JPH05288942A - Production of radiation resistant image fiber - Google Patents

Production of radiation resistant image fiber

Info

Publication number
JPH05288942A
JPH05288942A JP4095661A JP9566192A JPH05288942A JP H05288942 A JPH05288942 A JP H05288942A JP 4095661 A JP4095661 A JP 4095661A JP 9566192 A JP9566192 A JP 9566192A JP H05288942 A JPH05288942 A JP H05288942A
Authority
JP
Japan
Prior art keywords
image fiber
fiber
rays
image
irradiation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4095661A
Other languages
Japanese (ja)
Inventor
Tomoaki Toritani
智晶 鳥谷
Naoki Shamoto
尚樹 社本
Katsuyuki Seto
克之 瀬戸
Kouji Tsumanuma
孝司 妻沼
Kazuo Sanada
和夫 真田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP4095661A priority Critical patent/JPH05288942A/en
Publication of JPH05288942A publication Critical patent/JPH05288942A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To improve radiation resistance by subjecting an image fiber base material to melt spinning and irradiating the resulted image fiber with gamma rays, then heating the fiber in a hydrogen atmosphere. CONSTITUTION:The end of the image fiber base material 11 is melted by a heater 12 of a heating furnace and is melt spun, by which the image fiber 13 having a desired diameter is formed. This image fiber 13 is continuously introduced to a resin coating die 14 filled with a heat resistant UV curing type resin liquid and is coated with the resin liquid; thereafter, the fiber is sent to a UV crosslinking cylinder 15 where the fiber is irradiated with UV rays. As a result, the resin liquid is cured and the resin coating is applied. The image fiber 13 provided with such resin coating is in succession sent continuously to an irradiation chamber 16. A gamma ray source 17 for cobalt 60, etc., is installed in this chamber. The image fiber 13 is subjected to the irradiation with the rays during traveling in the irradiation chamber 16 and is then heated and treated in a hydrogen atmosphere.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、耐放射線特性が格段
に向上した耐放射線イメージファイバを製造する方法に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of manufacturing a radiation resistant image fiber having significantly improved radiation resistance.

【0002】[0002]

【従来の技術】イメージファイバの用途として、原子力
発電所内の冷却水配管内の検査などの放射線環境下での
使用がある。このような用途に用いられるイメージファ
イバとしては、放射線に被曝されても伝送特性の劣化が
極力少ないものが当然必要となってくる。従来、このよ
うな放射線環境下で使用される耐放射線イメージファイ
バとしては、図2に示すように、純粋石英ガラスからな
る多数のコア1…と、これらコア1…の周囲を包囲する
フッ素ドープ石英ガラスからなるクラッド2と、これら
全体を被覆する石英ガラスからなるジャケット3を有す
るものが知られている。
2. Description of the Related Art As an application of an image fiber, it is used in a radiation environment such as an inspection of a cooling water pipe in a nuclear power plant. As an image fiber used for such an application, it is naturally necessary to use an image fiber whose transmission characteristics are minimally deteriorated even when exposed to radiation. 2. Description of the Related Art Conventionally, as a radiation resistant image fiber used in such a radiation environment, as shown in FIG. 2, a large number of cores 1 made of pure quartz glass and fluorine-doped quartz surrounding the cores 1 ... It is known to have a clad 2 made of glass and a jacket 3 made of quartz glass that covers the whole of the clad 2.

【0003】このようなイメージファイバは、純粋石英
ガラスからなるコアと、フッ素ドープ石英ガラスからな
るクラットを有するコア/グラッド構造の光ファイバを
多数本整列状態で束ね、ジャケットとなる純粋石英ガラ
ス製パイプ内に収め、加熱して一体化したイメージファ
イバ母材を作り、このイメージファイバ母材を溶融紡糸
する方法で製造されている。ところが、この溶融紡糸の
際、イメージファイバ内に欠陥が生じ、得られるイメー
ジファイバ内にこの欠陥がそのまま存在することにな
る。この欠陥は放射線被曝時にカラーセンター(着色中
心)に変化し、伝送特性劣化の原因となっている。
Such an image fiber is a pipe made of pure silica glass, which serves as a jacket by bundling a plurality of optical fibers having a core / grad structure having a core made of pure silica glass and struts made of fluorine-doped silica glass in an aligned state. It is manufactured by a method in which the image fiber base material is housed in the inside, heated to form an integrated image fiber base material, and the image fiber base material is melt-spun. However, during this melt spinning, a defect occurs in the image fiber, and the defect remains in the obtained image fiber. This defect changes to a color center (coloring center) when exposed to radiation, which causes deterioration of transmission characteristics.

