる。この図2の磁気装置において静
磁波素子1の共振周波数が室温で9GHzのときの共振
周波数の温度特性を測定したところ、図3に示すように
共振周波数は約±200MHz変化した。 (実施例1)図1(a)は本発明の1実施例を示す図で
ある。コの字型をした軟磁性材料4の端上側に断面積2
00mm2、厚さ1.6mm、残留磁束密度1テスラの
サマリウム・コバルト永久磁石2を、下側に断面積20
0mm2、厚さ1.4mm、残留磁束密度1テスラのネ
オジウム・鉄・ボロン永久磁石3を設置し、これら永久
磁石2および永久磁石3の間の空隙に、GGG基板上に
LPEにて形成されたYIG薄膜およびマイクロ波を出
入りさせるマイクロストリップラインと共振構造を有す
る静磁波素子1が置かれている。また、軟磁性材料4の
中間部には共振周波数変更のためのコイル5が設置され
コイル制御電源6によりコイル5に電流が流れる。この
図1(a)の磁気装置において静磁波素子1の共振周波
数が室温で9GHzのときの共振周波数の温度特性を測
定したところ、図4に示すように共振周波数の変化は約
±10MHzであった。また、この実施例では磁気装置
内の永久磁石として上側にサマリウム・コバルト永久磁
石を、下側にネオジウム・鉄・ボロン永久磁石を設置し
た例で説明したが、本発明の効果はこれら永久磁石の位
置を相互逆にして設置しても同様の温度補償の効果があ
る。 (実施例2)次に図1(b)に本発明の1実施例を示
す。コの字型をした軟磁性材料4の端上側に断面積20
0mm2、厚さ1.6mm、残留磁束密度1テスラのサ
マリウム・コバルト永久磁石2を設置し、その永久磁石
2に接して断面積200mm2、厚さ1.4mm、残留
磁束密度1テスラのネオジウム・鉄・ボロン永久磁石3
が設置してある。また、図1(a)で永久磁石3が設置
してあった場所には永久磁石2および永久磁石3と同じ
断面積および厚さの軟磁性材料からなる磁極7が設置し
てある。そして、これら永久磁石2および永久磁石3と
磁極7との間の空隙に、GGG基板上にLPEにて形成
されたYIG薄膜およびマイクロ波を出入りさせるマイ
クロストリップラインと共振構造を有する静磁波素子1
が置かれている。また、軟磁性材料4の中間部には共振
周波数変更のためのコイル5が設置されコイル制御電源
6によりコイル5に電流が流れる。この図1(b)の磁
気装置において静磁波素子1の共振周波数が室温で9G
Hzのときの共振周波数の温度特性を測定したところ、
共振周波数の変化は約±10MHzであった。また、こ
の実施例において静磁波素子1上側の永久磁石2および
永久磁石3の位置を相互逆にして設置しても同様の温度
補償の効果がある。EXAMPLES The present invention will be described in detail below based on examples. (Comparative Example) FIG. 2 is a diagram showing a magnetic device according to the prior art. A cross-sectional area of 200 is provided on both ends of the U-shaped soft magnetic material 4.
A samarium-cobalt permanent magnet 8 having a size of mm 2 , a thickness of 1.5 mm, and a residual magnetic flux density of 1 tesla is installed, and a YI formed on the GGG substrate by LPE in the space between the permanent magnets 8.
A magnetostatic wave device 1 having a G thin film, a microstrip line for entering and leaving a microwave, and a resonance structure is placed. A coil 5 for changing the resonance frequency is installed in the middle of the soft magnetic material 4, and a current flows through the coil 5 by the coil control power supply 6. When the temperature characteristic of the resonant frequency of the magnetostatic wave device 1 at room temperature of 9 GHz was measured in the magnetic device of FIG. 2, the resonant frequency changed by about ± 200 MHz as shown in FIG. (Embodiment 1) FIG. 1A is a diagram showing an embodiment of the present invention. A cross-sectional area 2 is formed above the end of the U-shaped soft magnetic material 4.
A samarium-cobalt permanent magnet 2 having a diameter of 00 mm 2 , a thickness of 1.6 mm, and a residual magnetic flux density of 1 tesla is provided on the lower side with a cross-sectional area of 20.
