JPH05290891A - Coin type lithium secondary cell - Google Patents

Coin type lithium secondary cell

Info

Publication number
JPH05290891A
JPH05290891A JP4119971A JP11997192A JPH05290891A JP H05290891 A JPH05290891 A JP H05290891A JP 4119971 A JP4119971 A JP 4119971A JP 11997192 A JP11997192 A JP 11997192A JP H05290891 A JPH05290891 A JP H05290891A
Authority
JP
Japan
Prior art keywords
lithium
aluminum
negative electrode
press
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4119971A
Other languages
Japanese (ja)
Inventor
Hiroshi Yamamoto
宏 山本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Maxell Holdings Ltd
Original Assignee
Hitachi Maxell Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Maxell Ltd filed Critical Hitachi Maxell Ltd
Priority to JP4119971A priority Critical patent/JPH05290891A/en
Publication of JPH05290891A publication Critical patent/JPH05290891A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To provide a cell having a stable cyclic life by press-fitting a plate-like Al to the side which contains a shear drop part of the plane-like Al punched out into a predetermined shape by means of shearing processing, followed by alloying Li and Al under the existence of an electrolyte in the cell so as to constitute a negative electrode. CONSTITUTION:A negative electrode can 6 is made of stainless steel, and a collector 7 made of a stainless steel mesh is spot-welded to its inner surface, followed by press-fitting Al 3 to the collector 7. This press-fitting is performed from the surface on the side containing a burr part 3b of the Al 3, accordingly the surface on the side containing the shear drop part 3a of the Al 3 is arranged on the side opposite to the press-fitted surface of the Al 3 to the collector 7. Li 2 is punched out of a plate of predetermined thickness into a disk shape of a predetermined diameter by means of a punching blade, and Li 2 is press- fitted to the surface on the side containing the shear drop part 3b of the Al 3. After assembling, the Li 2 and the Al 3 are electrochemically alloyed under the existence of an electrolyte so as to produce an Li-Al alloy, resulting in constituting a negative electrode 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、コイン形リチウム二次
電池に係わり、さらに詳しくはその負極の改良に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a coin-type lithium secondary battery, and more particularly to an improvement of its negative electrode.

【0002】[0002]

【従来の技術】コイン形リチウム二次電池においては、
負極として、せん(剪)断加工により所定形状に打ち抜
かれた板状のアルミニウムと板状のリチウムとを圧着し
たものを電池内で電解液の存在下に電気化学的に合金化
させたリチウム−アルミニウム合金が用いられている
(たとえば、特開平1−97373号公報)。
2. Description of the Related Art In coin type lithium secondary batteries,
As the negative electrode, lithium is obtained by electrochemically alloying a plate-shaped aluminum punched into a predetermined shape by shearing and a plate-shaped lithium in the presence of an electrolytic solution in a battery. Aluminum alloy is used (for example, Japanese Patent Application Laid-Open No. 1-97373).

【0003】しかしながら、上記せん断加工により打ち
抜かれた板状のアルミニウムを用いたコイン形リチウム
二次電池では、充放電サイクル試験をすると、サイクル
寿命に大きなバラツキが発生するという問題があった。
However, in the coin-type lithium secondary battery using the plate-shaped aluminum punched by the shearing process, there is a problem that the cycle life greatly varies in the charge / discharge cycle test.

【0004】[0004]

【発明が解決しようとする課題】本発明は、上記のよう
にせん断加工により所定形状に打ち抜かれた板状のアル
ミニウムと板状のリチウムとを電池内で電解液の存在下
に電気化学的に合金化させたリチウム−アルミニウム合
金を負極とするコイン形リチウム二次電池が持っていた
サイクル寿命に大きなバラツキが発生するという問題点
を解決し、サイクル寿命のバラツキが少ない、安定した
サイクル寿命を有するコイン形リチウム二次電池を提供
することを目的とする。
SUMMARY OF THE INVENTION According to the present invention, plate-like aluminum and plate-like lithium punched into a predetermined shape by shearing as described above are electrochemically electrochemically produced in a battery in the presence of an electrolytic solution. Solves the problem of large variations in cycle life that a coin-type lithium secondary battery having an alloyed lithium-aluminum alloy as a negative electrode has, and has stable cycle life with little variation in cycle life. It is intended to provide a coin-type lithium secondary battery.