【0004】このため、イメージファイバ中に存在する
欠陥を取り除くため、イメージファイバを水素雰囲気中
で加熱する方法がとられ、欠陥を予め取り除き、耐放射
線性を高めるようにしていた。しかしながら、この方法
を用いても、イメージファイバの耐放射線特性はいまだ
十分とはいえず、高い線量の被曝に対して伝送特性の劣
化が見られた。
Therefore, in order to remove the defects existing in the image fiber, a method of heating the image fiber in a hydrogen atmosphere has been adopted, and the defects have been removed in advance to enhance the radiation resistance. However, even if this method is used, the radiation resistance of the image fiber is still insufficient, and the transmission characteristics are deteriorated even when exposed to a high dose.

【0005】[0005]

【発明が解決しようとする課題】よって、この発明にお
ける課題は、高線量の放射線被曝を受けても伝送特性の
低下のない極めて耐放射線特性の優れたイメージファイ
バを製造する方法を得ることにある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to obtain a method of manufacturing an image fiber having extremely excellent radiation resistance without deterioration of transmission characteristics even when exposed to a high dose of radiation. ..

【0006】[0006]

【課題を解決するための手段】かかる課題は、溶融紡糸
後のイメージファイバにγ線を照射し、しかるのち水素
雰囲気中で加熱する方法により解決される。γ線の照射
は、溶融紡糸に引き続いて連続的に(タンデム)行うこ
ともでき、また溶融紡糸後に一且巻き取り、これを照射
する方法であってもよい。
This problem is solved by a method of irradiating the image fiber after melt spinning with γ-rays and then heating it in a hydrogen atmosphere. Irradiation with γ-rays may be carried out continuously (tandem) following melt spinning, or may be a method of once winding after melt spinning and irradiating.

【0007】以下、この発明を詳しく説明する。図1
は、この発明の製法の一例を実施するに好適な装置を示
すもので、図1符号11はイメージファイバ母材であ
る。このイメージファイバ母材11は、特に限定される
ものではないが、耐放射線性の点から、純粋石英からな
るコアと、フッ素ドープ石英ガラスあるいはホウ素ドー
プ石英ガラスからなるグラッドを有するコア/グラッド
型光ファイバを多数本整列状態で束ね、これを石英ガラ
スからなるパイプ内に収めて加熱し、一体化したものな
どが好ましい。このイメージファイバ母材11は加熱炉
のヒータ12でその端部が溶融され、溶融紡糸されて所
望の径を有するイメージファイバ13となる。
The present invention will be described in detail below. Figure 1
Shows an apparatus suitable for carrying out an example of the manufacturing method of the present invention. Reference numeral 11 in FIG. 1 denotes an image fiber preform. The image fiber base material 11 is not particularly limited, but from the viewpoint of radiation resistance, a core / glad type light having a core made of pure quartz and a glad made of fluorine-doped quartz glass or boron-doped quartz glass. It is preferable that a large number of fibers are bundled in an aligned state, housed in a pipe made of quartz glass, heated, and integrated. The end portion of the image fiber base material 11 is melted by a heater 12 of a heating furnace and melt-spun to form an image fiber 13 having a desired diameter.

【0008】このイメージファイバ13は、耐熱性紫外
線硬化型樹脂液が満たされた樹脂被覆ダイス14に連続
的に導かれ、該樹脂液が塗布されたのち、紫外線架橋筒
15に送られ、ここで紫外線照射を受ける。これによ
り、上記樹脂液は硬化し、樹脂被覆が施される。この樹
脂被覆が設けられたイメージファイバ13は、引き続い
て連続的に照射室16に送られる。照射室16は、その
室内を走行するイメージファイバ13にγ線を照射する
ためのもので、その内部にはコバルト−60などのγ線
源17が設置されている。
The image fiber 13 is continuously guided to a resin-coated die 14 filled with a heat-resistant ultraviolet-curable resin liquid, coated with the resin liquid, and then sent to an ultraviolet cross-linking cylinder 15, where Receives UV irradiation. As a result, the resin liquid is hardened and a resin coating is applied. The image fiber 13 provided with this resin coating is continuously sent to the irradiation chamber 16 continuously. The irradiation chamber 16 is for irradiating the image fiber 13 running in the irradiation chamber with γ-rays, and a γ-ray source 17 such as cobalt-60 is installed inside thereof.