A neodymium / iron / boron permanent magnet 3 having a thickness of 0 mm 2 , a thickness of 1.4 mm, and a residual magnetic flux density of 1 tesla is installed, and is formed by LPE on a GGG substrate in a space between the permanent magnet 2 and the permanent magnet 3. A magnetostatic wave element 1 having a YIG thin film, a microstrip line for entering and leaving microwaves, and a resonance structure is placed. A coil 5 for changing the resonance frequency is installed in the middle of the soft magnetic material 4, and a current flows through the coil 5 by the coil control power supply 6. When the temperature characteristic of the resonance frequency of the magnetostatic wave element 1 at room temperature of 9 GHz was measured in the magnetic device of FIG. 1 (a), the change in resonance frequency was about ± 10 MHz as shown in FIG. It was Further, in this embodiment, as the permanent magnet in the magnetic device, the samarium / cobalt permanent magnet is installed on the upper side, and the neodymium / iron / boron permanent magnet is installed on the lower side. Even if the positions are reversed, the same temperature compensation effect can be obtained. (Embodiment 2) Next, FIG. 1B shows an embodiment of the present invention. A cross-sectional area of 20 is provided above the end of the U-shaped soft magnetic material 4.
Neodymium having a cross-sectional area of 200 mm 2 , a thickness of 1.4 mm and a residual magnetic flux density of 1 Tesla is placed in contact with the permanent magnet 2 having a samarium-cobalt permanent magnet 2 of 0 mm 2 , a thickness of 1.6 mm and a residual magnetic flux density of 1 Tesla.・ Iron / boron permanent magnet 3
Is installed. Further, a magnetic pole 7 made of a soft magnetic material having the same cross-sectional area and thickness as the permanent magnet 2 and the permanent magnet 3 is installed at the place where the permanent magnet 3 was installed in FIG. 1A. Then, the magnetostatic wave device 1 having a resonant structure with a YIG thin film formed by LPE on a GGG substrate and a microstrip line for allowing microwaves to enter and leave the gap between the permanent magnets 2 and 3 and the magnetic pole 7.
Is placed. A coil 5 for changing the resonance frequency is installed in the middle of the soft magnetic material 4, and a current flows through the coil 5 by the coil control power supply 6. In the magnetic device of FIG. 1B, the magnetostatic wave element 1 has a resonance frequency of 9 G at room temperature.
When the temperature characteristic of the resonance frequency at Hz was measured,
The change in resonance frequency was about ± 10 MHz. Further, even if the permanent magnets 2 and 3 on the upper side of the magnetostatic wave element 1 are installed with their positions reversed with each other in this embodiment, the same temperature compensation effect can be obtained.
【0006】[0006]
【発明の効果】本発明によれば、静磁波素子にバイアス
磁場を印加するための磁気装置において、静磁波素子の
任意の共振周波数において広い範囲で温度補償を実現す
ることができる。According to the present invention, in a magnetic device for applying a bias magnetic field to a magnetostatic wave element, temperature compensation can be realized in a wide range at any resonance frequency of the magnetostatic wave element.
【図1】(a)および(b)は本発明による実施例を示
す説明図1A and 1B are explanatory views showing an embodiment according to the present invention.
【図2】従来技術による説明図FIG. 2 is an explanatory diagram according to a conventional technique.
【図3】従来技術による温度に対する共振周波数の変化
を示す図FIG. 3 is a diagram showing a change in resonance frequency with respect to temperature according to a conventional technique.
【図4】本発明による温度に対する共振周波数の変化を
示す図FIG. 4 is a diagram showing changes in resonance frequency with temperature according to the present invention.
1 静磁波素子 2 永久磁石 3 永久磁石合金 8 永久磁石合金 4 軟磁性材料 5 コイル 6 コイル制御電源 7 磁極 1 Magnetostatic Wave Element 2 Permanent Magnet 3 Permanent Magnet Alloy 8 Permanent Magnet Alloy 4 Soft Magnetic Material 5 Coil 6 Coil Control Power Supply 7 Magnetic Pole
───────────────────────────────────────────────────── フロントページの続き (72)発明者 邑上 安英 埼玉県熊谷市三ケ尻5200番地日立金属株式 会社磁性材料研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Anei Uegami 5200 Mikashiri, Kumagaya-shi, Saitama Hitachi Metals Co., Ltd.
Claims (3)
性薄膜の内部にマイクロ波にて静磁波を励起、伝搬、共
鳴を起こさせる構造、および前記磁性薄膜に磁場を与え
るため対向する端部あるいは両端に永久磁石を装着する
とともに、中間部にコイルを巻回した軟磁性材料からな
る磁場発生手段において、前記永久磁石に温度係数の異
なる2種類以上の永久磁石を使用することを特徴とした
磁気装置。1. A magnetic thin film formed on a non-magnetic substrate, a structure for exciting, propagating, and resonating a magnetostatic wave with microwaves inside the magnetic thin film, and opposing ends for applying a magnetic field to the magnetic thin film. In the magnetic field generating means made of a soft magnetic material, in which a permanent magnet is attached to each part or both ends and a coil is wound in the middle part, two or more kinds of permanent magnets having different temperature coefficients are used for the permanent magnet. Magnetic device.
