JPH05290882A - Nonaqueous solvent for battery electrolyte - Google Patents

Nonaqueous solvent for battery electrolyte

Info

Publication number
JPH05290882A
JPH05290882A JP4085662A JP8566292A JPH05290882A JP H05290882 A JPH05290882 A JP H05290882A JP 4085662 A JP4085662 A JP 4085662A JP 8566292 A JP8566292 A JP 8566292A JP H05290882 A JPH05290882 A JP H05290882A
Authority
JP
Japan
Prior art keywords
lithium
battery
solvent
aqueous solvent
electrolytic solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4085662A
Other languages
Japanese (ja)
Other versions
JP3119928B2 (en
Inventor
Yuko Kanazawa
祐子 金澤
Nozomi Narita
望 成田
Yoshiro Harada
吉郎 原田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
FDK Corp
Original Assignee
FDK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by FDK Corp filed Critical FDK Corp
Priority to JP04085662A priority Critical patent/JP3119928B2/en
Publication of JPH05290882A publication Critical patent/JPH05290882A/en
Application granted granted Critical
Publication of JP3119928B2 publication Critical patent/JP3119928B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)

Abstract

PURPOSE:To prevent the deterioration of characteristics of a primary battery at the time of the long-term discharge with a light load by using a mixture of ring carbonic ester compound of a specific structure expression and the other nonaqueous solvent to increase the charge and discharge cycle characteristics of a secondary battery. CONSTITUTION:When a mixture of a ring carbonic ester compound represented by a structure expression and the other nonaqueous solvent is used, the charge and discharge characteristics of a secondary battery is remarkably increased. When it is applied to a primary battery, the deterioration of characteristics thereof at the time of the long-term discharge may be prevented. In the expression, R1 to R2: alkyl group represented by a general formula CnH2n+1, n=1 to 4; R4: hydrogen or alkyl group represented by a general formula CnH2n+1, n=1 to 4.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池など
の非水電解液二次電池,あるいはリチウム一次電池など
に用いられる電解液用非水溶媒に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolytic solution secondary battery such as a lithium secondary battery or a non-aqueous solvent for an electrolytic solution used in a lithium primary battery.

【0002】[0002]

【従来の技術】非水電解液二次電池として、正極活物質
にMnO2 ,V2 5 ,MoO3 ,V6 13,Ti
2 ,MoS2 等の金属酸化物もしくは遷移金属酸化物
あるいは硫化物を用い、負極に金属リチウムあるいはそ
の合金、例えばウッド合金やリチウムアルミニウム合金
を用いた二次電池が公知である。
2. Description of the Related Art As a non-aqueous electrolyte secondary battery, MnO 2 , V 2 O 5 , MoO 3 , V 6 O 13 and Ti are used as positive electrode active materials.
A secondary battery is known in which a metal oxide such as S 2 or MoS 2 or a transition metal oxide or a sulfide is used, and metal lithium or an alloy thereof such as a wood alloy or a lithium aluminum alloy is used for a negative electrode.

【0003】この種の電池では近年高エネルギー密度化
を達成するために、より高電圧を発生する材料が種々検
討されており、例えば一般式:Lix y 2 (MはC
oまたはNi,x は0.8以下,y はほぼ1)で示され
るイオン導電体で構成される二次電池が特公昭63−5
9507号公報に開示されている。
[0003] To achieve the recent high energy density in batteries of this type, and material generating a higher voltage is studied, for example, the general formula: Li x M y O 2 ( M is C
O or Ni, x is 0.8 or less, and y is almost 1).
It is disclosed in Japanese Patent Publication No. 9507.

【0004】この活物質を用いて負極をリチウム,電解
液をLiBF4 (1M)/プロピレンカーボネートとし
て構成された電池の開路電圧は4V以上にも達する。ま
た実際の作動電圧範囲は3.4〜4.6V程度が可能で
ある。
The open circuit voltage of a battery constructed by using this active material for the negative electrode of lithium and the electrolyte of LiBF 4 (1M) / propylene carbonate reaches 4 V or more. Further, the actual operating voltage range can be about 3.4 to 4.6V.

【0005】このような高い電池電圧特性を有する電池
は、高エネルギー密度電池として、近年めざましい発達
を呈している各種電子機器のための電源として好適であ
り、機器の軽量化,小形化,高機能化を一層促進する。
A battery having such a high battery voltage characteristic is suitable as a power source for various electronic devices, which have been remarkably developed in recent years, as a high energy density battery, and the device is lightweight, compact, and highly functional. Further promote

【0006】しかし、これらの二次電池系においては、
負極の充放電効率の低さが大きな問題である。正極の充
放電効率についてはサイクル初期に利用率が低下する現
象があるが、やがて充放電効率はほぼ100%近い数字
になる。
However, in these secondary battery systems,
The low charge and discharge efficiency of the negative electrode is a big problem. Regarding the charge and discharge efficiency of the positive electrode, there is a phenomenon that the utilization rate decreases at the beginning of the cycle, but eventually the charge and discharge efficiency reaches a value close to 100%.

