JPH04240136A - Production of optical fiber - Google Patents

Production of optical fiber

Info

Publication number
JPH04240136A
JPH04240136A JP3006961A JP696191A JPH04240136A JP H04240136 A JPH04240136 A JP H04240136A JP 3006961 A JP3006961 A JP 3006961A JP 696191 A JP696191 A JP 696191A JP H04240136 A JPH04240136 A JP H04240136A
Authority
JP
Japan
Prior art keywords
optical fiber
resin
coating
curing
fiber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3006961A
Other languages
Japanese (ja)
Inventor
Hiroo Matsuda
松田 裕男
Takeshi Nonaka
毅 野中
Kohei Kobayashi
宏平 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP3006961A priority Critical patent/JPH04240136A/en
Publication of JPH04240136A publication Critical patent/JPH04240136A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C03GLASS; MINERAL OR SLAG WOOL
    • C03CCHEMICAL COMPOSITION OF GLASSES, GLAZES OR VITREOUS ENAMELS; SURFACE TREATMENT OF GLASS; SURFACE TREATMENT OF FIBRES OR FILAMENTS MADE FROM GLASS, MINERALS OR SLAGS; JOINING GLASS TO GLASS OR OTHER MATERIALS
    • C03C25/00Surface treatment of fibres or filaments made from glass, minerals or slags
    • C03C25/10Coating
    • C03C25/12General methods of coating; Devices therefor

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Geochemistry & Mineralogy (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Optical Fibers, Optical Fiber Cores, And Optical Fiber Bundles (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)

Abstract

PURPOSE:To improve the linear speed of production (to improve the max. linear speed at which a coating resin can cure completely) and to improve productivity by improving the efficiency of curing of a UV curing type resin coating in the process for producing the optical fiber having the coating resin. CONSTITUTION:The UV curing type resin is applied on the outer periphery of the drawn optical fiber and is then irradiated with UV rays by which the coating resin is cured. The optical fiber emerging from a UV irradiation device is passed in a heat insulating cylinder or heating cylinder, by which the cooling of the fiber is prevented. The reaction curing is continued and the curing efficiency is improved in this way and, therefore, the increase of the max. linear speed is possible. The fiber is passed in cooling preventive means during the time of irradiation if the execution of the irradiation with the UV rays plural times.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は光ファイバの製造方法に
関し、特に紫外線硬化型樹脂で被覆した光ファイバを高
速で製造できる方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing optical fibers, and more particularly to a method for manufacturing optical fibers coated with ultraviolet curable resin at high speed.

【0002】0002

【従来の技術】光ファイバ外周には外部の機械的な力か
ら保護するため、通常樹脂被覆が施されており、その樹
脂としては硬化性の観点から紫外線硬化型樹脂が汎用さ
れている。近年、光ファイバの需要の増大と共に、製造
線速の向上が要求され、樹脂の硬化速度を高める方法と
して、樹脂組成の改良と照射する紫外線強度の向上の研
究が進められている。しかし、なお樹脂の硬化が線速の
向上を制限する最も重要な要因の一つとして残っている
2. Description of the Related Art The outer periphery of an optical fiber is usually coated with a resin in order to protect it from external mechanical forces, and from the viewpoint of curability, ultraviolet curable resin is commonly used as the resin. In recent years, as the demand for optical fibers has increased, there has been a need to increase the manufacturing speed, and research is underway to improve the resin composition and increase the intensity of ultraviolet rays irradiated as a way to increase the curing speed of the resin. However, curing of the resin remains one of the most important factors limiting improvement in linear speed.

