JPH05286926A - Production of methionine - Google Patents

Production of methionine

Info

Publication number
JPH05286926A
JPH05286926A JP4088699A JP8869992A JPH05286926A JP H05286926 A JPH05286926 A JP H05286926A JP 4088699 A JP4088699 A JP 4088699A JP 8869992 A JP8869992 A JP 8869992A JP H05286926 A JPH05286926 A JP H05286926A
Authority
JP
Japan
Prior art keywords
methionine
hydantoin
mad
methylmercaptoethyl
potassium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4088699A
Other languages
Japanese (ja)
Other versions
JP3173112B2 (en
Inventor
Toshiyuki Terasawa
俊之 寺澤
Tetsuya Shiozaki
哲也 塩崎
Tadashi Mizuno
正 水野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Chemical Co Ltd
Original Assignee
Sumitomo Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Chemical Co Ltd filed Critical Sumitomo Chemical Co Ltd
Priority to JP08869992A priority Critical patent/JP3173112B2/en
Publication of JPH05286926A publication Critical patent/JPH05286926A/en
Application granted granted Critical
Publication of JP3173112B2 publication Critical patent/JP3173112B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To provide a process for producing methionine while forming little impurities and suppressing the amounts of waste methionine and potassium bicarbonate to prevent the accumulation of the compounds. CONSTITUTION:5-(beta-Methylmercaptoethyl)-hydantoin is hydrolyzed in the presence of an alkali metal carbonate and/or bicarbonate, the obtained solution is neutralized with carbon dioxide gas to crystallize methionine and the remaining filtrate is recovered and reused for the hydrolysis of 5-(beta- methylmercaptoethyl)-hydantoin. The 5-(beta-methylmercaptoethyl)-hydantoin to be used in the above process for the production of methionine is produced by converting 3-methylmercaptopropionaldehyde to cyanhydrin with hydrocyanic acid in the presence of potassium carbonate, potassium bicarbonate and/or potassium hydroxide as a catalyst and converting the obtained 3- methylmercaptopropionaldehyde cyanhydrin to hydantoin with carbon dioxide gas and ammonia.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は飼料添加剤として有用な
メチオニンの製造方法に関する。さらに詳しくは、不純
物の生成が少ないメチオニンの製造方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing methionine which is useful as a feed additive. More specifically, the present invention relates to a method for producing methionine that produces less impurities.

【0002】[0002]

【従来の技術】メチオニンは5−(β−メチルメルカプ
トエチル)−ヒダントイン(以下、MHと略する)をア
ルカリの存在下に加水分解し、加水分解溶液を酸で中和
し、結晶を析出、分離して得られる。この場合、アルカ
リとしてアルカリ金属炭酸塩とアルカリ金属水酸化物の
混合物、酸として二酸化炭素を用いる方法(特公昭43-1
9530号)、またはアルカリとしてアルカリ金属炭酸塩ま
たはアルカリ金属重炭酸塩、酸として二酸化炭素を用い
る方法(特公昭 54-9174号)が知られている。
Methionine hydrolyzes 5- (β-methylmercaptoethyl) -hydantoin (hereinafter abbreviated as MH) in the presence of alkali, neutralizes the hydrolyzed solution with an acid, and precipitates crystals. Obtained separately. In this case, a method using a mixture of an alkali metal carbonate and an alkali metal hydroxide as the alkali and carbon dioxide as the acid (Japanese Patent Publication No.
9530), or a method using an alkali metal carbonate or an alkali metal bicarbonate as an alkali and carbon dioxide as an acid (Japanese Patent Publication No. 54-9174).

【0003】メチオニンを晶析分離後の濾液にはメチオ
ニンの一部が溶存するので、濾液はMHの加水分解工程
に回収される(特公昭54-9174 号)。この際、場合によ
り濾液を濃縮し、さらに晶析分離した後に回収される。
Since part of methionine is dissolved in the filtrate after methionine has been crystallized and separated, the filtrate is recovered in the MH hydrolysis step (Japanese Patent Publication No. 54-9174). At this time, the filtrate may be optionally concentrated, and then collected by crystallization and then recovered.