【0007】一方、負極に関しては充放電効率が金属リ
チウムで最高97%でありリチウム合金を用いても最高
99%である。このことは正負極の容量が同じであると
すれば、1サイクル当り2〜3%負極容量が低下するこ
とになり、深い深度の充放電を繰返せば数十回のサイク
ル寿命を示すに留まる。
On the other hand, with respect to the negative electrode, the charge and discharge efficiency is 97% at maximum for metallic lithium and 99% at maximum even when a lithium alloy is used. This means that if the positive and negative electrodes have the same capacity, the negative electrode capacity will decrease by 2 to 3% per cycle, and if the charge and discharge at a deep depth is repeated, the cycle life will be only tens of cycles. ..

【0008】この主な原因は、特開平1−286263
号公報にも述べられているように、充電時に析出するリ
チウムが非常に活性で溶媒を還元してしまい、この結果
リチウムが電気化学的に不活性な化合物に変化するため
であると考えられている。
The main cause of this is Japanese Patent Laid-Open No. 1-286263.
As described in Japanese Patent Publication, it is thought that this is because the lithium deposited during charging is very active and reduces the solvent, and as a result, lithium changes into an electrochemically inactive compound. There is.

【0009】また、詳細な機構は明らかではないが、溶
媒を構成する成分がリチウムと反応してできるリチウム
表面のある種の膜の性状(物理的性状,イオン電導性,
電子電導性等)が、溶媒とリチウムとが反応して還元さ
れる機構、またリチウムの充放電効率に及ぼす溶媒の影
響に密接に関連すると考えられている。
Although the detailed mechanism is not clear, the properties (physical properties, ionic conductivity,
It is believed that the electron conductivity and the like) are closely related to the mechanism of the reaction between the solvent and lithium to be reduced, and the influence of the solvent on the charge and discharge efficiency of lithium.

【0010】ところで、従来より非水電解液電池用溶媒
として種々の溶媒が検討されており、その中でもγ−ブ
チロラクトン(略号:γ−BL、以下同じ),エチレン
カーボネート(EC),プロピレンカーボネート(P
C),スルホラン(SL),1,3−ジオキソラン(D
O),1,2−ジメトキシエタン(DME),2−メチ
ルテトラヒドロフラン(2−MeTHF),ジエチルカ
ーボネート(DEC)などが特に有用な溶媒として、単
独またはそれら同士を混合して用いられてきた。
By the way, various solvents have been studied as solvents for non-aqueous electrolyte batteries, and among them, γ-butyrolactone (abbreviation: γ-BL, the same applies hereinafter), ethylene carbonate (EC), propylene carbonate (P
C), sulfolane (SL), 1,3-dioxolane (D
O), 1,2-dimethoxyethane (DME), 2-methyltetrahydrofuran (2-MeTHF), diethyl carbonate (DEC) and the like have been used as a particularly useful solvent, either alone or as a mixture thereof.

【0011】この中でも特にPCは、単独溶媒としても
混合溶媒としても非水電解液二次電池用溶媒としてもっ
とも多く用いられているが、充放電を繰返すことにより
負極リチウムと反応して還元生成物を生じ、これが負極
表面上に蓄積して充放電効率低下の一因となる問題点を
残している。
Of these, PC is most often used as a solvent for a non-aqueous electrolyte secondary battery both as a single solvent and as a mixed solvent. However, by repeatedly charging and discharging, PC reacts with negative electrode lithium to give a reduction product. Occurs, which accumulates on the surface of the negative electrode and causes a decrease in charge / discharge efficiency.

【0012】なお、リチウム一次電池にも前掲した各種
溶媒、特にPCが用いられている。一次電池では充電の
問題を考慮する必要はないが、放電時の活性なリチウム
の存在のために溶媒が還元されて電池の性能劣化を招く
ことが問題となっている。特に高温で放電時間が長期に
亘るような微弱放電を行うと、活性なリチウムと溶媒と
の反応が長期に亘って行われるためこの傾向が顕著とな
り、著しい電池性能の劣化を招くことがあった。
The above-mentioned various solvents, especially PC, are also used in the lithium primary battery. In a primary battery, it is not necessary to consider the problem of charging, but there is a problem that the solvent is reduced due to the presence of active lithium at the time of discharging and the performance of the battery is deteriorated. Particularly, when a weak discharge is performed at a high temperature for a long time, the reaction between active lithium and a solvent is performed for a long time, and this tendency becomes remarkable, which may lead to a significant deterioration in battery performance. ..

【0013】このため、前述の特開平1−286263
号公報では、リチウムと反応しにくくするための実用的
解決策として、PC,BC等の既知の環状炭酸エステル
あるいはこれらの混合溶媒と他のエステル,エーテル類
とを含む溶媒中に添加剤として炭酸リチウムを添加した
ものを用いている。
Therefore, the above-mentioned Japanese Patent Laid-Open No. 1-286263
In the publication, as a practical solution for making it difficult to react with lithium, carbonic acid as an additive is added to a known cyclic carbonic acid ester such as PC and BC, or a solvent containing a mixed solvent thereof and other ester or ether. The one to which lithium is added is used.

【0014】これは、前記PC等の環状炭酸エステルを
含む溶媒はリチウムに反応して炭酸リチウムを生ずる
が、Li2 CO3 はLiを放電できないため負極活物質
であるリチウムが消耗して充放電サイクルが短くなるの
で、これを防ぐためにあらかじめ電解液中にLi2 CO
3 を添加しておくことによって、反応による炭酸リチウ
ムの増加を防止しようとするものである。
This is because the solvent containing cyclic carbonate such as PC reacts with lithium to produce lithium carbonate, but Li 2 CO 3 cannot discharge Li, so that lithium as a negative electrode active material is consumed and charged and discharged. Since the cycle becomes short, in order to prevent this, the Li 2 CO
The addition of 3 is intended to prevent an increase in lithium carbonate due to the reaction.