【0009】イメージファイバ13は、この照射室16
内を走行する間に約107〜109レントゲンの線量のγ
線照射を受けたのち、巻取ドラム18に巻き取られる。
イメージファイバ13の走行線速は通常10〜100m
/分程度であるので、γ線源としては比較的高線量率で
γ線照射できるものが好ましく、コバルト−60を用い
た場合には1010キュリー程度のものを用いることにな
る。
The image fiber 13 is provided in the irradiation chamber 16
Γ of dose of about 10 7 to 10 9 roentgen while traveling inside
After receiving the line irradiation, it is wound around the winding drum 18.
The traveling linear velocity of the image fiber 13 is usually 10 to 100 m
Since it is about / min, it is preferable that the γ-ray source can irradiate γ-rays at a relatively high dose rate, and when Cobalt-60 is used, a source of about 10 10 curies is used.

【0010】巻回状態のイメージファイバ13は、つい
で水素雰囲気下で加熱されて処理される。この処理は、
加熱可能な耐圧容器内に巻回状態のイメージファイバ1
3を収容し、該容器内に水素ガスを充填し、容器内のイ
メージファイバを加熱することによって行われる。ここ
で用いられる水素ガスとしては純粋水素ガス以外に、水
素ガスとアルゴンガス,窒素ガスなどの不活性ガスとの
混合ガスであってもよ、い。この処理により、水素原子
がイメージファイバをなすガラス中に浸透、拡散してゆ
き、欠陥を治癒する。この際、樹脂被覆は、水素分子の
浸透には全く障害とはならず、また架橋状態にあるの
で、加熱劣化することもほとんどない。
The wound image fiber 13 is then heated and processed in a hydrogen atmosphere. This process is
Image fiber 1 wound in a heat-resistant pressure vessel 1
3 is accommodated, the container is filled with hydrogen gas, and the image fiber in the container is heated. The hydrogen gas used here may be a mixed gas of hydrogen gas and an inert gas such as argon gas or nitrogen gas other than pure hydrogen gas. By this treatment, hydrogen atoms permeate and diffuse into the glass forming the image fiber to cure the defect. At this time, the resin coating does not hinder the permeation of hydrogen molecules at all, and since it is in a crosslinked state, it is hardly deteriorated by heating.

【0011】このような製法によれば、溶融紡糸後のイ
メージファイバ13にγ線を照射することで、積極的に
イメージファイバ13内に多くの欠陥を生成させ、この
欠陥を次工程での水素処理で取り除いているので、極め
て高い耐放射線性が得られる。また、あらかじめ、供用
時に受ける被曝線量が予測される場合には、γ線照射時
の照射線量をこれに対応させることができ、効率的な処
理を施すことができる。さらに、この例の製法では、γ
線照射を溶融紡糸に引きつづいて連続的にタンデムで行
っているので、作業時間が短縮され、製造コストの低減
が可能である。
According to such a manufacturing method, by irradiating the image fiber 13 after melt spinning with γ-rays, many defects are positively generated in the image fiber 13, and these defects are generated by hydrogen in the next step. Since it is removed by the treatment, extremely high radiation resistance can be obtained. Further, when the radiation dose received during service is predicted in advance, the radiation dose at the time of γ-ray irradiation can be made to correspond to this, and efficient processing can be performed. Furthermore, in the manufacturing method of this example, γ
Since the linear irradiation is continuously performed in tandem following the melt spinning, the working time can be shortened and the manufacturing cost can be reduced.

【0012】また、本発明の製法では、γ線照射を必ず
しも溶融紡糸とタンデムで行う必要はなく、樹脂被覆を
施したイメージファイバを一且巻取ドラムに巻き取り、
この巻回されたされたイメージファイバを照射室内にて
γ線照射したのち、水素雰囲気中で加熱処理してもよ
い。また、巻取後のイメージファイバを予め水素雰囲気
中で加熱して、溶融紡糸時に生じた欠陥を取り除き、つ
いでγ線照射を行ったのち、再び水素雰囲気中で加熱す
る方法を採用してもよい。これらの方法では、γ線照射
の際のγ線源としては比較的小型の低線量率のものが使
用でき、設備、放射線設備の管理の点で有利となる。
Further, in the manufacturing method of the present invention, the γ-ray irradiation does not necessarily have to be performed by melt spinning and tandem, and the image fiber coated with the resin is once wound on the winding drum,
The wound image fiber may be irradiated with γ-rays in an irradiation chamber and then heat-treated in a hydrogen atmosphere. Alternatively, a method may be employed in which the image fiber after winding is heated in advance in a hydrogen atmosphere to remove defects generated during melt-spinning, then subjected to γ-ray irradiation, and then heated again in a hydrogen atmosphere. .. In these methods, a relatively small low dose rate γ-ray source can be used for γ-ray irradiation, which is advantageous in terms of management of equipment and radiation equipment.