【0003】従来、光ファイバは図5に示すような装置
を用いて、2層の樹脂被覆を施されている。光ファイバ
母材1から線引炉2で線引きされた光ファイバ3は、樹
脂塗布装置4で樹脂を塗布された後、紫外線照射装置9
の筒状体6中を通過する間に、紫外線照射ランプ5から
発光された紫外線が反射鏡10で集光されて樹脂を照射
することにより、該樹脂が硬化し、樹脂被覆ファイバ7
となる。8は巻取機である。
Conventionally, optical fibers have been coated with two layers of resin using a device as shown in FIG. The optical fiber 3 drawn from the optical fiber base material 1 in the drawing furnace 2 is coated with resin in the resin coating device 4 and then transferred to the ultraviolet irradiation device 9.
While passing through the cylindrical body 6, the ultraviolet rays emitted from the ultraviolet irradiation lamp 5 are focused by the reflecting mirror 10 and irradiated onto the resin, thereby curing the resin and forming the resin-coated fiber 7.
becomes. 8 is a winder.

【0004】0004

【発明が解決しようとする課題】上記した製造線速向上
の要求はますます強くなる一方で、その要求に対し、こ
れまで樹脂硬化の点については、図2に示す紫外線照射
装置の数を増加して直列に配置することによって対処し
てきた。しかし、紫外線照射装置数の増加は、設備コス
トの増加を引き起こす。従って、コストアップすること
なくいかに効率よく樹脂を硬化させるかという点が、現
在重要な課題である。
[Problem to be solved by the invention] While the above-mentioned demand for improving the manufacturing line speed is becoming stronger and stronger, in response to this demand, the number of ultraviolet irradiation devices shown in Figure 2 has been increased for resin curing. This has been dealt with by arranging them in series. However, an increase in the number of ultraviolet irradiation devices causes an increase in equipment costs. Therefore, an important issue at present is how to efficiently cure resin without increasing costs.

【0005】[0005]

【課題を解決するための手段】上記課題を解決する本発
明は、光ファイバ表面に紫外線硬化型樹脂を塗布した後
、紫外線を照射して樹脂を硬化させ被覆を形成する光フ
ァイバの製造方法において、紫外線照射の後に光ファイ
バを冷却防止手段を有する一定区間を通過させることを
特徴とする。本発明においては、複数回の紫外線照射の
間に少なくとも1回は冷却防止手段を有する区間を通過
させてもよい。本発明の上記冷却防止手段として、特に
好ましくは外部熱源による加熱又は放熱を減少させる手
段を挙げることができる。
[Means for Solving the Problems] The present invention solves the above-mentioned problems in a method of manufacturing an optical fiber, in which an ultraviolet curable resin is applied to the surface of the optical fiber, and then ultraviolet rays are irradiated to cure the resin and form a coating. The method is characterized in that, after being irradiated with ultraviolet rays, the optical fiber is passed through a certain section having cooling prevention means. In the present invention, the section having the cooling prevention means may be passed through at least once during the plurality of UV irradiations. Particularly preferred examples of the cooling prevention means of the present invention include means for reducing heating or heat radiation from an external heat source.

【0006】図1は、本発明の一具体例を示す概略断面
図であり、紫外線照射装置9の直下に断熱筒11を設け
てある。この断熱筒11としては、単なる筒状体を紫外
線照射装置の光ファイバ出口側に取り付け、紫外線照射
装置内で加熱されたパージガスが流れ込むようにしたも
のでもよい。更に好ましくは、筒の材質として多孔質体
やフェルト材質のもので積極的に囲むものがよい。
FIG. 1 is a schematic sectional view showing a specific example of the present invention, in which a heat insulating cylinder 11 is provided directly below an ultraviolet irradiation device 9. As shown in FIG. The heat insulating cylinder 11 may be a simple cylindrical body attached to the optical fiber exit side of the ultraviolet irradiation device, into which purge gas heated within the ultraviolet irradiation device flows. More preferably, the cylinder is positively surrounded by a porous material or a felt material.