【0015】[0015]

【発明が解決しようとする課題】しかしながら、このよ
うな添加剤を加えたとしても、リチウム二次電池用溶媒
としては未だ充分な特性劣化対策とはなっておらず、溶
媒の還元が原因と考えられるサイクル特性の劣化が認め
られている。このことは、添加剤を添加したとしても、
これら環状炭酸エステル自体の還元されやすさを充分に
改質し得るものでないことを示唆している。
However, even if such an additive is added, it is still not a sufficient countermeasure against deterioration of characteristics as a solvent for a lithium secondary battery, and it is considered that the reduction of the solvent is the cause. The deterioration of the cycle characteristics is recognized. This means that even if additives are added,
It is suggested that the easiness of reduction of these cyclic carbonic acid ester itself cannot be sufficiently modified.

【0016】例えばPCの場合、次の構造式:For a PC, for example, the following structural formula:

【化2】 において、R1 がメチル基、他のR2 〜R4 が水素で置
換された構造である。したがって、PCはC4 にただ1
つのメチル基を持つだけであり、O1 −C5 の酸素−炭
素間が開裂しやすいため、還元されやすくなる。またB
Cの場合、前記構造式において、C4 ,C5 にそれぞれ
1つずつメチル基を有し、PCよりやや還元されにくく
なるだけであると本願発明者らは仮定した。
[Chemical 2] In the above, R 1 is a methyl group and the other R 2 to R 4 are substituted with hydrogen. Therefore, the PC has only 1 in C 4.
Since it has only one methyl group and is easily cleaved between the oxygen and carbon of O 1 -C 5 , it is easily reduced. Also B
In the case of C, the present inventors hypothesized that in the above structural formula, each of C 4 and C 5 has one methyl group, and it is slightly less likely to be reduced than PC.

【0017】本発明は、以上の点に着目してなされたも
のであって、その目的は、前述のPC等を含む従来から
用いられている環状炭酸エステルよりもその構造自体が
負極で還元されにくい構造であって、電池の電解液溶媒
として要求される他の物理化学的特性も完全に満足する
電池の電解液用非水溶媒を提供することにある。
The present invention has been made by paying attention to the above points, and its purpose is to reduce the structure itself at the negative electrode more than the conventionally used cyclic carbonic acid ester including PC and the like. It is an object of the present invention to provide a non-aqueous solvent for an electrolytic solution of a battery, which has a difficult structure and completely satisfies other physicochemical characteristics required as an electrolytic solution solvent of the battery.

【0018】[0018]

【課題を解決するための手段】前記目的を達成するため
に、本発明は、次の構造式で表わされ:
To achieve the above object, the present invention is represented by the following structural formula:

【化3】 (式中R1 ,R2 ,R3 は一般式Cn 2n+1(n=1 〜4
)で表わされるアルキル基、R4 は水素もしくは一般
式Cn 2n+1(n=1 〜4 )で表わされるアルキル基)か
らなる環状炭酸エステル化合物を、他の非水溶媒と混合
して用いることを特徴とするものである。
[Chemical 3] (In the formula, R 1 , R 2 and R 3 are represented by the general formula C n H 2n + 1 (n = 1 to 4
), An alkyl group represented by the formula (4), R 4 is hydrogen or a cyclic carbonic acid ester compound of the general formula C n H 2n + 1 (n = 1 to 4) is mixed with another non-aqueous solvent. It is characterized by being used.

【0019】なお、R1 〜R3 (R4 )の置換基の炭素
数n は1〜4程度とすることが望ましい。これは、炭素
数をこれ以上増しても還元されやすい性質を抑えること
とはならず、無意味であるとともに、他の物理的特性、
例えば粘度,融点などの点において電解液用溶媒として
不具合が生ずるためである。
The carbon number n of the substituent of R 1 to R 3 (R 4 ) is preferably about 1 to 4. This does not suppress the property of being easily reduced even if the carbon number is further increased, and is meaningless, as well as other physical properties,
This is because problems such as viscosity and melting point occur as a solvent for the electrolytic solution.

【0020】特に本発明では、前記R1 ,R2 ,R3
CH3 であり、R4 が水素である、4,4,5−トリメ
チル−1,3−ジオキソラン−2−オン、あるいは前記
1〜R4 が全てCH3 である、4,4,5,5−テト
ラメチル−1,3−ジオキソラン−2−オンを用いるこ
とが好ましい。
Particularly in the present invention, 4,4,5-trimethyl-1,3-dioxolan-2- one wherein R 1 , R 2 and R 3 are CH 3 and R 4 is hydrogen, or the above It is preferable to use 4,4,5,5-tetramethyl-1,3-dioxolan-2-one in which R 1 to R 4 are all CH 3 .

【0021】前記環状炭酸エステル化合物は、一般に次
の化学反応式によって得られる。
The cyclic carbonic acid ester compound is generally obtained by the following chemical reaction formula.

