JPH0529075Y2 - - Google Patents

Info

Publication number
JPH0529075Y2
JPH0529075Y2 JP11222088U JP11222088U JPH0529075Y2 JP H0529075 Y2 JPH0529075 Y2 JP H0529075Y2 JP 11222088 U JP11222088 U JP 11222088U JP 11222088 U JP11222088 U JP 11222088U JP H0529075 Y2 JPH0529075 Y2 JP H0529075Y2
Authority
JP
Japan
Prior art keywords
exhaust gas
metal carrier
catalyst
heat insulating
insulating material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP11222088U
Other languages
Japanese (ja)
Other versions
JPH0232935U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP11222088U priority Critical patent/JPH0529075Y2/ja
Publication of JPH0232935U publication Critical patent/JPH0232935U/ja
Application granted granted Critical
Publication of JPH0529075Y2 publication Critical patent/JPH0529075Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Exhaust Gas After Treatment (AREA)
  • Catalysts (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は自動車の排気ガス浄化用触媒構造に関
し、特に、ハニカム構造の担体を有する排気ガス
浄化用触媒構造に関する。
[Detailed Description of the Invention] (Industrial Field of Application) The present invention relates to a catalyst structure for purifying automobile exhaust gas, and particularly to a catalyst structure for purifying exhaust gas having a carrier having a honeycomb structure.

(従来の技術) 上記の排気ガス浄化用触媒構造においては、従
来セラミツク製の担体が使用されてきたが、この
セラミツク製担体よりも温度上昇が早く、コスト
的にも有利であるために、近時は特開昭62−
171752号公報に例示されるようなメタル担体を有
する排気ガス浄化用触媒構造が提案されている。
このメタル担体は金属製の平板と波板とを重ねス
パイラル状に巻くことによりハニカム構造を形成
したものである。
(Prior art) In the above-mentioned exhaust gas purification catalyst structure, a ceramic carrier has conventionally been used. The time was JP-A-62-
An exhaust gas purifying catalyst structure having a metal carrier as exemplified in Japanese Patent No. 171752 has been proposed.
This metal carrier has a honeycomb structure formed by stacking a metal flat plate and a corrugated plate and winding them in a spiral shape.

(考案が解決しようとする課題) ところが、従来の排気ガス浄化用触媒構造にお
いては、メタル担体を構成する金属製の平板と波
板の熱伝導性が良過ぎるために、触媒の排気ガス
注入側の端面でヒートポイントができ難い。この
ためにウオームアツプ性能、つまり、触媒の低温
時に排気ガスにより触媒を高温にし、触媒反応を
早期に活性化させる性能が悪いという問題があ
る。また、メタル担体の熱放出性が高いために触
媒が高温になり難いので、排気ガスの浄化性能が
十分でないという問題もある。
(Problem that the invention aims to solve) However, in the conventional catalyst structure for exhaust gas purification, the thermal conductivity of the metal flat plate and corrugated plate that make up the metal carrier is too good, so the exhaust gas injection side of the catalyst It is difficult to form heat points on the end face. For this reason, there is a problem of poor warm-up performance, that is, the ability to raise the catalyst to a high temperature with exhaust gas when the catalyst is at a low temperature, and to quickly activate the catalytic reaction. Furthermore, since the metal carrier has high heat release properties, the catalyst does not easily reach a high temperature, so there is a problem that the exhaust gas purification performance is not sufficient.

そこで、従来、特開昭63−55319号公報に示さ
れているようにメタル担体の外周に断熱材を配設
するか、又は平板の最外周部分で断熱空間を形成
するものが知られているが、これらでは浄化性能
の向上が不十分である。
Therefore, as shown in Japanese Patent Application Laid-Open No. 63-55319, it has been known to provide a heat insulating material around the outer periphery of a metal carrier, or to form a heat insulating space at the outermost periphery of a flat plate. However, these methods do not sufficiently improve purification performance.

