JPH05287539A - Coating method for conductive oxide and metal-ceramic composite separator of solid electrolyte type fuel battery produced by this method - Google Patents
Coating method for conductive oxide and metal-ceramic composite separator of solid electrolyte type fuel battery produced by this methodInfo
- Publication number
- JPH05287539A JPH05287539A JP4118220A JP11822092A JPH05287539A JP H05287539 A JPH05287539 A JP H05287539A JP 4118220 A JP4118220 A JP 4118220A JP 11822092 A JP11822092 A JP 11822092A JP H05287539 A JPH05287539 A JP H05287539A
- Authority
- JP
- Japan
- Prior art keywords
- aerosol
- conductive oxide
- raw material
- metal
- coating
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0223—Composites
- H01M8/0226—Composites in the form of mixtures
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0206—Metals or alloys
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01M—PROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
- H01M8/00—Fuel cells; Manufacture thereof
- H01M8/02—Details
- H01M8/0202—Collectors; Separators, e.g. bipolar separators; Interconnectors
- H01M8/0204—Non-porous and characterised by the material
- H01M8/0215—Glass; Ceramic materials
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/30—Hydrogen technology
- Y02E60/50—Fuel cells
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Sustainable Energy (AREA)
- Life Sciences & Earth Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Sustainable Development (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Electrochemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Ceramic Engineering (AREA)
- Composite Materials (AREA)
- Chemically Coating (AREA)
- Conductive Materials (AREA)
- Non-Insulated Conductors (AREA)
- Fuel Cell (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は超音波噴霧熱分解法によ
るランタンコバルタイトや酸化ランタンのような導電性
酸化物のコーティング法およびこの方法により製造され
た固体電解質型燃料電池のセパレータに関するものであ
る。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for coating a conductive oxide such as lanthanum cobaltite or lanthanum oxide by an ultrasonic spray pyrolysis method and a separator for a solid oxide fuel cell manufactured by this method. is there.
【0002】[0002]
【従来技術】最近、酸素と水素をそれぞれ、酸化剤およ
び燃料として、燃料が本来持っている化学エネルギーを
直接電気エネルギーに変換する燃料電池が、省資源、環
境保護などの観点から注目されている。特に電極板の上
に電解質の膜を形成した固体電解質型燃料電池は、作動
温度が800〜1000°Cで高いことから、リン酸
型、溶融炭酸塩型の燃料電池に比べて原理的に発電効率
が高く、また高温の排熱が得られるためにこの排熱を利
用するこにより総合効率はさらに高くなるので研究開発
が進んできている。2. Description of the Related Art Recently, a fuel cell, which uses oxygen and hydrogen as an oxidant and a fuel, directly converts the chemical energy originally possessed by the fuel into electric energy, has been attracting attention from the viewpoint of resource saving and environmental protection. .. In particular, a solid oxide fuel cell in which an electrolyte membrane is formed on an electrode plate has a high operating temperature of 800 to 1000 ° C, and therefore, in principle, it generates electricity as compared with a phosphoric acid type or molten carbonate type fuel cell. Since the efficiency is high and the exhaust heat at high temperature is obtained, the total efficiency can be further increased by utilizing this exhaust heat, so that research and development is progressing.
【0003】固体電解質型燃料電池は固体電解質層を挟
むように燃料極と空気極を配置してなる平板状単電池と
セパレータとを交互に積層して複層の積層セルとして構
成したものである。セパレータは単電池の燃料極と空気
極にそれぞれ使用される燃料ガスと酸化剤ガスを分離し
てそれらの混合を防止する作用と、単電池同士を電気的
に直列に接続する作用をするものである。A solid oxide fuel cell is constructed as a multi-layered laminated cell by alternately laminating flat plate-shaped cells each having a fuel electrode and an air electrode sandwiching a solid electrolyte layer and separators. .. The separator has the function of separating the fuel gas and the oxidant gas used in the fuel electrode and air electrode of the unit cells to prevent their mixing, and the function of electrically connecting the unit cells in series. is there.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、固体電
解質型燃料電池は高温で作動するため使用可能な材料に
かなりの制約があり、特に、高温度の酸化雰囲気でも還
元雰囲気でも化学的に安定で、緻密な構造を有し、しか
も高導電性と大なる機械的強度が求められるセパレータ
材料については、未だに実用レベルの材料が見つかって
いるとは言い難い。However, since the solid oxide fuel cell operates at a high temperature, there are considerable restrictions on usable materials, and in particular, it is chemically stable in a high temperature oxidizing atmosphere or a reducing atmosphere. It is hard to say that a practical level material has been found for a separator material that has a dense structure and is required to have high conductivity and great mechanical strength.