【0022】[0022]

【化4】 前記環状炭酸エステル化合物と混合される他の非水溶媒
としては、前掲の既知のエステル,エーテル類の内から
選ぶことができるが、負極に還元されにくい特性のみな
らず、前記環状炭酸エステル化合物と混合することによ
り、電池用非水溶媒として全般的に好ましい物理化学的
特性に調整されるものを選ぶことが必要である。
[Chemical 4] The other non-aqueous solvent mixed with the cyclic carbonic acid ester compound can be selected from the above-mentioned known esters and ethers, but not only has the property of being less likely to be reduced to the negative electrode, but also the cyclic carbonic acid ester compound. It is necessary to select, as a non-aqueous solvent for a battery, one which is adjusted to have generally preferable physicochemical properties by mixing.

【0023】また、本発明の電解液用非水溶媒は、正極
活物質に金属酸化物あるいは硫化物を用い、負極に金属
リチウムあるいはリチウム合金あるいはリチウムイオン
を吸蔵,放出することが可能な炭素質材料を用いた非水
電解液二次電池の電解液用非水溶媒としてのほか、リチ
ウム一次電池の電解液用非水溶媒として用いることがで
きる。
The non-aqueous solvent for an electrolytic solution of the present invention uses a metal oxide or a sulfide as a positive electrode active material, and a carbonaceous material capable of inserting and extracting lithium metal or lithium alloy or lithium ion into the negative electrode. It can be used as a non-aqueous solvent for an electrolytic solution of a non-aqueous electrolytic solution secondary battery using the material and also as a non-aqueous solvent for an electrolytic solution of a lithium primary battery.

【0024】[0024]

【作用】本発明の環状炭酸エステル化合物からなる非水
溶媒は、前記構造式におけるC4 に2つ,C5 に1つ以
上のアルキル基を有し、このアルキル基によりO1 −C
5 ,O3 −C4 の酸素−炭素間の開裂が起こりにくい。
したがって、PC,BCより還元されにくい溶媒とな
る。このような非水溶媒を用いたリチウム二次電池の充
放電サイクル特性の向上は、同一条件のPCおよびBC
を用いたものに比べて顕著であることにより実証され
る。また、一次電池では、特に低負荷での長期放電時に
おける電池特性の低下を防止でき、放電容量が増加する
ことにより本発明の非水溶媒を用いることの有用性が実
証される。
Non-aqueous solvent comprising a cyclic carbonate compound of the effects of the present invention, two to C 4 in the structural formula, have one or more alkyl groups in C 5, O 1 -C This alkyl group
Cleavage between oxygen and carbon of 5 , O 3 -C 4 is unlikely to occur.
Therefore, the solvent is less likely to be reduced than PC and BC. The improvement of the charge / discharge cycle characteristics of the lithium secondary battery using such a non-aqueous solvent can be achieved under the same conditions of PC and BC.
It is demonstrated by being remarkable compared with the one using. Further, in the primary battery, it is possible to prevent deterioration of battery characteristics particularly during long-term discharge under a low load, and increase in discharge capacity demonstrates the usefulness of using the non-aqueous solvent of the present invention.

【0025】[0025]

【実施例】次に、本発明の実施例を説明する。但し、本
発明は以下に述べる実施例のみに限定されるものではな
い。
EXAMPLES Next, examples of the present invention will be described. However, the present invention is not limited to the examples described below.

【0026】実施例1.前述の構造式において、R1
2 ,R3 がCH3 であり、R4 が水素である、4,
4,5−トリメチル−1,3−ジオキソラン−2−オン
を前述の化学反応式にしたがって合成した。このものの
物理性状は、融点56〜60℃で常温で固体であった。
Example 1. In the above structural formula, R 1 ,
R 2 and R 3 are CH 3 and R 4 is hydrogen, 4,
4,5-Trimethyl-1,3-dioxolan-2-one was synthesized according to the above chemical reaction formula. The physical properties of this product were a solid at room temperature with a melting point of 56-60 ° C.

【0027】実施例2.前述の構造式において、R1
4 が全てCH3 である、4,4,5,5−テトラメチ
ル−1,3−ジオキソラン−2−オンを前述の化学反応
式にしたがって合成した。このものは融点170〜17
4℃で固体である。
Example 2. In the above structural formula, R 1 ~
4,4,5,5-Tetramethyl-1,3-dioxolan-2-one in which all R 4 s are CH 3 was synthesized according to the above chemical reaction formula. This product has a melting point of 170 to 17
Solid at 4 ° C.

【0028】次に、実施例1,2によって得られた化合
物と従来のPC,BCの還元電位との相違を調べるため
に、それぞれの化合物の分子軌道のLUMO(最低空軌
道)エネルギー(eV)を計算したところ、次のような
結果が得られた。なお、有機化合物の還元電位とLUM
Oエネルギーとの間には相関関係があり、LUMOエネ
ルギーが高い程還元電位が低い、すなわち還元されにく
いことを意味する。
Next, in order to examine the difference between the reduction potentials of the compounds obtained in Examples 1 and 2 and conventional PC and BC, the LUMO (lowest unoccupied molecular orbital) energy (eV) of the molecular orbital of each compound. Then, the following result was obtained. The reduction potential of organic compounds and LUM
There is a correlation with the O energy, and the higher the LUMO energy, the lower the reduction potential, that is, the more difficult it is to reduce.