【0004】一方、MH製造については、炭酸ガスおよ
びアンモニア、重炭酸アンモニウムまたは炭酸アンモニ
ウムと青酸またはその塩を含む水溶液(原料水溶液)と
3−メチルメルカプトプロピオンアルデヒド(以下、M
ADと略する)を反応させる方法が知られている。その
際、反応促進のため高温(100〜200℃)、加圧下
に行ったり(特公昭39-14688号)、MADを上記原料水
溶液またはMH化反応液に予め溶解させた液と原料水溶
液を混合して行うことが知られている(特公昭42-3495
号)。
On the other hand, for the production of MH, an aqueous solution (raw material aqueous solution) containing carbon dioxide and ammonia, ammonium bicarbonate or ammonium carbonate and hydrocyanic acid or a salt thereof, and 3-methylmercaptopropionaldehyde (hereinafter referred to as M) are used.
A method of reacting (abbreviated as AD) is known. At that time, in order to accelerate the reaction, the reaction may be carried out at a high temperature (100 to 200 ° C.) under pressure (Japanese Patent Publication No. 39-14688), or a solution prepared by previously dissolving MAD in the raw material aqueous solution or the MH-forming reaction solution may be mixed with the raw material aqueous solution. It is known to be done by (Japanese Patent Publication Sho 42-3495
issue).

【0005】[0005]

【発明が解決しようとする課題】メチオニンを分離後の
濾液を回収する場合に、ホモセリンのような不純物や着
色成分等の蓄積が生じるために、ある割合で濾液を廃棄
しなければならない。廃棄する濾液にアセトン等の有機
溶剤を添加してメチオニン等を晶析分離して回収するこ
とも可能であるが、不純物発生量が多いと、蓄積量も多
くなり、濾液処理量や使用溶剤が増加し、またメチオニ
ン等有価成分の損失も大きくなり、必ずしも満足できる
方法ではない。
When recovering the filtrate after separation of methionine, impurities such as homoserine and coloring components are accumulated, so that the filtrate must be discarded at a certain ratio. It is also possible to add an organic solvent such as acetone to the discarded filtrate to crystallize and separate methionine and the like, but if the amount of impurities generated is large, the amount accumulated will also increase, and the amount of filtrate processed and the solvent used will increase. It also increases the loss of valuable components such as methionine, which is not always a satisfactory method.

【0006】不純物の生成についてはMH化時における
MADの転化率が低い時に顕著である。これを解決する
ため上記等の工夫がなされているが、高温・加圧下だと
着色しやすくなり、工業的には設備上の安全面の問題も
ある。また、MADを原料水溶液等に溶解させてから反
応する方法は、操作が煩雑であり、未反応のMADが生
じやすい問題がある。
The generation of impurities is remarkable when the conversion rate of MAD during MH conversion is low. In order to solve this, the above-mentioned measures have been taken, but under high temperature and pressure, coloring tends to occur, and industrially there is a problem in terms of equipment safety. In addition, the method of dissolving MAD in a raw material aqueous solution or the like and then reacting is complicated in operation, and there is a problem that unreacted MAD is likely to occur.

【0007】最近、ベンズアルデヒドシアンヒドリン
(以下、BCHと略する)をヒダントイン化する際に、
BCH中の未反応アルデヒドに対して過剰の青酸または
その塩類を加える方法が報告されており(特開平2-1695
77号)、この方法はMH化にも効果があるが、過剰に加
える青酸が加水分解されギ酸になり、これが不純物とし
て問題になるため、濾液のリサイクル使用プロセスには
採用しがたい。
Recently, in converting benzaldehyde cyanohydrin (hereinafter abbreviated as BCH) into hydantoin,
A method of adding an excess of prussic acid or a salt thereof to the unreacted aldehyde in BCH has been reported (Japanese Patent Laid-Open No. 2-1695).
No. 77), this method is also effective for MH conversion, but it is difficult to adopt it in the process of recycling the filtrate, since excess hydrocyanic acid added is hydrolyzed to formic acid, which becomes a problem as an impurity.

【0008】かかる事情に鑑み、メチオニンを分離後の
濾液をMHの加水分解工程に回収するメチオニンの製造
方法において、不純物の生成の少ない方法について鋭意
検討した結果、MHとして、炭酸カリウム、重炭酸カリ
ウムおよび水酸化カリウムからなる群から選ばれた少な
くとも一種のカリウム化合物を触媒として用いてMAD
を青酸でシアンヒドリン化し、得られる3−メチルメル
カプトプロピオンアルデヒドシアンヒドリン(以下、M
CHと略する)を炭酸ガスおよびアンモニアでヒダント
イン化して得られるMHを用いることによって、不純物
の生成が抑制されることを見出し、本発明を完成させる
に至った。
In view of such circumstances, in the method for producing methionine in which the filtrate after the separation of methionine is recovered in the hydrolysis step of MH, as a result of earnest studies on a method of producing less impurities, potassium carbonate and potassium bicarbonate were obtained as MH. MAD using at least one potassium compound selected from the group consisting of
Cyanide hydrolyzed with hydrocyanic acid to obtain 3-methylmercaptopropionaldehyde cyanohydrin (hereinafter referred to as M
By using MH obtained by converting (abbreviated as CH) to hydantoin with carbon dioxide gas and ammonia, it was found that the generation of impurities is suppressed, and the present invention has been completed.