上記に鑑みて本考案は、ウオームアツプ性能と
排気ガスの浄化性能に優れた排気ガス浄化用触媒
構造を提供することを目的とする。
In view of the above, an object of the present invention is to provide a catalyst structure for exhaust gas purification that has excellent warm-up performance and exhaust gas purification performance.

(課題を解決するための手段) 上記の目的を達成するために本考案は、排気ガ
ス浄化用触媒における排気ガス流入側周囲部に断
熱層を形成するものである。
(Means for Solving the Problems) In order to achieve the above object, the present invention forms a heat insulating layer around the exhaust gas inlet side of the exhaust gas purifying catalyst.

具体的に本考案の講じた解決手段は、排気ガス
浄化用触媒を、ハニカム構造のメタル担体を有
し、該メタル担体の排気ガス流入側の周囲部にお
ける排気ガス通路に多孔性断熱材を充填する構成
としたものである。
Specifically, the solution taken by the present invention is that the exhaust gas purifying catalyst has a honeycomb-structured metal carrier, and the exhaust gas passage around the exhaust gas inflow side of the metal carrier is filled with porous heat insulating material. It is configured to do this.

(作用) 上記の構成により、本考案の排気ガス浄化用触
媒構造を使用すると次の現象が生じる。
(Function) With the above configuration, the following phenomenon occurs when the exhaust gas purifying catalyst structure of the present invention is used.

排気ガス流入側において、周囲部に断熱材が
充填されているので、この部分での熱放出が抑
制され、排気ガス流入側端面でヒートポイント
が得られる。
On the exhaust gas inflow side, since the surrounding area is filled with a heat insulating material, heat release in this area is suppressed, and a heat point is obtained at the end face on the exhaust gas inflow side.

周囲部の排気ガス通路に多孔性断熱材が充填
されているので、排気ガスは中央部を集中的に
通過する。このために熱の放出され難い中央が
高温になりその熱が周囲部へ伝わるので、触媒
全体が従来のものより高温になり触媒反応が活
発化する。
Since the exhaust gas passages at the periphery are filled with porous insulation material, the exhaust gas passes through the central part intensively. For this reason, the center, where it is difficult to release heat, becomes high in temperature and the heat is transmitted to the surrounding areas, making the entire catalyst hotter than in conventional catalysts and activating the catalytic reaction.

排気ガス通路に充填された断熱材が多孔性で
あるので、断熱材の内部を排気ガスが遅い速度
で通過する。このためにこの部分を通過する排
気ガスと触媒成分との接触時間が長くなつて触
媒反応が促進される。
Since the insulation material filled in the exhaust gas passage is porous, the exhaust gas passes through the inside of the insulation material at a slow speed. Therefore, the contact time between the exhaust gas passing through this portion and the catalyst component becomes longer, and the catalytic reaction is promoted.

(実施例) 以下、本考案の実施例を図面に基づいて説明す
る。
(Example) Hereinafter, an example of the present invention will be described based on the drawings.

第1図イ,ロ及び第2図イ,ロは本考案に係る
排気ガス浄化用触媒Aを示す。符号1はこの排気
ガス浄化用触媒Aを構成するハニカム構造のメタ
ル担体であつて、金属製の平板11と波板12と
を重ねてスパイラル状に巻くことにより形成され
る。このように形成されたメタル担体1はロール
状であつて、排気ガス流入側(第1図及び第2図
における上方側)から流出側へ細長い排気ガス通
路13が多数、層状に形成されている。
Fig. 1 A and B and Fig. 2 A and B show an exhaust gas purifying catalyst A according to the present invention. Reference numeral 1 denotes a honeycomb-structured metal carrier constituting this exhaust gas purifying catalyst A, which is formed by stacking a metal flat plate 11 and a corrugated plate 12 and winding them in a spiral shape. The metal carrier 1 thus formed is in the form of a roll, and has a large number of elongated exhaust gas passages 13 formed in layers from the exhaust gas inflow side (the upper side in FIGS. 1 and 2) to the outflow side. .