【0029】LUMOエネルギー(eV) PC … 1.234 BC … 1.288 実施例1.… 1.350 実施例2.… 1.410この結果から明らかなよう
に、本発明の実施例1.,2.による化合物の方がPC
またはBCに比べて大きなLUMOエネルギーを示して
おり、還元されにくい物質であることを示している。ま
た、他の性状も電解液用非水溶媒として好適な値を示し
ている。
LUMO energy (eV) PC ... 1.234 BC ... 1.288 Example 1. ... 1.350 Example 2. ... 1.410 As is apparent from these results, Example 1. , 2. The compound by is PC
Alternatively, it has a larger LUMO energy than BC, indicating that it is a substance that is difficult to reduce. Further, other properties also show suitable values as the nonaqueous solvent for the electrolytic solution.

【0030】実施例3.(リチウム二次電池への適用
例) 次に、実施例1.,2.で得られた溶媒と他の非水溶媒
とを混合した非水電解液と、PC,BCと他の非水溶媒
とを混合した非水電解液とを用いてそれぞれコイン形リ
チウム二次電池(2016タイプ)を組立て、それぞれ
のサイクル特性を調べた。なお、非水電解液の溶媒の配
合は、次に示す従来例と本発明とを含む8種類の組合せ
であり、溶質は全てLiPF6 1mol /lによった。
Example 3. (Example of Application to Lithium Secondary Battery) Next, Example 1. , 2. A non-aqueous electrolyte solution obtained by mixing the solvent obtained in (1) and another non-aqueous solvent and a non-aqueous electrolyte solution obtained by mixing PC, BC and another non-aqueous solvent are used to form coin-type lithium secondary batteries ( 2016 type) was assembled and the cycle characteristics of each were investigated. The solvent was mixed in the non-aqueous electrolyte solution in eight kinds of combinations including the following conventional example and the present invention, and the solute was all LiPF 6 1 mol / l.

【0031】配合No. No.1…PC+DME 容量比1:1 比較例 No.2…PC+*EMC 容量比1:1 比較例 No.3…BC+DME 容量比1:1 比較例 No.4…BC+EMC 容量比1:1 比較例 No.5…実1+DME 容量比1:1 本発明 No.6…実1+EMC 容量比1:1 本発明 No.7…実2+DME 容量比1:1 本発明 No.8…実2+EMC 容量比1:1 本発明 *EMCはエチルメチルカーボネートの略称 また、非水電解液を除く電池の仕様は以下の通りであ
る。正極として、LiMnO2 と、導電剤としてのカー
ボン粉末と、バインダとしてのテフロン粉末とを重量比
で100:10:40の割合で混合しペレット状に加圧
成形した後熱処理して水分を除去して用いた。負極とし
ては、リチウムアルミニウム合金を用いた。リチウムと
アルミニウムの比率は原子モル比で1:1である。セパ
レータとしては、ポリプロピレン製微孔フィルム(厚さ
0.025mm)を用いた。正極は直径15mm,高さ0.
47mmの円形ペレットであり、負極は直径15.4mm,
高さ0.9mmの円形ペレットである。この電池の公称容
量は20mAh である。
Formulation No. No. 1 ... PC + DME Capacity ratio 1: 1 Comparative example No. 2 ... PC + * EMC capacity ratio 1: 1 Comparative example No. 3 ... BC + DME Capacity ratio 1: 1 Comparative example No. 4 ... BC + EMC capacity ratio 1: 1 Comparative example No. 5 ... actual 1 + DME capacity ratio 1: 1 The present invention No. 6 ... Actual 1 + EMC capacity ratio 1: 1 The present invention No. 7 ... actual 2 + DME capacity ratio 1: 1 The present invention No. 8: Actual 2 + EMC capacity ratio 1: 1 of the present invention * EMC is an abbreviation for ethyl methyl carbonate Further, the specifications of the battery excluding the non-aqueous electrolyte are as follows. As a positive electrode, LiMnO 2 , carbon powder as a conductive agent, and Teflon powder as a binder were mixed in a weight ratio of 100: 10: 40, and the mixture was pressure-molded into pellets and heat-treated to remove water. Used. A lithium aluminum alloy was used as the negative electrode. The atomic ratio of lithium to aluminum is 1: 1. A polypropylene microporous film (thickness 0.025 mm) was used as the separator. The positive electrode has a diameter of 15 mm and a height of 0.
47mm circular pellets, the negative electrode has a diameter of 15.4mm,
It is a circular pellet with a height of 0.9 mm. The nominal capacity of this battery is 20 mAh.

【0032】次に、前記8種類の電解液を使用した前記
仕様の電池の充放電サイクル特性を調べたところ、図1
の結果を得た。試験条件は充電電流1mA,放電電流は2
mAの定電流充放電とした。放電終止電圧は2.0V,充
電電圧は3.4Vを上限とした。図は、初度の放電容量
を100とした場合の電解液組成の違いによるサイクル
毎の容量の変化を示している。図1に示す結果から明ら
かなように、本発明の非水溶媒を含む電解液を用いた電
池では、サイクル特性が顕著に向上する。また、このこ
とは本発明の溶媒がPC,BCに比べて耐久性を有し、
負極による還元がなされにくいことを示唆するものであ
る。
Next, the charge and discharge cycle characteristics of the battery of the above specifications using the above eight kinds of electrolytes were examined.
Got the result. The test conditions are 1 mA for charging current and 2 for discharging current.
A constant current charge / discharge of mA was used. The discharge end voltage was 2.0 V and the charge voltage was 3.4 V. The figure shows the change in capacity for each cycle due to the difference in the composition of the electrolyte solution when the initial discharge capacity is 100. As is clear from the results shown in FIG. 1, the cycle characteristics are remarkably improved in the battery using the electrolytic solution containing the non-aqueous solvent of the present invention. In addition, this means that the solvent of the present invention is more durable than PC and BC,
This suggests that reduction by the negative electrode is difficult.