【0009】[0009]

【課題を解決するための手段】すなわち本発明は、5−
(β−メチルメルカプトエチル)−ヒダントインをアル
カリ金属炭酸塩および/またはアルカリ金属重炭酸塩の
存在下に加水分解し、加水分解溶液を炭酸ガスで中和し
てメチオニンを晶析し、メチオニンを分離後の濾液を5
−(β−メチルメルカプトエチル)−ヒダントインの加
水分解工程に回収するメチオニンの製造方法において、
5−(β−メチルメルカプトエチル)−ヒダントインと
して、炭酸カリウム、重炭酸カリウムおよび水酸化カリ
ウムからなる群から選ばれた少なくとも一種のカリウム
化合物を触媒として用いて3−メチルメルカプトプロピ
オンアルデヒドを青酸でシアンヒドリン化し、得られる
3−メチルメルカプトプロピオンアルデヒドシアンヒド
リンを炭酸ガスおよびアンモニアでヒダントイン化して
得られる5−(β−メチルメルカプトエチル)−ヒダン
トインを用いることを特徴とするメチオニンの製造方法
である。
SUMMARY OF THE INVENTION That is, the present invention is
(Β-Methylmercaptoethyl) -hydantoin is hydrolyzed in the presence of an alkali metal carbonate and / or an alkali metal bicarbonate, the hydrolyzed solution is neutralized with carbon dioxide to crystallize methionine, and methionine is separated. The latter filtrate is 5
In the method for producing methionine recovered in the hydrolysis step of-(β-methylmercaptoethyl) -hydantoin,
As 5- (β-methylmercaptoethyl) -hydantoin, at least one potassium compound selected from the group consisting of potassium carbonate, potassium bicarbonate and potassium hydroxide is used as a catalyst to give 3-methylmercaptopropionaldehyde with hydrocyanic acid and cyanohydrin. The method for producing methionine is characterized by using 5- (β-methylmercaptoethyl) -hydantoin obtained by converting the obtained 3-methylmercaptopropionaldehyde cyanohydrin to hydantoin with carbon dioxide gas and ammonia.

【0010】本発明において、3−メチルメルカプトプ
ロピオンアルデヒドを青酸でシアンヒドリン化して3−
メチルメルカプトプロピオンシアンヒドリンを製造する
際に、炭酸カリウム、重炭酸カリウムおよび水酸化カリ
ウムからなる群から選ばれた少なくとも一種のカリウム
化合物を触媒として用いる。このことによりMAD転化
率が99%以上となり、ほぼ定量的にMCHになるた
め、その後炭酸ガスおよびアンモニアを反応させてMH
を製造する時の収率が上がり、不純物(着色成分含む)
の副生も抑えられるのである。
In the present invention, 3-methylmercaptopropionaldehyde is cyanated with hydrocyanic acid to give 3-
At the time of producing methylmercaptopropion cyanhydrin, at least one potassium compound selected from the group consisting of potassium carbonate, potassium bicarbonate and potassium hydroxide is used as a catalyst. As a result, the MAD conversion rate becomes 99% or more, and MCH becomes almost quantitatively, so that carbon dioxide gas and ammonia are subsequently reacted to cause MH
The yield when manufacturing is increased, and impurities (including coloring components)
The by-product of is also suppressed.

【0011】さらにMCH化の反応速度が非常に速いた
め、MCHの滞留時間が数分から長くとも1時間以内で
すみ、全体として従来のMH化と反応速度が変らないこ
とがあげられる。また、MCH化触媒が次工程のMHを
加水分解するアルカリと同じものを選択できるため、触
媒由来の系内への蓄積不純物の問題もなく、回収再利用
する炭酸カリウム等アルカリの損失分の補給を兼ねて、
MCH化触媒の供給を考えることもできる。
Furthermore, since the reaction rate of MCH formation is very fast, the residence time of MCH is only a few minutes to at most 1 hour, and the reaction rate is the same as that of conventional MH formation as a whole. Further, since the MCH-forming catalyst can be selected from the same alkali that hydrolyzes MH in the next step, there is no problem of impurities accumulated in the system derived from the catalyst and supplementation of loss of alkali such as potassium carbonate to be recovered and reused. Doubles as
It is also possible to consider supplying the MCH-forming catalyst.