【0007】図2は本発明の別の具体例を示す概略断面
図であり、複数の紫外線照射装置の間に冷却防止手段と
して加熱装置を設けた例を示す。加熱装置としては、筒
の外周に通電加熱ヒーターを配置する等、通常の加熱方
法でよい。加熱温度としては樹脂の劣化を起こさない範
囲内であれば良く、例えば50〜300℃が適当である
FIG. 2 is a schematic sectional view showing another embodiment of the present invention, in which a heating device is provided between a plurality of ultraviolet irradiation devices as cooling prevention means. As the heating device, a normal heating method such as arranging an electric heater around the outer periphery of the cylinder may be used. The heating temperature may be within a range that does not cause deterioration of the resin, and for example, 50 to 300°C is suitable.

【0008】本発明において、光ファイバの被覆形成に
用いる紫外線硬化型樹脂としては特に制限されるところ
はないが、例えばウレタン(メタ)アクリレート、エポ
キシ(メタ)アクリレート、エステル(メタ)アクリレ
ート等を挙げることができる。光ファイバ外周に被覆さ
れる樹脂は単層でも複層でもよい。
In the present invention, there are no particular restrictions on the ultraviolet curable resin used to form the coating on the optical fiber, but examples include urethane (meth)acrylate, epoxy (meth)acrylate, and ester (meth)acrylate. be able to. The resin coated on the outer periphery of the optical fiber may be a single layer or a multilayer.

【0009】[0009]

【作用】図3は図1のような装置を用いて、断熱筒の長
さを変化させて一次被覆を形成したファイバを製造し、
該一次被覆のヤング率を測定した結果と断熱筒の長さの
関係を示すグラフ図である。被覆に用いた樹脂は完全硬
化時のヤング率が約 0.1kg/mm2を示すもので
ある。図3から、断熱筒を1〜2m程度に十分長くすれ
ば、500m/分の高速でも完全に硬化させることがで
きることがわかる。なお、断熱筒がない場合は、500
m/分という高速では硬化不十分となってしまう。
[Operation] Fig. 3 shows the production of a fiber with a primary coating formed by changing the length of the heat insulating cylinder using the apparatus shown in Fig. 1.
FIG. 2 is a graph diagram showing the relationship between the measurement results of the Young's modulus of the primary coating and the length of the heat insulating cylinder. The resin used for coating has a Young's modulus of approximately 0.1 kg/mm 2 when fully cured. From FIG. 3, it can be seen that if the heat insulating cylinder is made sufficiently long to about 1 to 2 m, complete curing can be achieved even at a high speed of 500 m/min. In addition, if there is no insulation cylinder, 500
At a high speed of m/min, curing becomes insufficient.

【0010】図4は図2のような装置を用いて、長さ1
mの加熱筒の加熱温度を変えて製造したファイバの二次
被覆のヤング率を測定し、その結果と加熱温度の関係を
示すグラフ図である。この例の被覆に用いた樹脂は、完
全硬化の時のヤング率が約45kg/mm2を示すもの
である。図4から、加熱温度を上げれば、700m/分
の高速でも完全に硬化させることができることがわかる
。なお、加熱しない場合は、700m/分という高速で
は硬化不十分となってしまう。
FIG. 4 shows that the length 1 is obtained using the apparatus shown in FIG.
FIG. 3 is a graph showing the relationship between the Young's modulus of the secondary coating of the fiber manufactured by changing the heating temperature of the heating cylinder of 20 m and the heating temperature. The resin used for the coating in this example has a Young's modulus of approximately 45 kg/mm 2 when fully cured. From FIG. 4, it can be seen that by increasing the heating temperature, complete curing can be achieved even at a high speed of 700 m/min. In addition, if heating is not performed, curing will be insufficient at a high speed of 700 m/min.

【0011】以上のように、ファイバの冷却を防止する
手段を設けて、紫外線照射後の樹脂を一定時間高い温度
を保つことにより硬化が促進される。この詳細なメカニ
ズムについては未だ明らかになってはいないが、紫外線
硬化樹脂は温度によってある期間、硬化反応が継続する
ためと推察されている。
As described above, by providing means for preventing cooling of the fiber and keeping the resin at a high temperature for a certain period of time after irradiation with ultraviolet rays, curing is promoted. Although the detailed mechanism of this is not yet clear, it is presumed that the curing reaction of UV-curable resins continues for a certain period of time depending on the temperature.