【0005】[0005]

【課題を解決するための手段】本発明は、せん断加工に
より所定形状に打ち抜かれた板状のアルミニウムのダレ
部を有する側の面に板状のリチウムを圧着して、リチウ
ムとアルミニウムとを電池内で電解液の存在下に電気化
学的に合金化させて負極とすることにより、上記目的を
達成したものである。
DISCLOSURE OF THE INVENTION According to the present invention, a plate-shaped lithium punched into a predetermined shape by shearing is crimped with a plate-shaped lithium on a surface having a sag portion to form a lithium-aluminum battery. The above object is achieved by electrochemically alloying in the presence of an electrolytic solution to form a negative electrode.

【0006】このアルミニウムのダレ部を有する側の面
にリチウムを圧着することによって上記目的を達成し得
る理由を図面を参照しつつ詳しく説明すると、次の通り
である。
The reason why the above object can be achieved by pressure-bonding lithium to the surface of the aluminum having the sag portion will be described in detail with reference to the drawings.

【0007】リチウムと合金化させる板状のアルミニウ
ムは、一般に条または板から打ち抜き刃を用いてせん断
加工により円板状、角板状などの所定形状に打ち抜かれ
る。その結果、ポンチ方式の打ち抜き刃による場合、図
1に示すように、打ち抜かれた板状のアルミニウム3
は、上側の面、つまり打ち抜き刃が最初に当接した側の
面の外周端のコーナー部分は下側に押しやられて曲面状
になり、この曲面状の部分はダレ部3aと呼ばれる。一
方、反対側の面の外周端のコーナー部分は打ち抜き刃に
引きずられて突出し、この突出した部分はかえり部3b
と呼ばれる。ただし、パンチ−ダイス方式では、上記と
逆になる。
Plate-shaped aluminum to be alloyed with lithium is generally punched from a strip or a plate into a predetermined shape such as a disk or a square plate by shearing using a punching blade. As a result, in the case of using a punch type punching blade, as shown in FIG.
The upper surface, that is, the corner portion of the outer peripheral end of the surface on which the punching blade first abuts is pushed downward to form a curved surface, and this curved surface portion is called a sag portion 3a. On the other hand, the corner portion of the outer peripheral end of the opposite surface is dragged by the punching blade to project, and this projecting portion is the burr portion 3b.
Called. However, in the punch-die method, the above is reversed.

【0008】そこで、ダレ部3a、かえり部3bがサイ
クル寿命に及ぼす影響を調べるため、このアルミニウム
3のダレ部3aを有する側の面に板状のリチウムを圧着
し、また上記とは別にアルミニウム3のかえり部3bを
有する側の面に板状のリチウムを圧着して、それぞれ電
池内で電解液の存在下に電気化学的に合金化させたリチ
ウム−アルミニウム合金を負極とするコイン形リチウム
二次電池を作製し、それらのサイクル寿命を調べたとこ
ろ、後者は前者に比べて大幅にサイクル寿命が劣ってい
た。これは、後者の場合、充電時にかえり部3bに電流
が集中するため、正極から戻ってきたリチウムがアルミ
ニウムの外周端部から合金化し、その結果、外周端部の
リチウム−アルミニウム合金中のリチウムの比率(原子
比)が50原子%を超えるようになり、負極が脆くなっ
て充放電の繰り返しにより負極が崩壊するからである。
Therefore, in order to investigate the influence of the sagging portion 3a and the burr portion 3b on the cycle life, a plate-like lithium is pressure-bonded to the surface of the aluminum 3 having the sagging portion 3a. A coin-shaped lithium secondary battery having a negative electrode of a lithium-aluminum alloy electrochemically alloyed in the presence of an electrolytic solution in a battery by crimping plate-shaped lithium on the surface having the burr portion 3b. When batteries were produced and their cycle life was examined, the latter was significantly inferior in cycle life to the former. This is because in the latter case, the current concentrates on the burr portion 3b during charging, so that the lithium returned from the positive electrode is alloyed from the outer peripheral end of aluminum, and as a result, the lithium in the lithium-aluminum alloy at the outer peripheral end is changed. This is because the ratio (atomic ratio) exceeds 50 atom%, the negative electrode becomes brittle, and the negative electrode collapses due to repeated charging and discharging.