【0012】触媒量はMADに対するモル比で0.00
3〜0.01、MCH化液のpHが6〜9の範囲で反応
を行うことができる。用いるMAD中に不純物は含まれ
ない方が良く、反応前に精留しておくのが好ましい。M
ADと青酸のモル比(HCN/MAD)は、従来法では
実用的には1.1以上は必要であったが、本法では1.
02以上であればよく、青酸の過剰に加える量が削減で
きるため、青酸から発生するギ酸の副生を抑制できる。
MCH化は45℃以下で行うことができ、特に10〜3
0℃が好ましい。
The catalyst amount is 0.00 in terms of molar ratio to MAD.
The reaction can be performed in the range of 3 to 0.01 and the pH of the MCH-forming solution in the range of 6 to 9. It is better that the MAD used does not contain impurities, and it is preferable to rectify before the reaction. M
The molar ratio of AD to hydrocyanic acid (HCN / MAD) was required to be 1.1 or more in the conventional method, but was 1.
Since the amount of hydrocyanic acid added in excess can be reduced, the by-product of formic acid generated from hydrocyanic acid can be suppressed.
MCH formation can be carried out at 45 ° C. or lower, especially 10 to 3
0 ° C is preferred.

【0013】MH化工程において、炭酸ガスおよびアン
モニア源としては通常用いられるものでよい。MCHに
対し理論量より過剰、望ましくは1〜4倍量の炭酸ガス
およびアンモニア、炭酸アンモニウムまたは重炭酸アン
モニウムが用いられる。反応温度は約60〜85℃およ
び滞留時間は約3〜6時間等の一般的な条件でよい。
In the MH conversion step, the carbon dioxide gas and the ammonia source may be those normally used. Carbon dioxide and ammonia, ammonium carbonate or ammonium bicarbonate in excess of the stoichiometric amount, preferably 1 to 4 times the stoichiometric amount relative to MCH are used. General conditions such as a reaction temperature of about 60 to 85 ° C. and a residence time of about 3 to 6 hours may be used.

【0014】[0014]

【発明の効果】本発明の方法により、未反応MADの残
存およびそれ由来の不純物の発生等が非常に少なくなる
ため、MH化液の収率、色目ともに大幅に改善され、こ
のことによってメチオニンを分離後の濾液のリサイクル
使用において不純物除去のための濾液の処理量、処理費
を大幅に削減し、メチオニン等有価成分の損失を少なく
することができる。
INDUSTRIAL APPLICABILITY According to the method of the present invention, residual unreacted MAD and generation of impurities derived from it are significantly reduced, so that both the yield and the color of the MH-ized solution are greatly improved. In the recycling use of the filtrate after separation, it is possible to significantly reduce the amount of the filtrate to be treated for removing impurities and the treatment cost, and to reduce the loss of valuable components such as methionine.

【0015】[0015]

【実施例】以下、本発明を実施例により更に具体的に説
明するが、本発明はこれら実施例に限定されない。
EXAMPLES The present invention will now be described in more detail with reference to examples, but the present invention is not limited to these examples.

【0016】実施例1 パージラインに冷却器を設けた4槽からなる連続反応槽
を用い、1槽目に99.3wt%MADを78g/hr、32
wt%青酸水を66g/hr(対MADモル比1.05)、
8.6wt%炭酸カリウム水を5.4g/hr(対MADモル
比0.0045)を供給し、15℃で滞留時間1時間、
ファンタービン攪拌翼(6枚羽根)の回転数を500rp
m に保ちMCHの製造を行った。2槽目に炭酸アンモニ
ウム水(CO2 :12.3wt%、NH3 :9.5wt%)
を542g/hr(CO2 /NH3 /MADモル比=2.0
3/4.06/1、MAD1モルあたりの水量600m
l)を供給し、70℃で滞留時間1時間、ファンタービ
ン攪拌翼(6枚羽根)の回転数を500rpm に保った。
3槽目、4槽目は各々70℃で滞留時間1時間、平板攪
拌翼の回転数を200rpm に保ちMH化液(695g/hr
物質収支99%以上)を得た。なお、1、2槽には邪魔
板を用いた。連続反応が定常状態に達した時、MAD転
化率100%、pH8.48(1槽目)、MH化収率(対
MAD)98.2%、434nm可視光の吸光度0.07
1(4槽目)であった。
Example 1 A continuous reaction tank consisting of 4 tanks equipped with a cooler in the purge line was used, and 99.3 wt% MAD was 78 g / hr at 32 g for the first tank.
66 g / hr of wt% hydrocyanic acid water (molar ratio to MAD 1.05),
5.6 g / hr of 8.6 wt% potassium carbonate water (0.0045 mol ratio to MAD) was supplied, and the residence time was 1 hour at 15 ° C.
Rotation speed of fan turbine stirring blade (6 blades) is 500rp
The MCH was produced by keeping it at m 2. 2 bath th ammonium carbonate water (CO 2: 12.3wt%, NH 3: 9.5wt%)
542 g / hr (CO 2 / NH 3 / MAD molar ratio = 2.0
3 / 4.06 / 1, water amount 600m per 1 mol of MAD
l) was supplied, and the rotation speed of the fan turbine stirring blade (6 blades) was maintained at 500 rpm at 70 ° C. for a residence time of 1 hour.
The 3rd and 4th tanks each had a residence time of 1 hour at 70 ° C, the rotation speed of the flat plate stirring blade was kept at 200 rpm, and the MH liquid (695 g / hr).
A material balance of 99% or more) was obtained. Baffles were used for the first and second tanks. When the continuous reaction reached a steady state, MAD conversion rate 100%, pH 8.48 (first tank), MH conversion yield (relative to MAD) 98.2%, absorbance at 434 nm visible light 0.07
It was 1 (4th tank).