【0012】従来の光ファイバの製造方法によれば、紫
外線照射後、直ちに室温雰囲気中を走行するため、急激
に冷却される。これに対して、本発明の方法によれば、
ファイバの急激な冷却を防止できるため、樹脂の硬化反
応をある程度継続させることが可能となり、製造線速を
上げることができる。
According to the conventional method of manufacturing an optical fiber, the optical fiber is run in a room temperature atmosphere immediately after being irradiated with ultraviolet rays, so that it is rapidly cooled down. In contrast, according to the method of the present invention,
Since rapid cooling of the fiber can be prevented, the curing reaction of the resin can be continued to some extent, and the manufacturing speed can be increased.

【0013】[0013]

【実施例】実施例1 図1の構成の線引装置を用いて、被覆樹脂の完全硬化可
能な最高線速を求めた。被覆樹脂には、1層目、2層目
共に紫外線硬化型ウレタンアクリレート系の樹脂を用い
た。ファイバ径125μmに対し、被覆径は1層目20
0μm、2層目250μmである。断熱筒はガラス繊維
を断熱材として用いた長さ1.0m、内径20mmのも
のである。最高線速420m/分で被覆樹脂が完全硬化
した(実施例1)。
EXAMPLES Example 1 Using a wire drawing apparatus configured as shown in FIG. 1, the maximum wire speed at which the coating resin could be completely cured was determined. As the coating resin, an ultraviolet curable urethane acrylate resin was used for both the first layer and the second layer. For a fiber diameter of 125 μm, the coating diameter of the first layer is 20 μm.
The thickness of the second layer is 0 μm, and the thickness of the second layer is 250 μm. The heat insulating tube uses glass fiber as a heat insulating material and has a length of 1.0 m and an inner diameter of 20 mm. The coating resin was completely cured at a maximum linear speed of 420 m/min (Example 1).

【0014】なお、断熱筒が無い以外は実施例1と同条
件とした場合の被覆樹脂が完全硬化する最高線速は30
0m/分であった(比較例1)。
Note that under the same conditions as Example 1 except for the absence of the heat insulating tube, the maximum linear speed at which the coating resin is completely cured is 30
It was 0 m/min (Comparative Example 1).

【0015】実施例2 図2の構成の装置で、加熱筒が75cmの長さ、ニクロ
ム線加熱方式のものを用いて、実施例1と同じ構造の被
覆ファイバを製造した。被覆樹脂が完全硬化可能な最高
線速は、加熱筒を250℃に加熱した場合、650m/
分であった(実施例2)。これに対し、加熱筒が無い以
外は実施例2と同条件とした場合の最高線速は550m
/分であった(比較例2)。
Example 2 A coated fiber having the same structure as in Example 1 was manufactured using the apparatus shown in FIG. 2, with a heating cylinder having a length of 75 cm and using a nichrome wire heating method. The maximum linear speed at which the coating resin can be completely cured is 650 m/min when the heating cylinder is heated to 250°C.
(Example 2). On the other hand, under the same conditions as Example 2 except for the absence of the heating cylinder, the maximum linear speed was 550 m.
/min (Comparative Example 2).