【0033】実施例4.(テストセルにおける評価試
験) 実施例3.におけるNo.1〜8の非水電解液を用い
て、図2に示すテストセルを組立てた。正極1として、
LiCoO2 と、導電剤としてのカーボン粉末と、バイ
ンダとしてのテフロン粉末とを重量比で100:10:
6の割合で混合し圧延してシート状にし、集電体2とし
てのチタン製ネットに圧着した。また、負極3はピッチ
系炭素繊維を焼成することによって得られる炭素質粉末
と、バインダとしてEPDM(エチレンプロピレンジエ
ンモノマー)を100:7になるよう混合して圧延して
シート状とし、集電体4としてのNiネットに圧着し
た。寸法は、正極,負極ともに10×10mmの正方形
で、正極の厚みは0.25mm,負極の厚みは0.40mm
である。また、電極1,3間の間隔は2mmとした。
Example 4. (Evaluation test in test cell) Example 3. No. The test cell shown in FIG. 2 was assembled using the non-aqueous electrolyte solutions 1 to 8. As the positive electrode 1,
LiCoO 2 , carbon powder as a conductive agent, and Teflon powder as a binder in a weight ratio of 100: 10:
The mixture was mixed at a ratio of 6 and rolled into a sheet shape, which was pressed onto a titanium net as the current collector 2. Further, the negative electrode 3 is made by mixing carbonaceous powder obtained by firing pitch-based carbon fiber and EPDM (ethylene propylene diene monomer) as a binder in a ratio of 100: 7 and rolling to form a sheet. It was crimped to a Ni net as No. 4. The size of the positive and negative electrodes is a square of 10 x 10 mm. The thickness of the positive electrode is 0.25 mm and the thickness of the negative electrode is 0.40 mm.
Is. The distance between the electrodes 1 and 3 was 2 mm.

【0034】なお、正極の充填理論容量は8.2mAh 、
負極は7mAh である。正極の理論容量を大きくしてある
のは、最初の充電後、次の放電に関与できるリチウム量
が充電容量よりも減じてしまうからであり、これは最初
の充放電サイクルに限って充電されたリチウムが炭素質
負極中に一定量取り込まれ、次回からは放電できないこ
とによる。
The theoretical filling capacity of the positive electrode is 8.2 mAh,
The negative electrode is 7 mAh. The reason for increasing the theoretical capacity of the positive electrode is that after the first charge, the amount of lithium that can be involved in the next discharge is less than the charge capacity, and this is because the lithium was charged only in the first charge / discharge cycle. This is because a certain amount of lithium is taken into the carbonaceous negative electrode, and it will not be possible to discharge from the next time.

【0035】次に、前記8種類の電解液を使用した前記
仕様のテストセルの充放電サイクル特性を調べたとこ
ろ、図3の結果を得た。試験条件は充電電流1mA,放電
電流は2mAの定電流充放電とした。放電終止電圧は2.
8V,充電電圧は4.15Vを上限とした。図は、初度
の放電容量を100とした場合の電解液組成の違いによ
るサイクル毎の容量の変化を示している。図3に示す結
果から明らかなように、本発明の非水溶媒を含む電解液
を用いた電池では、サイクル特性が顕著に向上し、実施
例3.と同様の効果を奏することを確認した。
Next, when the charge and discharge cycle characteristics of the test cell of the above specifications using the above eight kinds of electrolytes were examined, the results of FIG. 3 were obtained. The test conditions were constant current charging / discharging with a charging current of 1 mA and a discharging current of 2 mA. The discharge end voltage is 2.
The upper limit of the charging voltage was 8V and 4.15V. The figure shows the change in capacity for each cycle due to the difference in the composition of the electrolyte solution when the initial discharge capacity is 100. As is clear from the results shown in FIG. 3, in the battery using the electrolytic solution containing the non-aqueous solvent of the present invention, the cycle characteristics were remarkably improved. It was confirmed that the same effect as was obtained.

【0036】実施例5.(リチウム一次電池への適用
例) 実施例3.におけるNo.1〜8の非水電解液を用い
て、単三形のいわゆるインサイドアウト形リチウム一次
電池を組立てた。
Example 5. (Example of Application to Lithium Primary Battery) Example 3. No. AA so-called inside-out type lithium primary batteries were assembled using the non-aqueous electrolyte solutions 1 to 8.