【0017】さらに、MH化液552.8g(MAD
0.60モル相当)に炭酸カリウム108g(対MAD
モル比1.3)、水54gを加え1リットルのオートク
レーブにて180℃で1時間激しく攪拌し、脱ガス率1
9.1%で加水分解させたところ、メチオニン収率(対
MAD)95.5%、434nm可視光の吸光度0.12
6のケン化液(加水分解液)が得られた。このケン化液
を圧力2kg/cm2G 、20℃で二酸化炭素を吹き込み中和
してメチオニンを晶析させた。晶析分離後メチオニン8
8.6gを得たが、それは使用したMADに対して収率
99%に相応する。全母液を32%に濃縮し、再び加水
分解に使用した。この時先述のMH化液重量1に対し
て、リサイクル濃縮液1.2で、このような加水分解−
晶析−濾液リサイクル操作を9回繰り返したが、得られ
たメチオニンの収率は1回目と同じで純度も99%以上
で、着色も見られなかった。
Further, 552.8 g of MH-ized solution (MAD
0.60 mol equivalent to 108 g of potassium carbonate (versus MAD)
A molar ratio of 1.3) and 54 g of water were added, and the mixture was vigorously stirred at 180 ° C. for 1 hour in a 1 liter autoclave to obtain a degassing rate of 1
When hydrolyzed at 9.1%, the yield of methionine (based on MAD) was 95.5%, and the absorbance at 434 nm visible light was 0.12.
A saponification solution (hydrolysis solution) of 6 was obtained. This saponified solution was neutralized by blowing carbon dioxide at a pressure of 2 kg / cm 2 G and 20 ° C. to crystallize methionine. Methionine 8 after crystallization separation
8.6 g were obtained, which corresponds to a yield of 99% based on the MAD used. All mother liquors were concentrated to 32% and used again for hydrolysis. At this time, such a hydrolysis-
The crystallization-filtrate recycling operation was repeated 9 times, but the yield of the obtained methionine was the same as that of the first time, the purity was 99% or more, and no coloring was observed.

【0018】比較例1 炭酸カリウム水に代えてアンモニア水を供給した以外は
実施例1と同様に行った。1槽目にMCH化触媒として
炭酸カリウム水に代えて6.6wt%アンモニア水を5.
8g/hr(対MADモル比0.032)を供給し、滞留時
間2時間に保ち、2槽目に炭酸アンモニウム水(C
2 :7.6wt%、NH3 :5.8wt%)696g/hr
(CO2 /NH3 /MADモル比=1.60/3.20
/1、MAD1モルあたりの水量850ml)を供給し、
70℃で滞留時間0.5時間に保った。3、4槽目は各
々85℃で滞留時間1時間に保ち、MH化液(775g/
hr、物質収支99%以上)を得た。連続反応が定常状態
に達した時にMAD転化率98%、MH化収率95.2
%、434nm可視光の吸光度0.043であった。さら
にMH化液をMAD0.1モル相当分、脱ガス率17.
5%で加水分解させたところ、メチオニン収率90.3
%、434nm可視光の吸光度0.221のケン化液が得
られた。
Comparative Example 1 The procedure of Example 1 was repeated except that aqueous ammonia was supplied instead of aqueous potassium carbonate. In the first tank, 6.6 wt% ammonia water was used as the MCH-forming catalyst in place of potassium carbonate water.
8 g / hr (molar ratio to MAD 0.032) was supplied, and the residence time was kept at 2 hours, and the ammonium carbonate water (C
O 2: 7.6wt%, NH 3 : 5.8wt%) 696g / hr
(CO 2 / NH 3 / MAD molar ratio = 1.60 / 3.20
/ 1, water amount of 850 ml per mol of MAD) is supplied,
A residence time of 0.5 hours was maintained at 70 ° C. The third and fourth tanks were each kept at 85 ° C for a residence time of 1 hour, and the MH liquid (775 g /
hr, material balance over 99%). When the continuous reaction reached a steady state, MAD conversion rate was 98%, MH conversion yield was 95.2.
%, The absorbance at 434 nm visible light was 0.043. Further, the MH-ized solution was used in an amount corresponding to 0.1 mol of MAD and the degassing rate was 17.
When hydrolyzed at 5%, the yield of methionine was 90.3.
%, A saponification solution having an absorbance of 421 nm visible light of 0.221 was obtained.