メタル担体1の周囲部の排気ガス通路13Aに
おける流入側に、多孔性断熱材2がプラギングに
より充填されている。この多孔性断熱材2には触
媒成分を担持させる場合と、担持させない場合と
があり、前者の場合には、メタル担体1の周囲部
の排気ガス通路13Aに多孔性断熱材2をプラギ
ングした後、このメタル担体1を、触媒成分用の
担体、例えばアルミナのスラリー液に浸漬してウ
オツシユコートを行ない、その後、このメタル担
体1を触媒成分が溶解した水溶液に浸漬して触媒
成分を付着させる。このようにすると、触媒成分
は多孔性断熱材2の内部の孔に浸透して担持され
るため、多孔性断熱材2の孔を通過する排気ガス
が効果的に浄化されるので、多孔性断熱材2は浄
化作用と断熱効果とを発揮できる。また、後者の
場合には、メタル担体1をアルミナのスラリー液
に浸漬してウオツシユコートを行なつた後、この
メタル担体1を触媒成分の溶解した水溶液に浸漬
して触媒成分を付着させ、その後、周囲部の排気
ガス通路13Aに多孔性断熱材2をプラギングす
る。このようにすると、多孔性断熱材2は触媒成
分を担持せず、断熱効果のみを発揮する。
The inflow side of the exhaust gas passage 13A around the metal carrier 1 is filled with a porous heat insulating material 2 by plugging. This porous heat insulating material 2 may support a catalyst component or not. In the former case, after plugging the porous heat insulating material 2 into the exhaust gas passage 13A around the metal carrier 1, , this metal carrier 1 is immersed in a slurry liquid of a carrier for a catalyst component, such as alumina, and wash-coated, and then this metal carrier 1 is immersed in an aqueous solution in which the catalyst component is dissolved to adhere the catalyst component. . In this way, the catalyst component penetrates into the pores inside the porous heat insulating material 2 and is supported, so the exhaust gas passing through the pores of the porous heat insulating material 2 is effectively purified. Material 2 can exhibit a purifying effect and a heat insulating effect. In the latter case, the metal carrier 1 is immersed in an alumina slurry liquid and subjected to wash coating, and then the metal carrier 1 is immersed in an aqueous solution containing a catalyst component to adhere the catalyst component. Thereafter, the porous heat insulating material 2 is plugged into the peripheral exhaust gas passage 13A. In this way, the porous heat insulating material 2 does not support a catalyst component and exhibits only a heat insulating effect.

プラギングを行う範囲については、メタル担体
1に形成された排気ガス通路13の数及び多孔性
断熱材2の開孔率によつて適宜変更し得るが、一
般的には次のようにする。すなわち、プラギング
を行う面積としてはメタル担体1の全断面積に対
して20〜40%の割合が好ましく、深さとしてはメ
タル担体1の全長に対して10〜20%の割合が好ま
しい。
The range of plugging can be changed as appropriate depending on the number of exhaust gas passages 13 formed in the metal carrier 1 and the porosity of the porous heat insulating material 2, but generally it is performed as follows. That is, the area for plugging is preferably 20 to 40% of the total cross-sectional area of the metal carrier 1, and the depth is preferably 10 to 20% of the total length of the metal carrier 1.

以下、本考案の具体例と比較例、及びこれらの
性能をテストした結果について説明する。
Hereinafter, specific examples and comparative examples of the present invention, and the results of testing their performance will be described.