【0009】このように、アルミニウム3のダレ部3a
を有する側の面にリチウムを圧着するか、アルミニウム
3のかえり部3bを有する側の面にリチウムを圧着する
かによってサイクル寿命が異なるにもかかわらず、従来
はアルミニウムの方向性を考慮せずにリチウムを圧着し
ていたので、電池によってサイクル寿命にバラツキが発
生していたのである。
As described above, the sagging portion 3a of the aluminum 3 is formed.
Although the cycle life is different depending on whether lithium is pressure-bonded to the surface having the burr part 3b or lithium is pressure-bonded to the surface having the burr part 3b of the aluminum 3, conventionally, without considering the directionality of the aluminum, Since the lithium was pressure-bonded, the cycle life varied depending on the battery.

【0010】そこで、本発明では、上記の知見に基づ
き、アルミニウム3のダレ部3aを有する側の面にのみ
リチウムを圧着して、リチウムとアルミニウムとを電池
内で電解液の存在下に電気化学的に合金化させることに
よって、サイクル寿命のバラツキを防止し、安定したサ
イクル寿命を有するコイン形リチウム二次電池が得られ
るようにしたのである。
Therefore, in the present invention, based on the above findings, lithium is pressure-bonded only to the surface of the aluminum 3 on the side having the sagging portion 3a, and the lithium and aluminum are electrochemically reacted in the battery in the presence of an electrolytic solution. By alloying the alloy, the variation in cycle life is prevented, and a coin-type lithium secondary battery having a stable cycle life can be obtained.

【0011】[0011]

【実施例】つぎに、実施例をあげて本発明をより具体的
に説明する。
EXAMPLES Next, the present invention will be described more specifically by way of examples.

【0012】厚さ0.2mmのアルミニウム板を打ち抜
き刃で打ち抜いて直径15mmの円板状のアルミニウム
を得た。このアルミニウムは図1に示すように、一方の
面の外周端にダレ部3aを有し、他方の面の外周端にか
えり部3bを有している。そして、このアルミニウム3
を用いて、図2に示すコイン形リチウム二次電池を組み
立てた。
An aluminum plate having a thickness of 0.2 mm was punched with a punching blade to obtain a disc-shaped aluminum having a diameter of 15 mm. As shown in FIG. 1, this aluminum has a sag portion 3a at the outer peripheral end of one surface and a burr portion 3b at the outer peripheral end of the other surface. And this aluminum 3
Was used to assemble a coin-type lithium secondary battery shown in FIG.

【0013】図2に示す電池について説明すると、1は
負極、2はリチウム、3はアルミニウム、4はセパレー
タ、5は正極、6は負極缶、7は集電体、8は正極缶、
9は環状ガスケットである。
Referring to the battery shown in FIG. 2, 1 is a negative electrode, 2 is lithium, 3 is aluminum, 4 is a separator, 5 is a positive electrode, 6 is a negative electrode can, 7 is a current collector, 8 is a positive electrode can,
Reference numeral 9 is an annular gasket.

【0014】上記負極缶6はステンレス鋼製で、その内
面にステンレス鋼製網からなる集電体7がスポット溶接
され、その集電体7に前記アルミニウム3が圧着されて
いる。
The negative electrode can 6 is made of stainless steel, and a current collector 7 made of stainless steel net is spot-welded to the inner surface of the negative electrode can 6, and the aluminum 3 is pressure-bonded to the current collector 7.

【0015】このアルミニウム3の集電体7への圧着
は、アルミニウム3のかえり部3bを有する側の面から
なされており、その結果、アルミニウム3のダレ部3a
を有する側の面は、図2に示すように、アルミニウム3
の集電体7への圧着面とは反対側の面に配置している。
The aluminum 3 is pressure-bonded to the current collector 7 from the surface of the aluminum 3 on the side having the burr 3b, and as a result, the sag 3a of the aluminum 3 is formed.
As shown in FIG. 2, the surface having the
Is arranged on the surface opposite to the surface to which the current collector 7 is crimped.

【0016】リチウム2は厚さ0.15mmのリチウム
板を打ち抜き刃で直径15mmの円板状に打ち抜いたも
のであり、図2に示すように、このリチウム2は上記ア
ルミニウム3のダレ部3aを有する側の面に圧着されて
いる。
The lithium 2 is obtained by punching a lithium plate having a thickness of 0.15 mm into a disc shape having a diameter of 15 mm with a punching blade. As shown in FIG. It is crimped to the surface on the holding side.

【0017】そして、電池組立後に、リチウム2とアル
ミニウム3とが電解液の存在下で電気化学的に合金化し
てリチウム−アルミニウム合金になり、負極1を構成す
る。
After the battery is assembled, lithium 2 and aluminum 3 are electrochemically alloyed in the presence of the electrolytic solution to form a lithium-aluminum alloy, which constitutes the negative electrode 1.