【0019】比較例2 実施例1と同様に行ったが、1槽目は使用せずMAD、
青酸水を2槽目に供給し、炭酸アンモニウム水(C
2 :11.4wt%、NH3 :8.8wt%)を570g/
hr(CO2 /NH3 /MADモル比=1.99/3.9
7/1、MAD1モルあたりの水量600ml)で加え
た。3、4槽目は各々75℃で滞留時間1時間に保ち、
MH化液(690g/hr、物質収支97%)を得た。連続
反応が定常状態に達した時に、MH化収率93.2%、
434nm可視光の吸光度0.087であった。さらにM
H化液をMAD0.6モル相当分、脱ガス率17.5%
で加水分解させたところ、メチオニン収率91.0%、
434nm可視光の吸光度0.189のケン化液が得られ
た。
Comparative Example 2 The same procedure as in Example 1 was performed, but the first tank was not used, and MAD,
Supply hydrocyanic acid water to the second tank, and add ammonium carbonate water (C
O 2: 11.4wt%, NH 3 : 8.8wt%) and 570 g /
hr (CO 2 / NH 3 / MAD molar ratio = 1.99 / 3.9
7/1, 600 ml of water per mol of MAD). The third and fourth tanks each have a residence time of 1 hour at 75 ° C,
An MH liquid (690 g / hr, mass balance 97%) was obtained. When the continuous reaction reached a steady state, the MH yield was 93.2%,
The absorbance at 434 nm visible light was 0.087. Furthermore M
Degassing rate of H-solution is equivalent to MAD 0.6 mole, degassing rate 17.5%
When hydrolyzed with, methionine yield 91.0%,
A saponification solution with an absorbance of 434 nm visible light of 0.189 was obtained.

【0020】実施例2 炭酸カリウム水に代えて重炭酸カリウム水を用いた以外
は実施例1と同様に行った。1槽目にMCH化触媒とし
て炭酸カリウム水に代えて、10wt%重炭酸カリウム水
7.4g/hr(対MADモル比0.01)を供給した。連
続反応が定常状態に達した時に、MAD転化率99%、
pH7.8(1槽目)MH化収率(対MAD)98.0
%、434nm可視光の吸光度0.083(4槽目)であ
った。さらに、MH化液をMAD0.60モル相当分、
脱ガス率19.3%で加水分解させたところ、メチオニ
ン収率(対MAD)95.3%、434nm可視光の吸光
度0.115のケン化液(加水分解液)が得られ、加水
分解−晶析−濾液リサイクル操作を9回繰り返したが、
得られたメチオニンの収率は99%以上、純度も99%
以上で着色も見られなかった。
Example 2 Example 2 was repeated except that potassium bicarbonate water was used instead of potassium carbonate water. In the first tank, 10 wt% potassium bicarbonate water 7.4 g / hr (0.01 to MAD molar ratio) was supplied instead of potassium carbonate water as the MCH-forming catalyst. When the continuous reaction reaches a steady state, the MAD conversion rate is 99%,
pH 7.8 (1st tank) MH yield (relative to MAD) 98.0
%, The absorbance at 434 nm visible light was 0.083 (4th tank). Further, the MH-ized solution was added in an amount corresponding to MAD 0.60 mol,
When hydrolyzed at a degassing rate of 19.3%, a saponification solution (hydrolysis solution) having a methionine yield (relative to MAD) of 95.3% and an absorbance at 434 nm visible light of 0.115 was obtained. The crystallization-filtrate recycling operation was repeated 9 times,
The yield of methionine obtained is 99% or more, and the purity is 99%.
As a result, no coloring was observed.