【0037】正極として、LiMnO2 と、導電剤のカ
ーボン粉末と、バインダのテフロン粉末とを重量比で1
00:10:40の割合で混合し加圧成形した後熱処理
して水分を除去して用いた。負極としては、リチウムシ
ートを用いた。セパレータとしては、厚さ0.2mmのポ
リプロピレン不織布を用いた。正極は外径13.7mm,
長さ40mm,内径9mmの中空円筒状に形成され、容器兼
用の正極に接続を保つように収容される。負極は厚さ
1.1mm,幅40mm,長さ24mmのリチウムシートを円
筒状にし、セパレータを介して正極の内側に向かい合わ
せて嵌合する。この電池の公称容量は1.9Ahである。
As the positive electrode, LiMnO 2 , carbon powder as a conductive agent, and Teflon powder as a binder were used in a weight ratio of 1
The mixture was mixed at a ratio of 00:10:40, pressure-molded, and then heat-treated to remove water and used. A lithium sheet was used as the negative electrode. As the separator, a polypropylene non-woven fabric having a thickness of 0.2 mm was used. The positive electrode has an outer diameter of 13.7 mm,
It is formed into a hollow cylinder having a length of 40 mm and an inner diameter of 9 mm, and is housed in a positive electrode which also serves as a container so as to keep the connection. For the negative electrode, a lithium sheet having a thickness of 1.1 mm, a width of 40 mm, and a length of 24 mm is formed into a cylindrical shape, and the lithium sheet is fitted to face the inside of the positive electrode via a separator. The nominal capacity of this battery is 1.9 Ah.

【0038】次に、前記の8種類の電解液を使用した前
記仕様の一次電池の放電特性を調べたところ、図4の結
果を得た。なお、試験条件は温度60℃、放電電流10
μAであり、前述したように、このような温度条件で低
率の負荷による長期放電を行うと、放電時の活性なリチ
ウムと溶媒とが長期に亘って接触するため、電解液の劣
化が進行し、寿命を縮めているとされている。
Next, when the discharge characteristics of the primary battery of the above specifications using the above eight kinds of electrolytic solutions were examined, the results shown in FIG. 4 were obtained. The test conditions were a temperature of 60 ° C. and a discharge current of 10
μA, and as described above, when a long-term discharge is performed under a low-rate load under such a temperature condition, the active lithium at the time of discharge and the solvent are in contact with each other for a long time, so that the deterioration of the electrolytic solution progresses. However, it is said that the life is shortened.

【0039】そして、この実施例では、図4に示す結果
から明らかなように、本発明の非水溶媒を含む電解液を
用いた場合には、このような低率放電であっても特性が
顕著に向上する。また、このことは、本発明の溶媒がP
C,BCに比べて耐久性を有し、リチウムと長期に亘っ
て接触しても劣化しにくいことを示唆するものである。
In this Example, as is clear from the results shown in FIG. 4, when the electrolytic solution containing the non-aqueous solvent of the present invention was used, the characteristics were low even with such a low rate discharge. Noticeably improved. This also means that the solvent of the present invention is P
This suggests that it is more durable than C and BC and that it is less likely to deteriorate even if it is in contact with lithium for a long period of time.

【0040】[0040]

【発明の効果】以上各実施例によって詳細に説明したよ
うに、本発明による環状炭酸エステルを電解液の溶媒構
成物質として用いることにより、二次電池においては充
放電サイクル特性を著しく改善することができ、電解液
の溶媒構成物質として有用である。 また、一次電池に
適用した場合には、特に低負荷での長期に亘る放電時の
特性の劣化を防止できる特徴がある。
As described in detail in the above examples, by using the cyclic carbonic acid ester according to the present invention as the solvent constituent substance of the electrolytic solution, the charge / discharge cycle characteristics can be remarkably improved in the secondary battery. Therefore, it is useful as a solvent constituent substance of the electrolytic solution. In addition, when applied to a primary battery, there is a feature that deterioration of characteristics during discharge over a long period under a low load can be prevented.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例3.における充放電サイクル特性を比較
したグラフである。
FIG. 1 Example 3. 5 is a graph comparing charge / discharge cycle characteristics in FIG.

【図2】実施例4.におけるテストセルの模式図であ
る。
FIG. 2 Example 4. 3 is a schematic diagram of a test cell in FIG.

【図3】実施例4.における充放電サイクル特性を比較
したグラフである。
FIG. 3 Example 4. 5 is a graph comparing charge / discharge cycle characteristics in FIG.