【0005】従来、セパレータ材料としてはペロブスカ
イト型の導電性酸化物であるLa(M)CrO3 (M:
Sr,Ca,Mg)が用いられているが、緻密に焼結す
ることおよび高強度化が困難でり成膜技術がむづかし
い。またH2 O存在下で燃料極との接触抵抗が大きく、
かつ酸化物なので脆いなどの欠点がある。Conventionally, La (M) CrO 3 (M: which is a perovskite type conductive oxide has been used as a separator material.
Although Sr, Ca, Mg) is used, it is difficult to sinter densely and to increase the strength, and the film forming technique is difficult. Also, in the presence of H 2 O, the contact resistance with the fuel electrode is large,
Moreover, since it is an oxide, it has drawbacks such as brittleness.
【0006】ランタンコバルタイト(LaCoO3 )の
ような導電性酸化物は固体電解質型燃料電池の合金セパ
レータの耐熱性コーティングとして有望視されている
が、低コスト低温度で、かつ緻密にかつ均一にコーティ
ングする技術が存在しない。Conductive oxides such as lanthanum cobaltite (LaCoO 3 ) are promising as heat resistant coatings for alloy separators of solid oxide fuel cells, but at low cost, low temperature, densely and uniformly. There is no coating technology.
【0007】CVD、蒸着、スパッタ法、イオンプレー
ティング等によるコーティング法では真空装置を使用す
るため高価になる欠点がある。また溶射法による場合は
緻密なコーティングを得ることが困難であり、スラリー
コート法では低温でのコーティングが困難である。The coating method using CVD, vapor deposition, sputtering, ion plating, etc., has the drawback of being expensive because a vacuum device is used. Further, it is difficult to obtain a dense coating by the thermal spraying method, and it is difficult to perform coating at a low temperature by the slurry coating method.
【0008】本発明は上述の点にかんがみてなされたも
ので、超音波噴霧熱分解法を使用して、低温度の作業に
より、緻密で導電性にすぐれ、機械的強度が大きく化学
的に安定な低コストのランタンコバルトタイトや酸化ラ
ンタンのコーティング膜を迅速に製造する方法およびこ
の方法で作られた固体電解質型燃料電池の金属セラミッ
ク複合セパレータを提供することを目的とする。The present invention has been made in view of the above points, and it is dense and excellent in electrical conductivity, has a large mechanical strength, and is chemically stable by working at a low temperature by using an ultrasonic spray pyrolysis method. An object of the present invention is to provide a method for rapidly producing a low-cost coating film of lanthanum cobaltite or lanthanum oxide and a metal-ceramic composite separator for a solid oxide fuel cell produced by this method.
【0009】[0009]
【課題を解決するための手段】上記課題を解決するため
本発明は、Laの金属石けん及びCoの金属石けんとア
セチルアセトン等の溶媒を溶かし原料溶液を調整し、該
原料溶液に超音波を作用させてエアロゾルを発生し、該
エアロゾルを赤外線により加熱された基板に噴霧して熱
分解させて成膜することを特徴とする。In order to solve the above-mentioned problems, the present invention is to dissolve a metallic soap of La and a metallic soap of Co and a solvent such as acetylacetone to prepare a raw material solution, and apply ultrasonic waves to the raw material solution. An aerosol is generated as a result, and the aerosol is sprayed on a substrate heated by infrared rays to be thermally decomposed to form a film.
【0010】[0010]
【作用】超音波を原料溶液にあてて微粒化することによ
り良質のエアロゾルが発生し、赤外線により基板の耐熱
性金属のみが高温に加熱され、エアロゾルがこの基板に
衝突した瞬間に熱分解して成膜する。[Function] By applying ultrasonic waves to the raw material solution and atomizing it, a good quality aerosol is generated, and only the refractory metal of the substrate is heated to a high temperature by infrared rays, and the aerosol is thermally decomposed at the moment when it collides with this substrate. Form a film.
【0011】[0011]
【実施例】本発明のコーティング法によりランタンコバ
ルトタイトを耐熱性金属にたいし次のプロセスでコーテ
ィングした。 (1)原料としてLaオクチル酸塩とCoオクチル酸塩
を使用し、かつ溶媒としてアセチルアセトンとトルエン
を使用して原料溶液を調整する。 (2)大気圧下のエアロゾル発生器に前述の原料溶液を
入れる。 (3)原料溶液に超音波1.7MHzを作用させるとエ
アロゾルを1.0×103 g/s発生する。 を送入する。 (5)エアロゾルは空気に乗って石英ガラス製反応管の
中に送入される。 (6)反応管の中に取付けられている耐熱性の金属製基
板のみが赤外線により加熱され、約770°Cに加熱さ
れている。 (7)エアロゾルが高温の基板に噴霧されると、衝突し
た瞬間に熱分解して成膜作用が行われる。成膜速度は5
μm/hourである。EXAMPLE A lanthanum cobaltite was coated on a refractory metal by the following process according to the coating method of the present invention. (1) A raw material solution is prepared by using La octylate and Co octylate as raw materials and acetylacetone and toluene as solvents. (2) Put the above raw material solution into the aerosol generator under atmospheric pressure. (3) When ultrasonic waves of 1.7 MHz are applied to the raw material solution, aerosol is generated at 1.0 × 10 3 g / s. Send in. (5) The aerosol rides on the air and is fed into the quartz glass reaction tube. (6) Only the heat-resistant metal substrate mounted in the reaction tube is heated by infrared rays to about 770 ° C. (7) When the aerosol is sprayed on a high-temperature substrate, it is thermally decomposed at the moment of collision to form a film. Deposition rate is 5
μm / hour.