【0013】以下、実施例を示して具体的に説明する。 (実施例1)イメージファイバ母材を溶融紡糸して、外
径1.5mmのイメージファイバを得た。このイメージ
ファイバはコアが純粋石英ガラスからなり、グラッドは
フッ素ドープ石英ガラスからなるもので、コア径が6.
5μm,コア間隔が10μm,△n1.0%、画素数が
30.000のものである。このイメージファイバに、
紡糸直後に紫外線硬化型樹脂を塗布し、紫外線架橋筒で
硬化せしめ、厚さ150μmの被覆を設けた。このもの
を直ちにかつ連続的に照射室に導き、γ線照射を行っ
た。γ線源としては、108Ciのコバルト−60を用
いた。
Hereinafter, the present invention will be specifically described with reference to examples. (Example 1) An image fiber preform was melt-spun to obtain an image fiber having an outer diameter of 1.5 mm. In this image fiber, the core is made of pure silica glass, the glad is made of fluorine-doped silica glass, and the core diameter is 6.
5 μm, core interval is 10 μm, Δn 1.0%, and the number of pixels is 30.000. In this image fiber,
Immediately after spinning, an ultraviolet curable resin was applied and cured with an ultraviolet crosslinking cylinder to provide a coating having a thickness of 150 μm. This product was immediately and continuously introduced into the irradiation chamber for γ-ray irradiation. As the γ-ray source, 10 8 Ci cobalt-60 was used.

【0014】ついで、これを巻き取りドラムに巻き取っ
たのち、これを耐圧容器内に収めついで耐圧容器内を一
且真空排気したのち、純粋水素ガスを導入し、内部を圧
力2kg/cm2の水素ガス雰囲気とし、内蔵ヒーター
によって150℃で24時間加熱処理を行った。このよ
うにして得られたイメージファイバに対して2×108
Rのγ線を照射し、照射前後での伝送画像を評価したと
ころ、照射後においても伝送画像の着色は全く認められ
ず、伝送特性の劣化はなかった。
Then, after winding this on a winding drum, putting it in a pressure vessel and evacuating the pressure vessel once, pure hydrogen gas was introduced and the inside pressure was 2 kg / cm 2 . A hydrogen gas atmosphere was used, and a heat treatment was performed at 150 ° C. for 24 hours with a built-in heater. 2 × 10 8 for the image fiber thus obtained
When the transmission image before and after the irradiation with R gamma rays was evaluated, no coloration of the transmission image was observed even after the irradiation, and the transmission characteristics were not deteriorated.

【0015】比較として、コバルト−60によるγ線照
射を行わずに、水素雰囲気中での加熱処理のみを同条件
で行ったイメージファイバについて、同様に2×108
Rのγ線照射を行い、伝送画像の評価を行ったところ、
着色が認められ、伝送特性の劣化が見られた。また、評
価のためのγ線照射線量を106Rと低くした場合で
は、伝送画像に着色が認められなかった。これらの結果
から明らかなように、γ線照射したのち水素雰囲気で加
熱することで、格段に耐放射性が向上することがわか
る。
For comparison, an image fiber obtained by performing only heat treatment in a hydrogen atmosphere under the same conditions without irradiating γ-rays with cobalt-60 was similarly 2 × 10 8.
When γ-ray irradiation of R was performed and the transmitted image was evaluated,
Coloring was observed, and transmission characteristics were deteriorated. Further, when the γ-ray irradiation dose for evaluation was lowered to 10 6 R, coloring was not recognized in the transmitted image. As is clear from these results, it can be seen that the radiation resistance is remarkably improved by heating in a hydrogen atmosphere after γ-ray irradiation.

