JPH05290836A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH05290836A
JPH05290836A JP4116929A JP11692992A JPH05290836A JP H05290836 A JPH05290836 A JP H05290836A JP 4116929 A JP4116929 A JP 4116929A JP 11692992 A JP11692992 A JP 11692992A JP H05290836 A JPH05290836 A JP H05290836A
Authority
JP
Japan
Prior art keywords
positive electrode
battery
powder
lithium secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4116929A
Other languages
Japanese (ja)
Inventor
Masahisa Fujimoto
正久 藤本
Toshiyuki Noma
俊之 能間
Masatoshi Takahashi
昌利 高橋
Kazuo Moriwaki
和郎 森脇
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4116929A priority Critical patent/JPH05290836A/en
Publication of JPH05290836A publication Critical patent/JPH05290836A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a lithium secondary battery excellent in a cycle characteristic, by using a binding body sheet, composed by integrating crystalline carbon powder and positive electrode active material powder with a binding agent, for a positive electrode. CONSTITUTION:A binding body sheet, composed by integrating crystalline carbon powder 2 and positive electrode active material powder 3 capable of storing and emitting lithium with binding agents 4, is used for a positive electrode 1. The use of the binding body sheet for the positive electrode 1 in this way, causes the possibility, in which a positive electrode mixture layer is fallen from a collecting body, to be utterly eliminated. Consequently a lithium secondary battery, having an excellent cycle characteristic and the less lowering of battery capacity following the repetition of a charge/discharge cycle, can be obtained. Moreover the crystalline carbon powder of graphite is preferable.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池に係
わり、特にサイクル特性の向上を目的とした正極の改良
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to improvement of a positive electrode for the purpose of improving cycle characteristics.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】従来、
リチウム二次電池の正極としては、正極活物質粉末と導
電剤粉末と結着剤との混合物を溶剤に分散させたスラリ
ーを、アルミニウムの箔の両面にドクターブレード法に
より塗布し、乾燥してなる積層体シートなどが使用され
ていた。
2. Description of the Related Art Conventionally, the problems to be solved by the invention
As a positive electrode of a lithium secondary battery, a slurry in which a mixture of a positive electrode active material powder, a conductive agent powder, and a binder is dispersed in a solvent is applied to both surfaces of an aluminum foil by a doctor blade method, and dried. Laminated sheets and the like were used.

【0003】かかる従来のリチウム二次電池の正極にお
いては、図5にその断面図を示すように、正極活物質粉
末と導電剤粉末と結着剤との混合物からなる正極合剤層
51は集電体52に対して、接着されているわけではな
く、単に圧接されているに過ぎなかった。
In such a conventional positive electrode of a lithium secondary battery, as shown in the sectional view of FIG. 5, a positive electrode mixture layer 51 made of a mixture of a positive electrode active material powder, a conductive agent powder and a binder is collected. It was not adhered to the electric body 52, but merely pressed.

【0004】このため、従来のリチウム二次電池には、
充放電を繰り返すうちに、正極合剤層51の一部が集電
体52から離脱し、電池容量が低下してしまうという問
題があった。
Therefore, the conventional lithium secondary battery is
There was a problem that a part of the positive electrode mixture layer 51 was detached from the current collector 52 while charging and discharging were repeated, and the battery capacity was reduced.

【0005】また、正極合剤層51と集電体52との界
面にショットキーバリアが生成して充電が困難になると
いう問題も指摘されていた。
It has also been pointed out that a Schottky barrier is generated at the interface between the positive electrode mixture layer 51 and the current collector 52, which makes charging difficult.

【0006】本発明は、これらの問題を解決するべくな
されたものであって、その目的とするところは、従来の
積層体シートを正極とするリチウム二次電池に比し、充
放電サイクルの繰り返しに伴う電池容量の低下の少な
い、すなわちサイクル特性に優れたリチウム二次電池を
提供するにある。
The present invention has been made to solve these problems, and its object is to repeat charging and discharging cycles as compared with a conventional lithium secondary battery using a laminate sheet as a positive electrode. In order to provide a lithium secondary battery with less deterioration in battery capacity due to the above, that is, excellent in cycle characteristics.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るリチウム二次電池(以下、「本発明電
池」と称する。)は、その正極が結晶性炭素粉末とリチ
ウムを吸蔵放出可能な正極活物質粉末とを結着剤にて一
体化してなる結着体シートからなる。
In order to achieve the above object, a lithium secondary battery according to the present invention (hereinafter, referred to as "invention battery") according to the present invention has a positive electrode which absorbs and releases crystalline carbon powder and lithium. It is composed of a binder sheet obtained by integrating a possible positive electrode active material powder with a binder.