【0012】その結果、図1および図2に示すようなラ
ンタンコバルトのコーティング膜が得られた。As a result, a coating film of lanthanum cobalt as shown in FIGS. 1 and 2 was obtained.
【0013】図1および図2は本発明のコーティング法
を使用して基板上にランタンコバルタイトを成膜した緻
密薄膜粒子の構造を示す顕微鏡写真である。FIGS. 1 and 2 are photomicrographs showing the structure of a dense thin film particle obtained by forming a lanthanum cobaltite film on a substrate using the coating method of the present invention.
【0014】これらの写真によると粒子は、、密集し、
気孔がなく緻密なことが判明する。According to these photographs, the particles are dense,
It turns out to be dense with no pores.
【0015】[0015]
【発明の効果】以上説明したように本発明の超音波噴霧
熱分解法による導電性酸化物のコーティング法において
は、超音波を用いて金属石けんを含む溶液を微粒化して
エアロゾルを発生する構成にし、赤外線を用いて透明石
英管の内部の基板のみを高温に昇温して、エアロゾルを
迅速に熱分解できるように構成したので次のような優れ
た効果が得られる。 (1)成膜作業はすべて大気圧のもとで行われ、また、
基板のみは約770°Cに温度上昇するが、その他の部
分は室温で作動する構成となっているので、装置が簡
単、廉価で作業がし易く成膜速度が速い。 (2)この装置により緻密で均質なランタンコバルトタ
イト等を迅速にコーティングすることができる。As described above, in the method for coating a conductive oxide by the ultrasonic spray pyrolysis method of the present invention, a solution containing metal soap is atomized using ultrasonic waves to generate an aerosol. Since the infrared rays are used to raise the temperature of only the substrate inside the transparent quartz tube to a high temperature so that the aerosol can be rapidly pyrolyzed, the following excellent effects can be obtained. (1) All film forming operations are performed under atmospheric pressure.
The temperature of only the substrate rises to about 770 ° C., but the other parts are configured to operate at room temperature, so the apparatus is simple, inexpensive, easy to work with, and the film formation rate is fast. (2) With this apparatus, dense and homogeneous lanthanum cobaltite or the like can be rapidly coated.
【図1】本発明の超音波噴霧熱分解法により得られたラ
ンタンコバルタイトの平面構造を示す顕微鏡写真であ
る。FIG. 1 is a micrograph showing a plane structure of lanthanum cobaltite obtained by an ultrasonic spray pyrolysis method of the present invention.
【図2】本発明の超音波噴霧熱分解法により得られたラ
ンタンコバルタイトの断面構造を示す顕微鏡写真であ
る。FIG. 2 is a micrograph showing a cross-sectional structure of lanthanum cobaltite obtained by the ultrasonic spray pyrolysis method of the present invention.
Claims (5)
石けんをアセチルアセトン等の溶媒に溶かし原料溶液と
し、該原料溶液に超音波を作用させてエアロゾルを発生
し、該エアロゾルを赤外線により加熱された基板に噴霧
して熱分解させて成膜することを特徴とする超音波噴霧
熱分解法による導電性酸化物のコーティング法。1. A raw material solution is prepared by dissolving metal soap of a metal element constituting a conductive oxide in a solvent such as acetylacetone, and ultrasonic waves are applied to the raw material solution to generate an aerosol, which is heated by infrared rays. A method for coating a conductive oxide by ultrasonic spray pyrolysis, which is characterized in that a film is formed by spraying and thermally decomposing on a substrate.
(LaCoO3 )である請求項1に記載のコーティング
法。2. The coating method according to claim 1, wherein the conductive oxide is lanthanum cobaltite (LaCoO 3 ).
3 )である請求項1に記載のコーティング法。3. The conductive oxide is lanthanum oxide (La 2 O).
3 ) The coating method according to claim 1, which is
ることを特徴とする請求項1に記載のコーティング法。4. The coating method according to claim 1, wherein the metallic soap is a metal octylate.