【0016】[0016]

【発明の効果】以上説明したように、本発明によればフ
ァイバ外周に塗布された実施例が紫外線照射された後、
少なくともある一定区間のファイバ冷却防止手段中を通
過するために、急激に被覆樹脂の温度が低下することな
く、硬化反応を継続させることができるため、効率を向
上して樹脂を硬化させることができる。従って線速を上
げても被覆樹脂は完全に硬化し、光ファイバの生産速度
を容易に向上させることができる。
As explained above, according to the present invention, after the embodiment coated on the outer periphery of the fiber is irradiated with ultraviolet rays,
Because the fiber passes through at least a certain section of the cooling prevention means, the curing reaction can be continued without the temperature of the coating resin suddenly decreasing, so the resin can be cured with improved efficiency. . Therefore, even if the wire speed is increased, the coating resin is completely cured, and the production speed of optical fibers can be easily increased.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の一具体例であって、冷却防止手段とし
て断熱筒を用いる場合を示す概略説明図である。
FIG. 1 is a schematic explanatory diagram showing a specific example of the present invention in which a heat insulating tube is used as a cooling prevention means.

【図2】本発明の別の具体例であって、冷却防止手段と
して加熱筒を用いる場合を示す概略説明図である。
FIG. 2 is a schematic explanatory diagram showing another specific example of the present invention in which a heating tube is used as a cooling prevention means.

【図3】本発明の方法において、一次被覆用塗布樹脂層
の紫外線照射後に設けた断熱筒長さと一次被覆樹脂のヤ
ング率の変化を示すグラフ図、横軸は断熱筒長さ(m)
、縦軸はヤング率(kg/mm2)である。
FIG. 3 is a graph showing the change in the Young's modulus of the primary coating resin and the length of the insulation tube provided after the primary coating coating resin layer is irradiated with ultraviolet rays in the method of the present invention; the horizontal axis is the insulation tube length (m);
, the vertical axis is Young's modulus (kg/mm2).

【図4】本発明の方法において、二次被覆用塗布樹脂層
の紫外線照射後に設けた加熱筒温度と二次被覆樹脂のヤ
ング率の変化を示すグラフ図、横軸は加熱筒温度(℃)
、縦軸はヤング率(kg/mm2)である。
FIG. 4 is a graph showing the change in the Young's modulus of the secondary coating resin and the temperature of the heating cylinder provided after the coating resin layer for secondary coating is irradiated with ultraviolet rays in the method of the present invention, the horizontal axis is the heating cylinder temperature (°C)
, the vertical axis is Young's modulus (kg/mm2).

【図5】従来の光ファイバ製造方法を示す概略説明図で
ある。
FIG. 5 is a schematic explanatory diagram showing a conventional optical fiber manufacturing method.

【符号の説明】[Explanation of symbols]

1  光ファイバ母材 2  線引炉 3  光ファイバ 4  樹脂塗布装置 5  紫外線照射ランプ 6  筒状体 7  樹脂被覆光ファイバ 8  巻取機 9  紫外線照射装置 10  反射鏡 11  断熱筒 12  加熱装置 1 Optical fiber base material 2 Drawing furnace 3 Optical fiber 4 Resin coating equipment 5 Ultraviolet irradiation lamp 6 Cylindrical body 7 Resin coated optical fiber 8 Winder 9 Ultraviolet irradiation device 10 Reflector 11 Insulation cylinder 12 Heating device

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】  光ファイバ表面に紫外線硬化型樹脂を
塗布した後、紫外線を照射して樹脂を硬化させ被覆を形
成する光ファイバの製造方法において、紫外線照射の後
に光ファイバを冷却防止手段を有する一定区間を通過さ
せることを特徴とする光ファイバの製造方法。
1. A method for manufacturing an optical fiber in which an ultraviolet curable resin is applied to the surface of the optical fiber and then irradiated with ultraviolet rays to cure the resin and form a coating, the method comprising means for preventing cooling of the optical fiber after irradiation with ultraviolet rays. A method of manufacturing an optical fiber, characterized by passing it through a certain section.
【請求項2】  複数回の紫外線照射の間に少なくとも
1回は冷却防止手段を有する区間を通過させることを特
徴とする請求項1の光ファイバの製造方法
2. The method for manufacturing an optical fiber according to claim 1, wherein the optical fiber is passed through a section having cooling prevention means at least once during the plurality of UV irradiations.
【請求項3】
  冷却防止手段が外部熱源による加熱であることを特
徴とする請求項1又は2の光ファイバの製造方法
[Claim 3]
3. The method for manufacturing an optical fiber according to claim 1, wherein the cooling prevention means is heating by an external heat source.
【請求項4】  冷却防止手段が光ファイバの放熱を減
少させる手段であることを特徴とする請求項1又は2の
光ファイバの製造方法。
4. The method of manufacturing an optical fiber according to claim 1, wherein the cooling prevention means is a means for reducing heat radiation of the optical fiber.
JP3006961A 1991-01-24 1991-01-24 Production of optical fiber Pending JPH04240136A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3006961A JPH04240136A (en) 1991-01-24 1991-01-24 Production of optical fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3006961A JPH04240136A (en) 1991-01-24 1991-01-24 Production of optical fiber