具体例: 金属製の平板11と波板12とを重ねてスパイ
ラル状に巻いて直径1インチ、長さ2インチ、容
積24cm3のロール状のメタル担体1を製作した後、
このメタル担体1の排気ガス流入側における、周
端から中心方向にかけての2.5mm幅の部分に深さ
10mmに亘つて、多孔性断熱材2であるコーデイラ
イト(2Mg0・2Al2O3・5SiO2)をプラギングし
た。次に、このメタル担体1を、γアルミナ:
100g、ベーマイト:100g及び水:250cm3に硝酸1.2
cm3を加えて攪拌したアルミナスラリー液に浸漬し
た後、高圧エアブローを行なつて余分のアルミナ
スラリー液を取除いた。これによつて、ウオツシ
ユコートされたアルミナの付着量はメタル担体1
に対して14重量%であつた。さらに、このメタル
担体1を150℃の温度下で30分間乾燥した後、550
℃の温度下で1.5時間焼成してメタル担体1に触
媒成分用の担体を担持させた。
Specific example: After manufacturing a roll-shaped metal carrier 1 with a diameter of 1 inch, a length of 2 inches, and a volume of 24 cm 3 by stacking a metal flat plate 11 and a corrugated plate 12 and winding them in a spiral shape,
On the exhaust gas inflow side of this metal carrier 1, there is a depth in a 2.5 mm wide part from the peripheral edge to the center direction.
Cordierite (2Mg0.2Al 2 O 3.5SiO 2 ), which is the porous heat insulating material 2 , was plugged over a length of 10 mm. Next, this metal carrier 1 is made of γ alumina:
100g, boehmite: 100g and water: 250cm3 with nitric acid 1.2
After being immersed in an alumina slurry solution that had been stirred with the addition of 3 cm 3 , excess alumina slurry solution was removed by high-pressure air blowing. As a result, the amount of wash-coated alumina deposited on the metal carrier is 1
It was 14% by weight. Furthermore, after drying this metal carrier 1 at a temperature of 150°C for 30 minutes,
The metal carrier 1 was calcined for 1.5 hours at a temperature of .degree. C. to support the catalyst component.

次に、このメタル担体1を、塩化白金、塩化ロ
ジウムの所定量が溶解した水溶液中に浸漬し、そ
の後、150℃の温度下で30分間乾燥させた後、500
℃の温度下で2時間焼成してメタル担体1に貴金
属を担持させた。これによつて担持された貴金属
量は白金:1.35g/l、ロジウム:0.28g/lであ
つた。
Next, this metal carrier 1 was immersed in an aqueous solution in which predetermined amounts of platinum chloride and rhodium chloride were dissolved, and then dried at a temperature of 150°C for 30 minutes.
The noble metal was supported on the metal carrier 1 by firing for 2 hours at a temperature of .degree. The amount of noble metals supported by this was 1.35 g/l for platinum and 0.28 g/l for rhodium.

比較例: 上記具体例と同様のメタル担体を製作し、この
メタル担体に具体例と同様の14重量%のアルミナ
をウオツシユコートをした後、乾燥、焼成した。
つまり、上記具体例におけるプラギング工程を省
略した。次に、このメタル担体を具体例と同様の
水溶液中に浸漬、乾燥、焼成して、白金:
1.32g/l、ロジウム:0.27g/lを担持させた。
Comparative Example: A metal carrier similar to that of the above specific example was manufactured, and the metal carrier was wash coated with 14% by weight alumina similar to that of the specific example, followed by drying and firing.
That is, the plugging step in the above specific example was omitted. Next, this metal carrier was immersed in the same aqueous solution as in the specific example, dried, and fired to produce platinum:
1.32 g/l and rhodium: 0.27 g/l were supported.