【0018】セパレータ4はポリプロピレン不織布から
なり、このセパレータ4は負極1と正極5との間に配置
している。正極5はリチウム塩と二酸化マンガンとを焼
成して得られたリチウムマンガン複合酸化物にバインダ
ーとしてポリテトラフルオロエチレンを添加した正極合
剤を直径15mm、厚さ0.4mmの円板状に成形した
ものである。
The separator 4 is made of polypropylene nonwoven fabric, and the separator 4 is arranged between the negative electrode 1 and the positive electrode 5. For the positive electrode 5, a positive electrode mixture obtained by adding polytetrafluoroethylene as a binder to a lithium manganese composite oxide obtained by firing a lithium salt and manganese dioxide was formed into a disk shape having a diameter of 15 mm and a thickness of 0.4 mm. It is a thing.

【0019】正極缶8はステンレス鋼製であり、環状ガ
スケット9はポリプロピレン製である。そして、この電
池にはプロピレンカーボネートと1,2−ジメトキシエ
タンとの容量比1:1の混合溶媒にLiPF6 を1.0
mol/l溶解した電解液が注入されており、電池は直
径20mm、高さ1.6mmのコイン形リチウム二次電
池である。
The positive electrode can 8 is made of stainless steel, and the annular gasket 9 is made of polypropylene. In this battery, LiPF 6 was added to a mixed solvent of propylene carbonate and 1,2-dimethoxyethane in a volume ratio of 1: 1 in an amount of 1.0.
A battery is a coin-type lithium secondary battery having a diameter of 20 mm and a height of 1.6 mm, in which a molten electrolyte of mol / l is injected.

【0020】表1は、上記実施例で示したアルミニウム
3のダレ部3aを有する側の面にリチウム2を圧着して
電気化学的に合金化させたコイン形リチウム二次電池
と、アルミニウム3の方向性を考慮せずに(つまり、ダ
レ部3aを有する側の面やかえり部3bを有する側の面
を考慮せずに)リチウム2を圧着した以外は実施例と同
様の構成のコイン形リチウム二次電池(つまり、従来
例)とのサイクル寿命のバラツキを示すものである。
Table 1 shows a coin-type lithium secondary battery in which lithium 2 is pressure-bonded to the surface of the aluminum 3 having the sagging portion 3a shown in the above embodiment to electrochemically alloy it, and aluminum 3 is used. A coin-shaped lithium having the same configuration as that of the embodiment except that the lithium 2 is pressure-bonded without considering the directionality (that is, without considering the surface having the sag portion 3a and the surface having the burr portion 3b). This shows variations in cycle life with the secondary battery (that is, the conventional example).

【0021】電池は実施例、従来例とも50個ずつ作製
し、それらの電池を電流密度1mA/cm2 、電圧範囲
3.3V〜2.0Vの間で充放電サイクル試験を行い、
放電容量が初度の60%になるまでのサイクル数を調
べ、表1にはその分布で示している。
Fifty batteries were prepared for each of the examples and the conventional examples, and the batteries were subjected to a charge / discharge cycle test at a current density of 1 mA / cm 2 and a voltage range of 3.3 V to 2.0 V.
The number of cycles until the discharge capacity reached 60% of the initial value was examined, and the distribution is shown in Table 1.

【0022】[0022]

【表1】 [Table 1]

【0023】表1に示す結果から明らかなように、実施
例の電池は従来例の電池に比べてサイクル寿命のバラツ
キが少なく、かつサイクル寿命の大きい部分に集中して
いる。
As is clear from the results shown in Table 1, the batteries of the examples have less variation in cycle life than the batteries of the conventional example, and are concentrated on the part having a long cycle life.

【0024】上記の実施例では、正極活物質としてリチ
ウムマンガン複合酸化物を用いたが、正極活物質はリチ
ウム−アルミニウム合金からなる負極に対して充放電可
能なものであればどのようなものでもよく、上記リチウ
ムマンガン複合酸化物以外にも、たとえばポリアニリ
ン、ポリピロール、ポリチオフェン、ポリフェニレン、
ポリアセチレンなどのポリマー活物質、二硫化チタン、
LiCoO2 、CrO8、V2 5 などを用いることが
できる。
In the above examples, the lithium manganese composite oxide was used as the positive electrode active material, but any positive electrode active material can be used as long as it can charge and discharge the negative electrode made of a lithium-aluminum alloy. Well, in addition to the lithium manganese composite oxide, for example, polyaniline, polypyrrole, polythiophene, polyphenylene,
Polymer active materials such as polyacetylene, titanium disulfide,
LiCoO 2 , CrO 8 , V 2 O 5 or the like can be used.