【0008】結晶性炭素粉末としては、黒鉛及びコーク
スが挙げられる。明確な結晶状態を示さないアセチレン
ブラック、カーボンブラック等の無定形炭素は除かれ
る。本発明における炭素粉末が、このように結晶性を示
すものに限定され、無定形炭素などの非結晶性のものが
除外されるのは、次に示す(1)及び(2)の2つの理
由による。
Examples of the crystalline carbon powder include graphite and coke. Amorphous carbons such as acetylene black and carbon black that do not show a clear crystalline state are excluded. There are two reasons (1) and (2) below that the carbon powder according to the present invention is limited to those exhibiting crystallinity as described above and excludes amorphous carbon and the like. by.

【0009】(1)炭素粉末に導電剤と集電体との2つ
の機能を兼任させるためには、電導度の大きい結晶性炭
素粉末を使用する必要がある。 (2)過充電を行うと電池電圧が異常に上昇して電解液
の分解が生じてしまうが、黒鉛などのアニオンドーピン
グ可能な結晶性炭素粉末を使用すれば、過充電時にアニ
オンドーピング現象が起こり電池電圧の異常上昇が抑制
されて、ある程度の過充電に耐えることができる。 上記(2)の理由から、コークスよりも、ドーピング可
能なアニオンの量がそれに比し多い黒鉛が好ましい。
(1) It is necessary to use crystalline carbon powder having a high electric conductivity in order to allow the carbon powder to have two functions of a conductive agent and a current collector. (2) When overcharging is performed, the battery voltage rises abnormally and the electrolytic solution is decomposed. However, if crystalline carbon powder capable of anion doping such as graphite is used, anion doping phenomenon occurs during overcharging. An abnormal rise in battery voltage is suppressed, and it is possible to withstand a certain amount of overcharge. For the reason (2) above, graphite is preferable to coke in which the amount of anion capable of doping is larger than that of coke.

【0010】リチウムを吸蔵放出可能な正極活物質とし
ては、無機化合物として、Li2 FeO3 、TiO2
2 5 などのトンネル状の空孔を有する酸化物や、T
iS 2 、MoS2 等の層状構造を有する金属カルコゲン
化物が例示されるが、組成式Lix MO2 又はLiy
2 4 (ただし、Mは遷移元素、0≦x≦1、0≦y≦
2)で表される複合酸化物が好ましく、この具体例とし
ては、LiCoO2 、LiMnO2 、LiNiO2 、L
iCrO2 、LiMn2 4 が例示される。
A positive electrode active material capable of inserting and extracting lithium
As an inorganic compound, Li2FeO3, TiO2,
V2OFiveOxides with tunnel-shaped holes such as
iS 2, MoS2Chalcogens having a layered structure such as
Compounds are exemplified, but the composition formula LixMO2Or LiyM
2OFour(However, M is a transition element, 0 ≦ x ≦ 1, 0 ≦ y ≦
The complex oxide represented by 2) is preferable,
For LiCoO2, LiMnO2, LiNiO2, L
iCrO2, LiMn2OFourIs exemplified.

【0011】正極の作製の際に使用する結着剤として
は、ポリプロピレン樹脂(PP)、ポリエチレン樹脂
(PE)、ポリエチレンテレフタレート樹脂(PET)
が例示される。
Binders used for producing the positive electrode include polypropylene resin (PP), polyethylene resin (PE), polyethylene terephthalate resin (PET).
Is exemplified.

【0012】本発明における正極は、たとえば、結着剤
粉末と結晶性炭素粉末と正極活物質粉末とを、均一に混
合し、結着剤の溶融温度(たとえばポリプロピレン樹脂
の場合、通常180°C程度)に加熱保持してスラリー
とした後、このスラリーを、目的とする正極の厚みに応
じた所定の厚み(通常、0.1〜0.3mm)のスリッ
トを備える押出成型機を使用して、押し出し、急冷する
ことにより作製される。
In the positive electrode of the present invention, for example, a binder powder, a crystalline carbon powder and a positive electrode active material powder are uniformly mixed, and the melting temperature of the binder (for example, in the case of polypropylene resin, usually 180 ° C.). Temperature) to form a slurry, and then using an extruder equipped with a slit having a predetermined thickness (usually 0.1 to 0.3 mm) according to the thickness of the target positive electrode. It is produced by extrusion, quenching, and quenching.