Publications (1)

Publication Number Publication Date
JPH04240136A true JPH04240136A (en) 1992-08-27

Family

ID=11652814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3006961A Pending JPH04240136A (en) 1991-01-24 1991-01-24 Production of optical fiber

Country Status (1)

Country Link
JP (1) JPH04240136A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0636590A1 (en) * 1993-07-28 1995-02-01 AT&T Corp. Method for enhancing the pullout strength of polymer-coated optical fiber
WO2000018697A1 (en) * 1998-09-30 2000-04-06 Minnesota Mining And Manufacturing Company Method of manufacturing coated optical fibers
US6643440B2 (en) 2001-02-09 2003-11-04 3M Innovative Properties Company Temperature range adjusted coated optical fibers

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0636590A1 (en) * 1993-07-28 1995-02-01 AT&T Corp. Method for enhancing the pullout strength of polymer-coated optical fiber
WO2000018697A1 (en) * 1998-09-30 2000-04-06 Minnesota Mining And Manufacturing Company Method of manufacturing coated optical fibers
US6643440B2 (en) 2001-02-09 2003-11-04 3M Innovative Properties Company Temperature range adjusted coated optical fibers

Similar Documents

Publication Publication Date Title
JP3952620B2 (en) Photoinitiator-adjustable optical fiber, optical fiber ribbon, and manufacturing method thereof
EP0218244B1 (en) Method for producing optical fiber
JP2016534967A (en) Combined elliptical reflector for optical fiber curing
US6463872B1 (en) Laser photocuring system
EP1216969A1 (en) Ultraviolet curable coatings for optical fiber for wet-on-wet application
ATE554057T1 (en) ULTRAVIOLET RADIATION CURING APPARATUS AND METHOD
US6511715B2 (en) Method for UV curing a coating on a filament or the like
JP7536670B2 (en) Optical fiber core wire manufacturing method
JPH04240136A (en) Production of optical fiber
JP2635475B2 (en) Optical fiber coating forming method
US20030079501A1 (en) Method of drawing multi-line optical fiber
JP2006308780A (en) Method of manufacturing coated optical fiber, method of manufacturing pigmented coated optical fiber, and method of manufacturing optical fiber ribbon
JPS60155553A (en) Method for coating optical fiber
JP2928723B2 (en) Optical fiber manufacturing method
JPH10297942A (en) Curing of fiber having at least two fiber coating and curing stages separated by cooling stage and apparatus therefor
JPH04224144A (en) Manufacture of hermetically-coated fiber and its device thereof
JP2014077918A (en) Manufacturing method of primary coated optical fiber
JPS63129035A (en) Production of optical fiber
JPH01166011A (en) Optical fiber
JP3174537B2 (en) Method for manufacturing flame-retardant optical fiber core
JPH04240137A (en) Production of optical fiber
JPH0442838A (en) Production of optical fiber coated with photo-setting resin
JPH04240138A (en) Production of optical fiber
JPH06211545A (en) Method for coating optical fiber and device therefor
JPS63156042A (en) Ultraviolet ray irradiation device for optical fiber