【0016】(実施例2)まず、実施例1と同様にして
紫外線硬化型樹脂からなる被覆を有するイメージファイ
バを製造し、巻取ドラムに巻き取った。ついで、このも
のを同様の耐圧容器に収め、水素圧力2kg/cm2
温度150℃、時間24時間の条件で処理したのち、コ
バルト−60によるγ線照射を実施した。ついで、この
ものをさらに水素圧力2kg/cm2、温度150℃、
時間24時間の条件で2回目の水素雰囲気中での加熱処
理を施して、目的とする耐放射線イメージファイバを得
た。このものに108Rのγ線照射を行ったが、画像伝
送特性に劣化は認められなかった。
(Example 2) First, an image fiber having a coating made of an ultraviolet curable resin was manufactured in the same manner as in Example 1 and wound on a winding drum. Then, this product was placed in a similar pressure vessel, and the hydrogen pressure was 2 kg / cm 2 ,
After treatment at a temperature of 150 ° C. for 24 hours, γ-ray irradiation with cobalt-60 was carried out. Next, this was further subjected to hydrogen pressure of 2 kg / cm 2 , temperature of 150 ° C.,
A second heat treatment in a hydrogen atmosphere was performed under the condition of a time of 24 hours to obtain a desired radiation resistant image fiber. This product was irradiated with 10 8 R γ-rays, but no deterioration in image transmission characteristics was observed.

【0017】[0017]

【発明の効果】以上説明したように、この発明の耐放射
線イメージファイバの製法は、イメージファイバ母材を
溶融紡糸し、得られたイメージファイバにγ線を照射し
たのち、水素雰囲気で加熱するものであるので、極めて
優秀な耐放射線特性を有するものが製造できる。特に、
イメージファイバの紡糸とγ線照射とをタンデムで行う
ものでは作業効果率が向上し、製造コストを低減するこ
ともできる。
As described above, according to the method of manufacturing the radiation resistant image fiber of the present invention, the image fiber base material is melt-spun, and the obtained image fiber is irradiated with γ rays and then heated in a hydrogen atmosphere. Therefore, a product having extremely excellent radiation resistance can be manufactured. In particular,
When the spinning of the image fiber and the γ-ray irradiation are performed in tandem, the work efficiency is improved and the manufacturing cost can be reduced.

【図面の簡単な説明】[Brief description of drawings]

【図1】 この発明の製法を実施するための装置の概略
構成図である。
FIG. 1 is a schematic configuration diagram of an apparatus for carrying out the manufacturing method of the present invention.

【図2】 イメージファイバの一例を示す概略断面図で
ある。
FIG. 2 is a schematic sectional view showing an example of an image fiber.

【符号の説明】[Explanation of symbols]

11…イメージファイバ母材、12…ヒータ、13…イ
メージファイバ、14…樹脂被覆ダイス、15…紫外線
架橋筒、16…照射室、17…線源、18…巻取ドラム
11 ... Image fiber base material, 12 ... Heater, 13 ... Image fiber, 14 ... Resin coating die, 15 ... UV cross-linking cylinder, 16 ... Irradiation chamber, 17 ... Radiation source, 18 ... Winding drum

───────────────────────────────────────────────────── フロントページの続き (72)発明者 妻沼 孝司 千葉県佐倉市六崎1440番地 藤倉電線株式 会社佐倉工場内 (72)発明者 真田 和夫 千葉県佐倉市六崎1440番地 藤倉電線株式 会社佐倉工場内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Koji Tamanuma 1440 Rokuzaki, Sakura City, Chiba Prefecture, Sakura Factory, Fujikura Cable Co., Ltd. (72) Kazuo Sanada, 1440, Rokuzaki, Sakura City, Chiba, Fujikura Cable Company, Ltd.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 イメージファイバ母材を溶融紡糸し、得
られたイメージファイバにγ線を照射したのち、水素雰
囲気で加熱することを特徴とする耐放射線イメージファ
イバの製法。
1. A method of producing a radiation resistant image fiber, which comprises melt-spinning an image fiber base material, irradiating the obtained image fiber with γ-rays, and then heating in a hydrogen atmosphere.
【請求項2】 請求項1記載の耐放射線イメージファイ
バの製法において、溶融紡糸に引き続いて連続的にγ線
を照射することを特徴とする耐放射線イメージファイバ
の製法。
2. The method for producing a radiation-resistant image fiber according to claim 1, wherein γ-rays are continuously irradiated following the melt spinning.
【請求項3】 請求項1記載の耐放射線イメージファイ
バの製法において、溶融紡糸後のイメージファイバを一
且巻き取り、ついでこれにγ線を照射することを特徴と
する耐放射線イメージファイバの製法。
3. The method for producing a radiation-resistant image fiber according to claim 1, wherein the image fiber after melt spinning is once wound up, and then γ-rays are irradiated on the image fiber.
JP4095661A 1992-04-15 1992-04-15 Production of radiation resistant image fiber Pending JPH05288942A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4095661A JPH05288942A (en) 1992-04-15 1992-04-15 Production of radiation resistant image fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4095661A JPH05288942A (en) 1992-04-15 1992-04-15 Production of radiation resistant image fiber