【0013】正極を作製する際の結着剤粉末と結晶性炭
素粉末と正極活物質粉末との混合比率は、使用する各粉
末の種類によっても異なるが、一般に結着剤粉末5〜5
0重量%、結晶性炭素粉末1〜20重量%、正極活物質
粉末30〜94重量%が好ましい。なかでも、結着剤粉
末は、これを多量に配合すると導電性の低下を招くの
で、20重量%を越えて配合しないことがより好まし
い。
The mixing ratio of the binder powder, the crystalline carbon powder, and the positive electrode active material powder in producing the positive electrode varies depending on the type of each powder used, but the binder powder is generally 5 to 5.
0% by weight, crystalline carbon powder 1 to 20% by weight, and positive electrode active material powder 30 to 94% by weight are preferable. Above all, it is more preferable not to add the binder powder in an amount exceeding 20% by weight, because if the binder powder is added in a large amount, the conductivity is lowered.

【0014】本発明電池は、サイクル特性などを向上さ
せるために、従来の積層体シートからなる正極が有して
いた、集電体から正極合剤層が離脱するという問題を、
かかる離脱の虞れが全くない結着体シートからなる正極
を使用した点に特徴を有する。それゆえ、負極材料、非
水系電解質、セパレータ(液体電解質を使用する場合)
などについては、従来リチウム二次電池用として使用さ
れ、或いは提案されている種々の材料を制限なく使用す
ることが可能である。
In order to improve the cycle characteristics and the like, the battery of the present invention has the problem that the positive electrode material mixture layer separates from the current collector, which the conventional positive electrode made of a laminated sheet has.
It is characterized in that a positive electrode made of a binder sheet that does not cause such detachment is used. Therefore, negative electrode material, non-aqueous electrolyte, separator (when using liquid electrolyte)
As for the above, various materials conventionally used for lithium secondary batteries or proposed have been usable without limitation.

【0015】たとえば、負極材料としては、リチウム金
属や、リチウム合金、炭素材料等のLiを吸蔵放出可能
な材料を使用することができる。なお、炭素材料などの
粉末材料は、これを結着剤及び要すれば導電剤と混練し
て負極合剤として使用される。
For example, as the negative electrode material, a material capable of inserting and extracting Li such as lithium metal, lithium alloy, or carbon material can be used. A powder material such as a carbon material is used as a negative electrode mixture by kneading it with a binder and optionally a conductive agent.

【0016】また、非水系電解質についても、エチレン
カーボネート、ジメチルカーボネート又はこれらの混合
溶媒にLiPF6 やLiClO4 などの溶質を溶かした
溶液など、種々の非水系電解質を用いることができる。
As the non-aqueous electrolyte, various non-aqueous electrolytes such as a solution of a solute such as LiPF 6 or LiClO 4 in ethylene carbonate, dimethyl carbonate or a mixed solvent thereof can be used.

【0017】[0017]

【作用】本発明電池においては、正極が積層体シートで
はなく結着体シートからなるので、従来電池において問
題となっていた正極合剤層が集電体から離脱するという
問題やショットキーバリアの生成により充電が困難とな
るという問題が生じない。
In the battery of the present invention, since the positive electrode is not the laminate sheet but the binder sheet, the problem that the positive electrode mixture layer is separated from the current collector, which has been a problem in the conventional battery, and the Schottky barrier. The problem that charging is difficult due to generation does not occur.

【0018】[0018]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例により何ら限定され
るものではなく、その要旨を変更しない範囲において適
宜変更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications can be made without departing from the scope of the invention. Is possible.

【0019】(実施例1) 〔正極の作製〕正極活物質としてのLiCoO2 65重
量部に、結着剤としてのポリプロピレン樹脂を15重量
部、天然黒鉛粉末を20重量部加え、180°Cにて均
一に混合してスラリーとした後、同温度に加熱保持し
た。次いで、この加熱保持したスラリーを、押出成型機
(スリット厚:0.2mm、スリット幅:30cm)に
より押し出し、急冷して正極を作製した。図1は、この
ようにして作製した正極1の模式的断面図であり、天然
黒鉛粉末2と正極活物質粉末3とが結着剤4により一体
化されている様子を示す。
Example 1 [Preparation of Positive Electrode] To 65 parts by weight of LiCoO 2 as a positive electrode active material, 15 parts by weight of polypropylene resin as a binder and 20 parts by weight of natural graphite powder were added, and the mixture was heated to 180 ° C. After uniformly mixing to form a slurry, the mixture was heated and maintained at the same temperature. Next, this heated and held slurry was extruded by an extruder (slit thickness: 0.2 mm, slit width: 30 cm) and rapidly cooled to produce a positive electrode. FIG. 1 is a schematic cross-sectional view of the positive electrode 1 manufactured in this way, and shows a state in which the natural graphite powder 2 and the positive electrode active material powder 3 are integrated by the binder 4.