第3図は、本考案の排気ガス浄化用触媒構造の
ウオームアツプ性能をテストするために、具体例
及び比較例の触媒のスタートから10分間における
ウオームアツプ特性を調べたものである。テスト
は、A/F(空燃比):14.7±0.9、触媒流入口で
の排気ガス温度:100〜500℃、空気量:60000l/
hrの条件下で、触媒容量24.0cm3の新品の触媒を用
いて行つた。第3図のイは400℃に保つた排気ガ
スを噴射した場合の各触媒流入口での温度を調べ
たものであつて、両者が略同様の状態で温度上昇
していることが分る。ロはイの条件下における
NOx(窒素酸化物)の浄化率を調べたものであつ
て、具体例のものは比較例のものに比べてスター
トから1分間において優れたウオームアツプ特性
を示すと共に、高温になつてからも略完全な浄化
性能を得たことを示している。ハはイの条件下に
おけるCO(一酸化炭素)の浄化率を調べたもので
あつて、具体例のものは比較例のものに比べてス
タートから1.5分間において優れたウオームアツ
プ特性を示している。ニはイの条件下における
HC(炭化水素)の浄化率を調べたものであつて、
NOXやCOの場合以上に優れたウオームアツプ特
性を示している。
FIG. 3 shows the warm-up characteristics of the catalysts of the specific example and the comparative example over a period of 10 minutes from the start, in order to test the warm-up performance of the exhaust gas purifying catalyst structure of the present invention. The test consisted of A/F (air fuel ratio): 14.7±0.9, exhaust gas temperature at catalyst inlet: 100 to 500℃, air volume: 60000l/
The experiments were carried out using a fresh catalyst with a catalyst capacity of 24.0 cm 3 under conditions of hr. Figure 3A shows the temperature at each catalyst inlet when exhaust gas maintained at 400°C is injected, and it can be seen that the temperature rises in almost the same manner in both cases. B is under the conditions of B.
This study investigated the purification rate of NO This shows that almost perfect purification performance was obtained. C is a study of the purification rate of CO (carbon monoxide) under the conditions of B, and the specific example shows superior warm-up characteristics in 1.5 minutes from the start compared to the comparative example. . D is under the conditions of A.
This study investigated the purification rate of HC (hydrocarbons).
It shows better warm-up characteristics than those of NOx and CO.

第4図は、本考案の排気ガス浄化用触媒構造の
排気ガス浄化性能をテストするために、噴射する
排気ガスの温度を上昇させながら具体例及び比較
例の触媒の浄化率を調べたものである。テスト
は、A/F(空燃比):14.5触媒流入口での排気ガ
ス温度:100〜500℃、空気量:60000l/hrの条件
下で、触媒容量24.0cm3の新品の触媒を用いて行つ
た。第4図のイはNOX(窒素酸化物)の浄化率、
ロはCO(一酸化炭素)の浄化率、ハはHC(炭化水
素)の浄化率を表わし、具体例のものは比較例の
ものに比べていずれも浄化率の高いことを示して
いる。特に具体例のものはHCに対する浄化性能
が優れていると共に、ウオームアツプ効果も有し
ていることが分る。
Figure 4 shows the results of examining the purification rates of the catalysts of specific and comparative examples while increasing the temperature of the injected exhaust gas, in order to test the exhaust gas purification performance of the exhaust gas purification catalyst structure of the present invention. be. The test was conducted using a new catalyst with a catalyst capacity of 24.0cm3 under the conditions of A/F (air fuel ratio): 14.5, exhaust gas temperature at the catalyst inlet: 100 to 500℃, and air flow rate: 60000l/hr. Ivy. A in Figure 4 is the purification rate of NO x (nitrogen oxides).
B represents the purification rate of CO (carbon monoxide), and C represents the purification rate of HC (hydrocarbons), indicating that the specific example has a higher purification rate than the comparative example. In particular, it can be seen that the specific examples have excellent purification performance against HC and also have a warm-up effect.

(考案の効果) 以上説明したように、本考案の排気ガス浄化用
触媒構造によると、排気ガス流入側の周囲部にお
ける排気ガス通路に多孔性断熱材が充填されてい
るため、排気ガス流入側端面でヒートポイントが
得られると共に触媒全体が高温になるので、ウオ
ームアツプ性能と排気ガス浄化性能が向上する。
(Effects of the invention) As explained above, according to the exhaust gas purification catalyst structure of the invention, the exhaust gas passage around the exhaust gas inflow side is filled with porous heat insulating material. Since a heat point is obtained at the end face and the entire catalyst is heated to a high temperature, warm-up performance and exhaust gas purification performance are improved.