【0021】実施例3 炭酸カリウム水に代えて水酸化カリウム水を用いた以外
は実施例1と同様に行った。1槽目にMCH化触媒とし
て炭酸カリウム水に代えて、10wt%水酸化カリウム水
4.2g/hr(対MADモル比0.01)を供給した。
(ただし、1槽目25℃)連続反応が定常状態に達した
時に、MAD転化率100%、pH6.8(1槽目)、M
H化収率(対MAD)95.9%、434nm可視光の吸
光度0.078(4槽目)であった。さらに、MH化液
をMAD0.6モル相当分、脱ガス率19.0%で加水
分解させたところ、メチオニン収率(対MAD)96.
2%、434nm可視光の吸光度0.068のケン化液
(加水分解液)が得られ、加水分解−晶析−濾液リサイ
クル操作を9回繰り返したが、得られたメチオニンの収
率は99%以上、純度も99%以上で着色も見られなか
った。
Example 3 Example 1 was repeated except that aqueous potassium hydroxide was used instead of aqueous potassium carbonate. In the first tank, 4.2 g / hr of 10 wt% potassium hydroxide water (0.01 molar ratio to MAD) was supplied as the MCH-forming catalyst instead of potassium carbonate water.
(However, the first tank at 25 ° C) When the continuous reaction reached a steady state, MAD conversion rate 100%, pH 6.8 (first tank), M
The H conversion yield (relative to MAD) was 95.9%, and the absorbance at 434 nm visible light was 0.078 (4th tank). Furthermore, when the MH-ized solution was hydrolyzed in an amount corresponding to 0.6 mol of MAD at a degassing rate of 19.0%, a methionine yield (relative to MAD) of 96.
A saponification solution (hydrolysis solution) having an absorbance of 0.068 of 2% 434 nm visible light was obtained, and the hydrolysis-crystallization-filtrate recycling operation was repeated 9 times. The yield of methionine obtained was 99%. As described above, the purity was 99% or more, and no coloring was observed.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 // C07B 61/00 300 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location // C07B 61/00 300

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 5−(β−メチルメルカプトエチル)−
ヒダントインをアルカリ金属炭酸塩および/またはアル
カリ金属重炭酸塩の存在下に加水分解し、加水分解溶液
を炭酸ガスで中和してメチオニンを晶析し、メチオニン
を分離後の濾液を5−(β−メチルメルカプトエチル)
−ヒダントインの加水分解工程に回収するメチオニンの
製造方法において、5−(β−メチルメルカプトエチ
ル)−ヒダントインとして、炭酸カリウム、重炭酸カリ
ウムおよび水酸化カリウムからなる群から選ばれた少な
くとも一種のカリウム化合物を触媒として用いて3−メ
チルメルカプトプロピオンアルデヒドを青酸でシアンヒ
ドリン化し、得られる3−メチルメルカプトプロピオン
アルデヒドシアンヒドリンを炭酸ガスおよびアンモニア
でヒダントイン化して得られる5−(β−メチルメルカ
プトエチル)−ヒダントインを用いることを特徴とする
メチオニンの製造方法。
1. 5- (β-Methylmercaptoethyl)-
Hydantoin is hydrolyzed in the presence of an alkali metal carbonate and / or an alkali metal bicarbonate, the hydrolyzed solution is neutralized with carbon dioxide to crystallize methionine, and the filtrate after separation of methionine is treated with 5- (β -Methylmercaptoethyl)
In the method for producing methionine recovered in the hydrolysis step of hydantoin, at least one potassium compound selected from the group consisting of potassium carbonate, potassium bicarbonate and potassium hydroxide as 5- (β-methylmercaptoethyl) -hydantoin 5- (β-methylmercaptoethyl) -hydantoin obtained by converting 3-methylmercaptopropionaldehyde into cyanohydrin with hydrocyanic acid and using the resulting 3-methylmercaptopropionaldehyde cyanohydrin as hydantoin with carbon dioxide and ammonia. A method for producing methionine, which comprises using
JP08869992A 1992-04-09 1992-04-09 Method for producing methionine Expired - Lifetime JP3173112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP08869992A JP3173112B2 (en) 1992-04-09 1992-04-09 Method for producing methionine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP08869992A JP3173112B2 (en) 1992-04-09 1992-04-09 Method for producing methionine

Publications (2)

Publication Number Publication Date
JPH05286926A true JPH05286926A (en) 1993-11-02
JP3173112B2 JP3173112B2 (en) 2001-06-04

Family

ID=13950118

Family Applications (1)

Application Number Title Priority Date Filing Date
JP08869992A Expired - Lifetime JP3173112B2 (en) 1992-04-09 1992-04-09 Method for producing methionine

Country Status (1)

Country Link
JP (1) JP3173112B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0780370A3 (en) * 1995-12-18 1997-08-27 Degussa Process for the preparation of D,L-methionine or salts thereof
EP1457486A4 (en) * 2001-11-29 2006-04-05 Nippon Soda Co Process for production of methionine
KR100562176B1 (en) * 1995-12-18 2006-07-03 데구사 아게 Method for preparing D, L-methionine or salts thereof
FR2890966A1 (en) * 2005-09-21 2007-03-23 Adisseo France Sas Soc Par Act AMMONIACAL HYDROLYSIS OF 2-HYDROXY-4- (METHYLTHIO) BUTYRONITRILE, E NCONTINU AND WITHOUT ISOLATING INTERMEDIATE PRODUCTS.
FR2903690A1 (en) * 2006-07-11 2008-01-18 Adisseo Ireland Ltd Making 2-hydroxy-4-(methylthio)butyronitrile aqueous solution from acrolein, useful to prepare methionine, comprises reacting acrolein with hydrocyanic acid and methylmercaptan
JP2010111642A (en) * 2008-11-07 2010-05-20 Sumitomo Chemical Co Ltd Method for producing methionine
DE102013020267A1 (en) 2012-12-04 2014-06-05 Sumitomo Chemical Company, Limited Process for the preparation of methionine
CN104693082A (en) * 2015-04-03 2015-06-10 重庆紫光化工股份有限公司 Method for preparing methionine