【0020】〔負極の作製〕天然黒鉛粉末に、結着剤と
してのフッ素樹脂(PTFE)ディスパージョンを、重
量比95:5の比率で混合して負極合剤を得た。この負
極合剤を、集電体としてのアルミニウム箔に圧延し、2
50°Cで2時間真空下で加熱処理して負極を作製し
た。
[Production of Negative Electrode] Fluororesin (PTFE) dispersion as a binder was mixed with natural graphite powder in a weight ratio of 95: 5 to obtain a negative electrode mixture. This negative electrode mixture was rolled into an aluminum foil as a current collector, and 2
A negative electrode was produced by heat treatment under vacuum at 50 ° C. for 2 hours.

【0021】〔電解液の調製〕エチレンカーボネートと
ジメチルカーボネートとの等体積混合溶媒に、LiPF
6 を1モル/リットル溶かして電解液を調製した。
[Preparation of Electrolyte Solution] LiPF 6 was added to an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate.
An electrolytic solution was prepared by dissolving 6 at 1 mol / liter.

【0022】〔本発明電池BA1の作製〕以上の正負両
極及び電解液を用いて本発明に係る円筒型のリチウム二
次電池BA1を作製した(電池寸法:直径14.2m
m;長さ50.0mm)。なお、セパレータとしてイオ
ン透過性のポリプロピレン製の微孔性薄膜を用いた。
[Preparation of Battery BA1 of the Present Invention] A cylindrical lithium secondary battery BA1 according to the present invention was prepared using the above-described positive and negative electrodes and an electrolytic solution (battery size: diameter 14.2 m).
m; length 50.0 mm). As the separator, an ion-permeable polypropylene microporous thin film was used.

【0023】図2は作製した電池BA1の断面図であ
り、同図に示す電池BA1は、正極21及び負極22、
これら両電極を離隔するセパレータ23、正極リード2
4、負極リード25、正極外部端子26、負極缶27な
どからなる。正極21及び負極22は非水電解液が注入
されたセパレータ23を介して渦巻き状に巻き取られた
状態で負極缶27内に収容されており、正極21は正極
リード24を介して正極外部端子26に、また負極22
は負極リード25を介して負極缶27に接続され、電池
BA1内部で生じた化学エネルギーを電気エネルギーと
して外部へ取り出し得るようになっている。
FIG. 2 is a cross-sectional view of the manufactured battery BA1. The battery BA1 shown in FIG.
Separator 23 that separates these two electrodes, positive electrode lead 2
4, a negative electrode lead 25, a positive electrode external terminal 26, a negative electrode can 27, and the like. The positive electrode 21 and the negative electrode 22 are housed in a negative electrode can 27 in a state of being spirally wound via a separator 23 in which a nonaqueous electrolytic solution is injected, and the positive electrode 21 is connected to a positive electrode external terminal via a positive electrode lead 24. 26, and the negative electrode 22
Is connected to a negative electrode can 27 via a negative electrode lead 25, and chemical energy generated inside the battery BA1 can be taken out as electric energy to the outside.

【0024】(比較例1)LiCoO2 90重量部と、
導電剤としてのアセチレンブラック6重量部と、結着剤
としてのポリビニリデンフルオライド4重量部とを混合
し、溶剤としてのN−メチルピロリドンに分散させてス
ラリーとし、これをアルミニウム箔の両面にドクターブ
レード法により塗布し、乾燥して積層体シート状の正極
を作製した。正極として、この積層体シートを使用した
こと以外は、実施例1と同様にして、比較電池BC1を
作製した。
(Comparative Example 1) 90 parts by weight of LiCoO 2 and
6 parts by weight of acetylene black as a conductive agent and 4 parts by weight of polyvinylidene fluoride as a binder are mixed and dispersed in N-methylpyrrolidone as a solvent to form a slurry, which is a doctor on both sides of an aluminum foil. It was applied by a blade method and dried to prepare a laminate sheet-shaped positive electrode. A comparative battery BC1 was produced in the same manner as in Example 1 except that this laminated sheet was used as the positive electrode.