さらに、周囲部を通過する排気ガスと触媒成分
との接触時間が長くなるので、排気ガス浄化性能
が一層向上する。
Furthermore, since the contact time between the exhaust gas passing through the surrounding area and the catalyst component becomes longer, the exhaust gas purification performance is further improved.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は本考案の一実施例である排
気ガス浄化用触媒構造を示し、第1図イは斜視
図、第1図ロは一部分の拡大平面図、第2図イは
第1図イにおける−線断面図、第2図ロは一
部分の拡大斜視図、第3図は本考案の具体例と比
較例に係る排気ガス浄化用触媒構造のウオームア
ツプ性能の特性図、第4図は同じく排気ガス浄化
性能の特性図である。 A……排気ガス浄化用触媒、1……メタル担
体、2……多孔性断熱材、11……平板、12…
…波板、13,13A,13B……排気ガス通
路。
1 and 2 show an exhaust gas purifying catalyst structure which is an embodiment of the present invention, FIG. 1A is a perspective view, FIG. 1B is a partially enlarged plan view, and FIG. Figure 1A is a sectional view taken along the - line, Figure 2B is a partial enlarged perspective view, Figure 3 is a characteristic diagram of the warm-up performance of exhaust gas purification catalyst structures according to a specific example of the present invention and a comparative example, and Figure 4 The figure is also a characteristic diagram of exhaust gas purification performance. A... Catalyst for exhaust gas purification, 1... Metal carrier, 2... Porous heat insulating material, 11... Flat plate, 12...
...Corrugated plate, 13, 13A, 13B...Exhaust gas passage.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] ハニカム構造のメタル担体を有し、該メタル担
体の排気ガス注入側の周囲部における排気ガス通
路に多孔性断熱材を充填したことを特徴とする排
気ガス浄化用触媒構造。
1. A catalyst structure for exhaust gas purification, comprising a metal carrier having a honeycomb structure, and an exhaust gas passage around the exhaust gas injection side of the metal carrier is filled with a porous heat insulating material.
JP11222088U 1988-08-26 1988-08-26 Expired - Lifetime JPH0529075Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11222088U JPH0529075Y2 (en) 1988-08-26 1988-08-26

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11222088U JPH0529075Y2 (en) 1988-08-26 1988-08-26

Publications (2)

Publication Number Publication Date
JPH0232935U JPH0232935U (en) 1990-03-01
JPH0529075Y2 true JPH0529075Y2 (en) 1993-07-26

Family

ID=31350960

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11222088U Expired - Lifetime JPH0529075Y2 (en) 1988-08-26 1988-08-26

Country Status (1)

Country Link
JP (1) JPH0529075Y2 (en)

Also Published As

Publication number Publication date
JPH0232935U (en) 1990-03-01

Similar Documents

Publication Publication Date Title
JP5073303B2 (en) Catalytic converter and manufacturing method of catalytic converter
JP2931362B2 (en) Resistance control type heater and catalytic converter
JP4682151B2 (en) Exhaust gas purification catalyst
JP4935219B2 (en) Exhaust gas purification catalyst
US20060142153A1 (en) Filter catalyst for exhaust gas purification of a diesel engine and its method of production
JPH04224220A (en) Honeycomb heater and catalytic converter
JP2002177793A (en) Ceramic support and ceramic catalytic body
JPH05293376A (en) Catalyst for purifying exhaust gas and method therefor
US8721978B2 (en) Catalyst carrier
JP3140044B2 (en) Contact exhaust purifier for internal combustion engine exhaust gas
JP3548683B2 (en) Exhaust gas purification catalyst
JPH08332350A (en) Catalyst for exhaust gas purification
FI94455C (en) Catalyst and preparation process for the same
JPH0529075Y2 (en)
JPS6384635A (en) Catalyst for purifying exhaust gas
JP4459346B2 (en) Exhaust gas purification catalyst
JP2537510B2 (en) Exhaust gas purification catalyst
JPS62282641A (en) Production of catalyst for purifying exhaust gas
JPH08299809A (en) Production of honeycomb catalyst
JPS6271543A (en) Catalyst for cleaning up exhaust gas of engine
JP3252983B2 (en) Tandem-type metal supported catalyst
JP4329467B2 (en) Catalyst carrier and method for producing the same
JPH05184926A (en) Catalyst for purifying exhaust gas
JPH01135542A (en) Monolithic catalyst for purifying exhaust gas
JPS61146314A (en) Purifying filter for collecting fine particle