【図4】実施例5.における放電特性を比較したグラフ
である。
FIG. 4 Example 5. 5 is a graph comparing the discharge characteristics in FIG.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 次の構造式で表わされ: 【化1】 (式中R1 ,R2 ,R3 は一般式Cn 2n+1(n=1 〜4
)で表わされるアルキル基、R4 は水素もしくは一般
式Cn 2n+1(n=1 〜4 )で表わされるアルキル基)か
らなる環状炭酸エステル化合物を、他の非水溶媒と混合
して用いることを特徴とする電池の電解液用非水溶媒。
1. Represented by the structural formula: (In the formula, R 1 , R 2 and R 3 are represented by the general formula C n H 2n + 1 (n = 1 to 4
), An alkyl group represented by the formula (4), R 4 is hydrogen or a cyclic carbonic acid ester compound of the general formula C n H 2n + 1 (n = 1 to 4) is mixed with another non-aqueous solvent. A non-aqueous solvent for a battery electrolyte, which is used.
【請求項2】 前記R1 ,R2 ,R3 がCH3 であり、
4 が水素である、4,4,5−トリメチル−1,3−
ジオキソラン−2−オンであることを特徴とする請求項
1に記載の電池の電解液用非水溶媒。
2. R 1 , R 2 and R 3 are CH 3 .
4,4,5-trimethyl-1,3-wherein R 4 is hydrogen
The non-aqueous solvent for an electrolyte of a battery according to claim 1, which is dioxolan-2-one.
【請求項3】 前記R1 〜R4 が全てCH3 である、
4,4,5,5−テトラメチル−1,3−ジオキソラン
−2−オンであることを特徴とする請求項1に記載の電
池の電解液用非水溶媒。
3. R 1 to R 4 are all CH 3 .
The non-aqueous solvent for an electrolytic solution of a battery according to claim 1, which is 4,4,5,5-tetramethyl-1,3-dioxolan-2-one.
【請求項4】 正極活物質に金属酸化物あるいは硫化物
などを用い、負極に金属リチウムあるいはリチウム合金
あるいはリチウムイオンを吸蔵,放出することが可能な
炭素質材料を用いた非水電解液二次電池の電解液用非水
溶媒として用いられることを特徴とする請求項1から請
求項3までのいずれかに記載の電池の電解液用非水溶
媒。
4. A non-aqueous electrolyte secondary using a metal oxide, a sulfide or the like as a positive electrode active material and a metallic lithium or lithium alloy or a carbonaceous material capable of absorbing and releasing lithium ions as a negative electrode. It is used as a non-aqueous solvent for an electrolytic solution of a battery, and the non-aqueous solvent for an electrolytic solution of a battery according to any one of claims 1 to 3.
【請求項5】 リチウム一次電池の電解液用非水溶媒と
して用いられることを特徴とする請求項1から請求項3
までのいずれかに記載の電池の電解液用非水溶媒。
5. The method according to any one of claims 1 to 3, which is used as a non-aqueous solvent for an electrolytic solution of a lithium primary battery.
A nonaqueous solvent for an electrolytic solution of a battery according to any one of 1 to 4 above.
JP04085662A 1992-04-07 1992-04-07 Non-aqueous solvent for battery electrolyte Expired - Lifetime JP3119928B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP04085662A JP3119928B2 (en) 1992-04-07 1992-04-07 Non-aqueous solvent for battery electrolyte

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04085662A JP3119928B2 (en) 1992-04-07 1992-04-07 Non-aqueous solvent for battery electrolyte

Publications (2)

Publication Number Publication Date
JPH05290882A true JPH05290882A (en) 1993-11-05
JP3119928B2 JP3119928B2 (en) 2000-12-25

Family

ID=13865041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04085662A Expired - Lifetime JP3119928B2 (en) 1992-04-07 1992-04-07 Non-aqueous solvent for battery electrolyte

Country Status (1)

Country Link
JP (1) JP3119928B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001052340A1 (en) * 2000-01-10 2001-07-19 Lg Chemical Co., Ltd New electrolytes and lithium ion battery using the same
JP2006012806A (en) * 2004-06-21 2006-01-12 Samsung Sdi Co Ltd Electrolytic solution for lithium-ion secondary battery and lithium-ion secondary battery containing this

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001052340A1 (en) * 2000-01-10 2001-07-19 Lg Chemical Co., Ltd New electrolytes and lithium ion battery using the same
US6692874B2 (en) 2000-01-10 2004-02-17 Lg Chemical Co., Ltd. Electrolytes and lithium ion battery using the same
JP2006012806A (en) * 2004-06-21 2006-01-12 Samsung Sdi Co Ltd Electrolytic solution for lithium-ion secondary battery and lithium-ion secondary battery containing this
JP4527605B2 (en) * 2004-06-21 2010-08-18 三星エスディアイ株式会社 Electrolytic solution for lithium ion secondary battery and lithium ion secondary battery including the same

Also Published As

Publication number Publication date
JP3119928B2 (en) 2000-12-25

Similar Documents

Publication Publication Date Title
JP3617447B2 (en) Lithium secondary battery
JP3304187B2 (en) Electrolyte for lithium secondary battery
JP4320914B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP6739823B2 (en) Additive for non-aqueous electrolyte solution, non-aqueous electrolyte solution containing the same for lithium secondary battery, and lithium secondary battery
JP3961597B2 (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery
JP4489207B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JPH076786A (en) Nonaqueous electrolyte and nonaqueous electrolyte battery
EP0806804A1 (en) Fluorinated carbonate electrolytes for use in a lithium secondary battery
US20040191629A1 (en) Positive electrode, non-aqueous electrolyte secondary battery, and method of manufacturing the same
JPH07335261A (en) Lithium secondary battery
JP4149042B2 (en) Non-aqueous electrolyte for secondary battery and non-aqueous electrolyte secondary battery
JPH08213014A (en) Nonaqueous electrolyte secondary battery
KR100408085B1 (en) Non-aqueous electrolyte secondary battery and method for producing the same
JP2005190978A (en) Nonaqueous electrolyte secondary battery
JP5117649B2 (en) Non-aqueous electrolyte secondary battery and manufacturing method thereof
JP2000215911A (en) Nonflammable electrolytic solution and nonaqueous electrolytic solution secondary battery
JP2002313416A (en) Non-aqueous electrolyte secondary battery
JP2002015768A (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP2000294273A (en) Nonaqueous electrolyte and secondary battery using it
JPH11273723A (en) Electrolytic solution for lithium secondary battery and lithium secondary battery using same
JP3119928B2 (en) Non-aqueous solvent for battery electrolyte
KR20020055572A (en) Non-aqueous electrolyte secondary battery
JPH05335033A (en) Non-aqueous solvent for battery electrolyte
JP2000040524A (en) Electrolyte for lithium secondary battery and secondary battery
JPH1040955A (en) Nonaqueous electrolyte and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081013

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091013

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101013

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111013

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121013

Year of fee payment: 12