【0025】(各電池のサイクル特性)本発明電池BA
1及び比較電池BC1について、充電電流200mAで
充電終止電圧4.1Vまで充電した後、放電電流200
mAで放電終止電圧3Vまで放電する工程を1サイクル
とするサイクル試験を行い、各電池のサイクル特性を調
べた。
(Cycle characteristics of each battery) Battery BA of the present invention
1 and the comparative battery BC1 were charged at a charging current of 200 mA to a charge end voltage of 4.1 V, and then discharged at a discharge current of 200
A cycle test in which the process of discharging to a discharge end voltage of 3 V at mA was defined as one cycle was performed to examine the cycle characteristics of each battery.

【0026】図3は、各電池のサイクル特性を、縦軸に
電池容量(mAh)を、また横軸にサイクル数(回)を
とって示したグラフである。同図より、本発明電池BA
1は、サイクル数400回においても初期の電池容量
(500mAh)を保持しているのに対して、比較電池
BC1では、サイクル初期から急激に電池容量が低下
し、サイクル数250回において250mAh弱にまで
電池容量が減少してしまうことが分かる。
FIG. 3 is a graph showing the cycle characteristics of each battery, with the vertical axis representing the battery capacity (mAh) and the horizontal axis representing the number of cycles (times). From the figure, the battery BA of the present invention
While No. 1 retains the initial battery capacity (500 mAh) even after 400 cycles, the comparative battery BC1 has a sharp decrease in battery capacity from the beginning of the cycle, and the comparative battery BC1 has less than 250 mAh at 250 cycles. It can be seen that the battery capacity will decrease until.

【0027】(各電池の過充電時の電圧特性)本発明電
池BA1及び比較電池BC1について、電池容量500
mAhを越えて充電(過充電)した場合の電圧特性を調
べた。
(Voltage characteristics of each battery when overcharged) Battery capacity 500 for the battery BA1 of the present invention and the comparative battery BC1
The voltage characteristics when charged (overcharged) over mAh were examined.

【0028】図4は、各電池の電圧特性を、縦軸に電池
電圧(V)を、また横軸に充電容量(mAh)をとって
示したグラフである。同図より、本発明電池BA1で
は、電池容量500mAhを越えて過充電しても、電池
電圧は4.3V程度までは上昇してもそれ以上上昇しな
いことが分かる。これは、電池電圧4.3V付近で黒鉛
へのアニオンのドーピングが開始されるためである。こ
のドーピング反応により、電解液の分解が抑制され、そ
の後の放電においても、過充電による悪影響は認められ
ず、正常に放電可能なのである。
FIG. 4 is a graph showing the voltage characteristics of each battery, with the vertical axis representing the battery voltage (V) and the horizontal axis representing the charging capacity (mAh). From the figure, it can be seen that in the battery BA1 of the present invention, even if the battery capacity exceeds 500 mAh and is overcharged, the battery voltage rises up to about 4.3 V and does not rise further. This is because the doping of graphite with anions is started near the battery voltage of 4.3V. By this doping reaction, decomposition of the electrolytic solution is suppressed, and even in the subsequent discharge, no adverse effect due to overcharge is observed, and normal discharge is possible.

【0029】これに対して、比較電池BC1では、過充
電すると、電池電圧が急激に上昇していることが分か
る。この電池電圧の立ち上がりにより、電解液の分解が
起こり、その結果、放電時に先の過充電による悪影響が
表出して、電池容量が低下してしまうのである。
On the other hand, in the comparative battery BC1, it can be seen that the battery voltage rises sharply when overcharged. The rise of the battery voltage causes decomposition of the electrolytic solution, and as a result, the adverse effect of the previous overcharge appears at the time of discharging and the battery capacity decreases.

【0030】叙上の実施例では本発明を円筒型電池に適
用する場合の具体例について説明したが、電池の形状に
特に制限はなく、本発明は扁平型、角型等、種々の形状
のリチウム二次電池に適用し得るものである。
In the above embodiment, a specific example in which the present invention is applied to a cylindrical battery is described, but the shape of the battery is not particularly limited, and the present invention has various shapes such as flat type and square type. It is applicable to a lithium secondary battery.

【0031】[0031]

【発明の効果】本発明電池においては、結着体シートか
らなる正極が使用されているので、サイクル特性に優れ
るなど、本発明は優れた特有の効果を奏する。
In the battery of the present invention, since the positive electrode made of the binder sheet is used, the present invention has excellent unique effects such as excellent cycle characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で作製した正極の断面図である。FIG. 1 is a cross-sectional view of a positive electrode manufactured in an example.