よる導電性酸化物のコーティング法により製造された固
体電解質型燃料電池の金属−セラミック複合セパレー
タ。5. A metal-ceramic composite separator for a solid oxide fuel cell manufactured by the method of coating a conductive oxide by the ultrasonic spray pyrolysis method according to claim 1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4118220A JPH05287539A (en) | 1992-04-10 | 1992-04-10 | Coating method for conductive oxide and metal-ceramic composite separator of solid electrolyte type fuel battery produced by this method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4118220A JPH05287539A (en) | 1992-04-10 | 1992-04-10 | Coating method for conductive oxide and metal-ceramic composite separator of solid electrolyte type fuel battery produced by this method |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05287539A true JPH05287539A (en) | 1993-11-02 |
Family
ID=14731198
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4118220A Withdrawn JPH05287539A (en) | 1992-04-10 | 1992-04-10 | Coating method for conductive oxide and metal-ceramic composite separator of solid electrolyte type fuel battery produced by this method |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05287539A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2413337A (en) * | 2004-04-21 | 2005-10-26 | Hydrogen Solar Ltd | Electrodes with tungsten oxide films |
JP2007238393A (en) * | 2006-03-09 | 2007-09-20 | Dainippon Printing Co Ltd | Method and apparatus for producing metal oxide film |
JP2007246337A (en) * | 2006-03-16 | 2007-09-27 | Dainippon Printing Co Ltd | Method for producing metal oxide film |
-
1992
- 1992-04-10 JP JP4118220A patent/JPH05287539A/en not_active Withdrawn
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB2413337A (en) * | 2004-04-21 | 2005-10-26 | Hydrogen Solar Ltd | Electrodes with tungsten oxide films |
JP2007238393A (en) * | 2006-03-09 | 2007-09-20 | Dainippon Printing Co Ltd | Method and apparatus for producing metal oxide film |
JP2007246337A (en) * | 2006-03-16 | 2007-09-27 | Dainippon Printing Co Ltd | Method for producing metal oxide film |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN101682043B (en) | A method of producing a multilayer barrier structure for a solid oxide fuel cell | |
US20020127455A1 (en) | Ceria-based solid oxide fuel cells | |
US6803141B2 (en) | High power density solid oxide fuel cells | |
JPH05135787A (en) | Manufacture of solid electrolyte film and manufacture of solid electrolyte fuel cell | |
JP3495654B2 (en) | Cell tube seal structure | |
US8211587B2 (en) | Plasma sprayed ceramic-metal fuel electrode | |
Zhang et al. | Characterization of YSZ solid oxide fuel cells electrolyte deposited by atmospheric plasma spraying and low pressure plasma spraying | |
JPH11509361A (en) | High temperature fuel cell, high temperature fuel cell stack, and method of manufacturing high temperature fuel cell | |
Feng et al. | Exploring the structural uniformity and integrity of protonic ceramic thin film electrolyte using wet powder spraying | |
KR101079248B1 (en) | Dense complex oxides films comprising conductive oxides and non-conductive oxides, method for preparing the same, and metallic interconnector using the same | |
JP3057342B2 (en) | Solid electrolyte fuel cell | |
JPH05287539A (en) | Coating method for conductive oxide and metal-ceramic composite separator of solid electrolyte type fuel battery produced by this method | |
JP4135891B2 (en) | Method for producing electrolyte material for solid oxide fuel cell and method for producing solid oxide fuel cell | |
JPH10172590A (en) | Solid electrolyte type fuel cell | |
JP2936001B2 (en) | High temperature fuel cell and method of manufacturing the same | |
US7595122B2 (en) | Interconnect supported electrolyzer assembly, preform and method of fabrication | |
Ma et al. | Solid oxide fuel cell development by using novel plasma spray techniques | |
US6984467B2 (en) | Plasma sprayed ceria-containing interlayer | |
JP2004355814A (en) | Solid oxide fuel battery cell and its manufacturing method | |
JPH05290861A (en) | Manufacture of yttria-stabilized zirconia film | |
KR20120030788A (en) | A method of producing a cell for a metal-supported solid oxide fuel cell | |
JP3220314B2 (en) | Method for producing YSZ film integrated with porous substrate | |
JPH0250983A (en) | Heat-resistant parts | |
JPH07320757A (en) | Solid electrolytic fuel cell interconnector, and its manufacture | |
Wang et al. | Characterization of Self-Sealed Metal Supported SOFCs with the Very Low Pressure Plasma Sprayed ScSZ Electrolyte |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A300 | Application deemed to be withdrawn because no request for examination was validly filed |
Free format text: JAPANESE INTERMEDIATE CODE: A300 Effective date: 19990706 |