性薄膜の内部にマイクロ波にて静磁波を励起、伝搬、共
鳴を起こさせる構造、および前記磁性薄膜に磁場を与え
るため対向する端部あるいは両端に永久磁石を装着する
とともに、中間部にコイルを巻回した軟磁性材料からな
る磁場発生手段において、請求項1の永久磁石を前記磁
性薄膜の温度係数を打ち消すようにある比率でもって組
み合わせて使用することを特徴とした磁気装置。2. A magnetic thin film formed on a non-magnetic substrate, a structure for exciting, propagating, and resonating a magnetostatic wave with microwaves inside the magnetic thin film, and opposite ends for applying a magnetic field to the magnetic thin film. In a magnetic field generating means made of a soft magnetic material, in which a permanent magnet is attached to a portion or both ends and a coil is wound around an intermediate portion, the permanent magnet according to claim 1 is provided with a certain ratio so as to cancel the temperature coefficient of the magnetic thin film. A magnetic device characterized by being used in combination.
性薄膜の内部にマイクロ波にて静磁波を励起、伝搬、共
鳴を起こさせる構造、および前記磁性薄膜に磁場を与え
るため対向する端部あるいは両端に永久磁石を装着する
とともに、中間部にコイルを巻回した軟磁性材料からな
る磁場発生手段において、請求項2の永久磁石としてサ
マリウム・コバルト永久磁石およびネオジウム・鉄・ボ
ロン永久磁石を使用することを特徴とした磁気装置。3. A magnetic thin film formed on a non-magnetic substrate, a structure for exciting, propagating, and resonating a magnetostatic wave with microwaves inside the magnetic thin film, and opposite ends for applying a magnetic field to the magnetic thin film. In the magnetic field generating means made of a soft magnetic material, in which a permanent magnet is attached to each part or both ends and a coil is wound in the middle part, a samarium-cobalt permanent magnet and a neodymium-iron-boron permanent magnet are used as the permanent magnet according to claim 2. A magnetic device characterized by being used.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9325092A JP2672434B2 (en) | 1992-04-14 | 1992-04-14 | Magnetic device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9325092A JP2672434B2 (en) | 1992-04-14 | 1992-04-14 | Magnetic device |
Publications (2)
Publication Number | Publication Date |
---|---|
JPH05291025A true JPH05291025A (en) | 1993-11-05 |
JP2672434B2 JP2672434B2 (en) | 1997-11-05 |
Family
ID=14077263
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9325092A Expired - Lifetime JP2672434B2 (en) | 1992-04-14 | 1992-04-14 | Magnetic device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2672434B2 (en) |
-
1992
- 1992-04-14 JP JP9325092A patent/JP2672434B2/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JP2672434B2 (en) | 1997-11-05 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
KR940000431B1 (en) | Signal transformer | |
JP2672434B2 (en) | Magnetic device | |
JP2694440B2 (en) | Magnetic device | |
US4701729A (en) | Magnetic apparatus including thin film YIG resonator | |
JPS63275201A (en) | Magnetostatic device | |
JP2779057B2 (en) | Magnetostatic wave device chip and magnetostatic wave device | |
KR950005157B1 (en) | Yig thin film microwave device | |
JP4412549B2 (en) | Distributed constant type irreversible device and garnet single crystal for distributed constant type irreversible device | |
Geiler et al. | Low Bias Field Hexagonal Y-Type Ferrite Phase Shifters at ${K} _ {U} $-Band | |
KR950005158B1 (en) | Yig thin film microwave device | |
JPH0738528B2 (en) | YIG thin film microwave device | |
Liu et al. | Discussion of strong pinning effect via nonuniform PSSW mode in Fe/NiFe/Fe multi-layer films with different Fe film thicknesses | |
JPH0738527B2 (en) | YIG thin film microwave device | |
JP2522579B2 (en) | Magnetostatic microwave oscillator for PLL control | |
JP2910015B2 (en) | Microwave oscillator | |
JP2723374B2 (en) | Magnetostatic wave element | |
JPH0191514A (en) | Static magnetic wave device | |
JP2872497B2 (en) | Magnetostatic wave element | |
McKinstry et al. | Off resonance loss measurements in ferrites at 35 GHz | |
Fox | Notes on microwave ferromagnetics research | |
JP2723375B2 (en) | Magnetic device | |
Nilsen et al. | Microwave Properties of a Calcium‐Vanadium‐Bismuth Garnet | |
JPH07105648B2 (en) | YIG thin film microwave device | |
JP2517913B2 (en) | Ferromagnetic resonance device | |
JPS63164507A (en) | Magnetostatic wave resonance element |