【図2】円筒型の本発明電池BA1の断面図である。FIG. 2 is a sectional view of a cylindrical battery BA1 of the present invention.

【図3】サイクル特性図である。FIG. 3 is a cycle characteristic diagram.

【図4】電圧特性図である。FIG. 4 is a voltage characteristic diagram.

【図5】従来電池の正極の断面図である。FIG. 5 is a cross-sectional view of a positive electrode of a conventional battery.

【符号の説明】[Explanation of symbols]

1 正極 2 天然黒鉛粉末(結晶性炭素粉末) 3 正極活物質粉末 4 結着剤 1 Positive Electrode 2 Natural Graphite Powder (Crystalline Carbon Powder) 3 Positive Electrode Active Material Powder 4 Binder

───────────────────────────────────────────────────── フロントページの続き (72)発明者 森脇 和郎 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目18番地 三洋 電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Kazuro Moriwaki 2-18 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-18-2 Keihanhondori, Moriguchi-shi, Osaka Sanyo Denki Within the corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】正極が結晶性炭素粉末とリチウムを吸蔵放
出可能な正極活物質粉末とを結着剤にて一体化してなる
結着体シートからなることを特徴とするリチウム二次電
池。
1. A lithium secondary battery, wherein the positive electrode comprises a binder sheet in which crystalline carbon powder and positive electrode active material powder capable of occluding and releasing lithium are integrated with a binder.
【請求項2】前記結晶性炭素粉末が黒鉛である請求項1
記載のリチウム二次電池。
2. The crystalline carbon powder is graphite.
The lithium secondary battery described.
JP4116929A 1992-04-09 1992-04-09 Lithium secondary battery Pending JPH05290836A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4116929A JPH05290836A (en) 1992-04-09 1992-04-09 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4116929A JPH05290836A (en) 1992-04-09 1992-04-09 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH05290836A true JPH05290836A (en) 1993-11-05

Family

ID=14699190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4116929A Pending JPH05290836A (en) 1992-04-09 1992-04-09 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH05290836A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048372A (en) * 1997-09-29 2000-04-11 Furukawa Denchi Kabushiki Kaisha Method of producing an electrode plate used for a lithium secondary battery and a lithium secondary battery
JP2006523374A (en) * 2003-04-10 2006-10-12 テキサコ オヴォニック バッテリー システムズ エルエルシー Method for making an electrode for an electrochemical cell

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6048372A (en) * 1997-09-29 2000-04-11 Furukawa Denchi Kabushiki Kaisha Method of producing an electrode plate used for a lithium secondary battery and a lithium secondary battery
JP2006523374A (en) * 2003-04-10 2006-10-12 テキサコ オヴォニック バッテリー システムズ エルエルシー Method for making an electrode for an electrochemical cell

Similar Documents

Publication Publication Date Title
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
KR101289974B1 (en) Non-aqueous liquid electrolyte secondary cell
JPH10214638A (en) Lithium secondary battery
JP2971403B2 (en) Non-aqueous solvent secondary battery
JP4994628B2 (en) Nonaqueous electrolyte secondary battery
JP3059820B2 (en) Lithium secondary battery
JP6250941B2 (en) Nonaqueous electrolyte secondary battery
JP3501113B2 (en) Non-aqueous secondary battery and method of manufacturing the same
JPH06349493A (en) Secondary battery
JP6646370B2 (en) Charge / discharge method of lithium secondary battery
JPH11329441A (en) Non-aqueous electrolyte secondary cell
JP2005063680A (en) Battery equipped with spiral electrode group
JP3650548B2 (en) Electrode active material and non-aqueous electrolyte secondary battery using the electrode active material
JP4503964B2 (en) Nonaqueous electrolyte secondary battery
WO2022138451A1 (en) Electrode, nonaqueous electrolyte battery, and battery pack
JPH07288124A (en) Nonaqueous electrolyte secondary battery
JP2003045433A (en) Nonaqueous secondary battery
JP4161396B2 (en) Non-aqueous electrolyte secondary battery
US6451482B1 (en) Non-aqueous electrolyte secondary batteries
JPH11185822A (en) Nonaqueous electrolyte secondary battery
JPH05290836A (en) Lithium secondary battery
JP2002246023A (en) Lithium secondary battery
JPH04328258A (en) Nonaqueous electrolyte secondary battery
JPH06243869A (en) Nonaqueous secondary battery
JP2003217586A (en) Lithium ion secondary battery