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0780370A3 (en) * 1995-12-18 1997-08-27 Degussa Process for the preparation of D,L-methionine or salts thereof
EP1256571A1 (en) * 1995-12-18 2002-11-13 Degussa AG Process for the preparation of D,L-methionine or a salt thereof
KR100562176B1 (en) * 1995-12-18 2006-07-03 데구사 아게 Method for preparing D, L-methionine or salts thereof
EP1710232A1 (en) * 1995-12-18 2006-10-11 Degussa AG Process for the release of D,L-methionine
EP1457486A4 (en) * 2001-11-29 2006-04-05 Nippon Soda Co Process for production of methionine
US7223884B2 (en) 2001-11-29 2007-05-29 Nippon Soda Co., Ltd. Process for production of methionine
WO2007034066A1 (en) * 2005-09-21 2007-03-29 Adisseo France S.A.S. Continuous synthesis of methionine from 2-hydroxy-4-(methylthio)butyronitrile, co2, nh3 and h2o without the isolation of intermediate products
FR2890966A1 (en) * 2005-09-21 2007-03-23 Adisseo France Sas Soc Par Act AMMONIACAL HYDROLYSIS OF 2-HYDROXY-4- (METHYLTHIO) BUTYRONITRILE, E NCONTINU AND WITHOUT ISOLATING INTERMEDIATE PRODUCTS.
FR2903690A1 (en) * 2006-07-11 2008-01-18 Adisseo Ireland Ltd Making 2-hydroxy-4-(methylthio)butyronitrile aqueous solution from acrolein, useful to prepare methionine, comprises reacting acrolein with hydrocyanic acid and methylmercaptan
JP2010111642A (en) * 2008-11-07 2010-05-20 Sumitomo Chemical Co Ltd Method for producing methionine
CN101735124A (en) * 2008-11-07 2010-06-16 住友化学株式会社 Process for producing methionine
DE102013020267A1 (en) 2012-12-04 2014-06-05 Sumitomo Chemical Company, Limited Process for the preparation of methionine
CN104693082A (en) * 2015-04-03 2015-06-10 重庆紫光化工股份有限公司 Method for preparing methionine

Also Published As

Publication number Publication date
JP3173112B2 (en) 2001-06-04

Similar Documents

Publication Publication Date Title
US5990349A (en) Process for the preparation of D,L-methionine or the salt thereof
US7671234B2 (en) Method for producing methylglycine-N,N-diethanoic acid-trialkali metal salts with a low by-product content
JP3173112B2 (en) Method for producing methionine
US2557913A (en) Production of methionine
GB1575469A (en) Recovery of glycine and iminodiacetic acid
JP4119842B2 (en) Method and apparatus for producing hydrazodicarbonamide using urea as a starting material
JP3292119B2 (en) Method for producing methionine
US7378546B2 (en) Method for producing 2-amino-5-iodobenzoic acid
US5258550A (en) Process for preparing glycine
JPH0737436B2 (en) Method for producing carbodihydrazide
US4235812A (en) Process for preparing thiourea dioxide
JP4792754B2 (en) Method for removing ammonia from a solution containing an ammonium salt
US6452046B2 (en) Process for producing 2,3,5,6-tetrachloro-1,4-benzenedicarboxylic acid
JP2915515B2 (en) Process for producing O-methylisourea sulfate
KR100562176B1 (en) Method for preparing D, L-methionine or salts thereof
JPS6129331B2 (en)
WO1994017049A1 (en) PROCESS FOR PRODUCING cis-EPOXYSUCCINIC ACID SALT
US3962287A (en) Chemical process for producing citric acid
JP2915516B2 (en) Production method of O-methylisourea sulfate
JP2764346B2 (en) Glycine production method
JP2801781B2 (en) Glycine production method
JPH0687803A (en) Production of glycine
JPH03232847A (en) Production of glycine
JP3735943B2 (en) Method for producing L-aspartic acid
RU2292335C2 (en) Method for production of biuret with usage carbamide as the source product and the device for the method realization

Legal Events

Date Code Title Description
S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

RD05 Notification of revocation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: R3D05

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090330

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100330

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110330

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120330

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 12

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130330

Year of fee payment: 12