【0025】また、実施例では、リチウムとアルミニウ
ムとの合金比率をリチウムが37原子%の比率になるよ
うにしたが、それ以外でも、リチウムの比率が10〜5
0原子%の範囲内であれば充分に実用性を有していて使
用可能である。つまり、リチウム−アルミニウム合金中
のリチウムの比率が10原子%未満では充放電の可逆性
が低下し、リチウムの比率が50原子%を超えると脆く
なり、充放電によって崩れてしまうので実用性に欠ける
ようになる。
Further, in the embodiment, the alloy ratio of lithium and aluminum is set to be a ratio of lithium of 37 atomic%, but other than that, the ratio of lithium is 10 to 5.
Within the range of 0 atomic%, it has sufficient practicability and can be used. That is, if the lithium content in the lithium-aluminum alloy is less than 10 atomic%, the reversibility of charge / discharge decreases, and if the lithium content exceeds 50 atomic%, the lithium-aluminum alloy becomes brittle and collapses due to charge / discharge, which is not practical. Like

【0026】さらに、実施例では、電解液としてプロピ
レンカーボネートと1,2−ジメトキシエタンとの混合
溶媒にLiPF6 を溶解させたものを使用したが、その
系統のものに限られることなく、電解液としては上記の
系統のもの以外にも、たとえば1,2−ジエトキシエタ
ン、エチレンカーボネート、γ−ブチロラクトン、1,
3−ジオキソラン、4−メチル−1,3−ジオキソラン
などの有機溶媒の単独または2種以上の混合溶媒に、た
とえばLiClO4 、LiAsF6 、LiSbF6 、L
iBF4 、LiCF3 SO3 、LiB(C6 5 4
どの電解質の1種または2種以上を溶解させることによ
って調製した有機電解液を用いることができる。
Further, in the examples, the one obtained by dissolving LiPF 6 in the mixed solvent of propylene carbonate and 1,2-dimethoxyethane was used as the electrolytic solution, but the electrolytic solution is not limited to that of the system. In addition to those of the above series, for example, 1,2-diethoxyethane, ethylene carbonate, γ-butyrolactone, 1,
3-dioxolane, alone or as a mixture of two or more solvents of organic solvents, such as 4-methyl-1,3-dioxolane, for example LiClO 4, LiAsF 6, LiSbF 6 , L
An organic electrolytic solution prepared by dissolving one or more electrolytes such as iBF 4 , LiCF 3 SO 3 , and LiB (C 6 H 5 ) 4 can be used.

【0027】[0027]

【発明の効果】以上説明したように、本発明では、せん
断加工により所定形状に打ち抜いた板状のアルミニウム
3のダレ部3aを有する側の面に板状のリチウム2を圧
着して、リチウム2とアルミニウム3とを電池内で電解
液の存在下に電気化学的に合金化させてリチウム−アル
ミニウム合金にして負極1とすることにより、サイクル
寿命のバラツキが少ない、安定したサイクル寿命を有す
るコイン形リチウム二次電池を提供することができた。
As described above, according to the present invention, the plate-shaped lithium 2 is pressure-bonded to the surface of the plate-shaped aluminum 3 punched into a predetermined shape by shearing to the side having the sagging portion 3a to form the lithium 2 And aluminum 3 are electrochemically alloyed in the battery in the presence of an electrolytic solution to form a lithium-aluminum alloy to form the negative electrode 1, so that there is little variation in cycle life and a coin type having a stable cycle life. It was possible to provide a lithium secondary battery.

【図面の簡単な説明】[Brief description of drawings]

【図1】打ち抜き刃を用い、せん断加工により所定形状
に打ち抜いた板状のアルミニウムを模式的に示す断面図
である。
FIG. 1 is a cross-sectional view schematically showing plate-shaped aluminum punched into a predetermined shape by shearing using a punching blade.