Publications (1)

Publication Number Publication Date
JPH05288942A true JPH05288942A (en) 1993-11-05

Family

ID=14143682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4095661A Pending JPH05288942A (en) 1992-04-15 1992-04-15 Production of radiation resistant image fiber

Country Status (1)

Country Link
JP (1) JPH05288942A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0879799A3 (en) * 1997-05-16 1999-07-21 Sumitomo Electric Industries, Ltd. Silica glass article and manufacturing process therefor
EP0943936A2 (en) * 1998-03-20 1999-09-22 Polymicro Technologies, Inc. Gamma radiation sterilized fiber optic UV delivery systems
US6333283B1 (en) 1997-05-16 2001-12-25 Sumitomo Electric Industries, Ltd. Silica glass article and manufacturing process therefor
US6588236B2 (en) 1999-07-12 2003-07-08 Kitagawa Industries Co., Ltd. Method of processing a silica glass fiber by irradiating with UV light and annealing
CN109574491A (en) * 2019-01-31 2019-04-05 烽火通信科技股份有限公司 A kind of preparation method of radiation resistant optical fiber

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0879799A3 (en) * 1997-05-16 1999-07-21 Sumitomo Electric Industries, Ltd. Silica glass article and manufacturing process therefor
US5983673A (en) * 1997-05-16 1999-11-16 Sumitomo Electric Industries, Ltd. Silica glass article and manufacturing process therefor
US6333283B1 (en) 1997-05-16 2001-12-25 Sumitomo Electric Industries, Ltd. Silica glass article and manufacturing process therefor
US6709997B2 (en) 1997-05-16 2004-03-23 Sumitomo Electric Industries, Ltd. Silica glass article and manufacturing process therefor
EP0943936A2 (en) * 1998-03-20 1999-09-22 Polymicro Technologies, Inc. Gamma radiation sterilized fiber optic UV delivery systems
EP0943936A3 (en) * 1998-03-20 2004-09-29 Polymicro Technologies, Inc. Gamma radiation sterilized fiber optic UV delivery systems
US6588236B2 (en) 1999-07-12 2003-07-08 Kitagawa Industries Co., Ltd. Method of processing a silica glass fiber by irradiating with UV light and annealing
CN109574491A (en) * 2019-01-31 2019-04-05 烽火通信科技股份有限公司 A kind of preparation method of radiation resistant optical fiber

Similar Documents

Publication Publication Date Title
JP3952620B2 (en) Photoinitiator-adjustable optical fiber, optical fiber ribbon, and manufacturing method thereof
US5983673A (en) Silica glass article and manufacturing process therefor
EP1182176B1 (en) Method for reducing the hydrogen sensitivity of optical fibers at 1380nm-1410nm
KR100359230B1 (en) Quartz glass articles and manufacturing method therefor
KR100203544B1 (en) Coated optical fiber and method of making the same
JPS6090852A (en) Treatment of glass for optical fiber
EP1216969A1 (en) Ultraviolet curable coatings for optical fiber for wet-on-wet application
JPH05288942A (en) Production of radiation resistant image fiber
JP2635475B2 (en) Optical fiber coating forming method
JPS6090853A (en) Treatment of glass for optical fiber
US4553995A (en) Process for producing image fiber
DE3884177D1 (en) Method of manufacturing an optical cable.
JPH0471019B2 (en)
JPS58120531A (en) Production of optical fiber
JPS63129035A (en) Production of optical fiber
US20010035029A1 (en) Method of manufacturing an optical fiber
EP1153897B1 (en) Method of manufacturing an optical fiber
JPH04224144A (en) Manufacture of hermetically-coated fiber and its device thereof
JPH08188450A (en) Colored core fiber of optical fiber and its production
JPH01166011A (en) Optical fiber
JPS6272541A (en) Production of radiation-resistant optical fiber
JPH04240136A (en) Production of optical fiber
JPS63129040A (en) Production of optical fiber
JPH11189438A (en) Production of radiation-resistant optical fiber
JPH10167770A (en) Production of carbon-coated optical core fiber