【図2】本発明のコイン形リチウム二次電池の一例を示
す断面図である。
FIG. 2 is a cross-sectional view showing an example of a coin-type lithium secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1 負極 2 リチウム 3 アルミニウム 3a ダレ部 3b かえり部 4 セパレータ 5 正極 DESCRIPTION OF SYMBOLS 1 Negative electrode 2 Lithium 3 Aluminum 3a Drip part 3b Burr part 4 Separator 5 Positive electrode

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 板状のリチウム2と板状のアルミニウム
3とを電池内で電解液の存在下に電気化学的に合金化さ
せたリチウム−アルミニウム合金からなる負極1と、セ
パレータ4と、正極5を有するコイン形リチウム二次電
池において、上記アルミニウム3はせん断加工により所
定形状に打ち抜かれたものであって一方の面の外周端に
ダレ部3aと他方の面の外周端にかえり部3bを有して
おり、上記リチウム2はこのアルミニウム3のダレ部3
aを有する側の面に圧着し、該リチウム2とアルミニウ
ム3とを電池内で電解液の存在下に電気化学的に合金化
させたリチウム−アルミニウム合金を負極1としたこと
を特徴とするコイン形リチウム二次電池。
1. A negative electrode 1 made of a lithium-aluminum alloy obtained by electrochemically alloying plate-shaped lithium 2 and plate-shaped aluminum 3 in the battery in the presence of an electrolytic solution, a separator 4, and a positive electrode. In the coin-type lithium secondary battery having No. 5, the aluminum 3 is punched into a predetermined shape by shearing, and has a sag portion 3a at the outer peripheral end of one surface and a burr portion 3b at the outer peripheral end of the other surface. The lithium 2 has the sag 3 of the aluminum 3.
A coin characterized in that the negative electrode 1 is a lithium-aluminum alloy in which lithium 2 and aluminum 3 are electrochemically alloyed in the battery in the presence of an electrolytic solution by pressure bonding to the surface having a. Type lithium secondary battery.
JP4119971A 1992-04-13 1992-04-13 Coin type lithium secondary cell Withdrawn JPH05290891A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4119971A JPH05290891A (en) 1992-04-13 1992-04-13 Coin type lithium secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4119971A JPH05290891A (en) 1992-04-13 1992-04-13 Coin type lithium secondary cell

Publications (1)

Publication Number Publication Date
JPH05290891A true JPH05290891A (en) 1993-11-05

Family

ID=14774734

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4119971A Withdrawn JPH05290891A (en) 1992-04-13 1992-04-13 Coin type lithium secondary cell

Country Status (1)

Country Link
JP (1) JPH05290891A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012064313A (en) * 2010-09-14 2012-03-29 Hitachi Maxell Energy Ltd Battery
JP2016170909A (en) * 2015-03-11 2016-09-23 日立マクセル株式会社 Flat battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012064313A (en) * 2010-09-14 2012-03-29 Hitachi Maxell Energy Ltd Battery
JP2016170909A (en) * 2015-03-11 2016-09-23 日立マクセル株式会社 Flat battery

Similar Documents

Publication Publication Date Title
US6352794B1 (en) Lithium rechargeable battery
JP2558519B2 (en) Button type lithium organic secondary battery and method of manufacturing the same
JP3169102B2 (en) Non-aqueous electrolyte secondary battery
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JPH0896849A (en) Nonaqueous electrolytic secondary battery
JP2887632B2 (en) Non-aqueous electrolyte secondary battery
JPH06275265A (en) Nonaqueous electrolyte secondary battery
JPH05290891A (en) Coin type lithium secondary cell
JPH08180875A (en) Lithium secondary battery
JP2798753B2 (en) Non-aqueous electrolyte secondary battery
JPS63178449A (en) Nonaqueous electrolyte secondary battery
JPH01294375A (en) Charging/discharging method for lithium secondary battery
JP3353455B2 (en) Organic electrolyte secondary battery
JP2611265B2 (en) Non-aqueous electrolyte secondary battery
JPH09171825A (en) Secondary battery having nonaqueous solvent
US20050069776A1 (en) Method of producing a rechargeable electrochemical element , and an element made therefrom
JPH05307974A (en) Organic electrolyte secondary battery
JP3462647B2 (en) Non-aqueous electrolyte lithium battery and method of manufacturing the same
JP2798752B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JPH08180874A (en) Lithium secondary battery
JP3197658B2 (en) Non-aqueous secondary battery
JPS6220246A (en) Nonaqueous electrolyte secondary battery
JPH08171937A (en) Lithium secondary battery
JPH07288140A (en) Lithium secondary battery
JPS62119865A (en) Lithium secondary cell

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990706