JPH05285735A - Graphite electrode for electro-chemical machining - Google Patents

Graphite electrode for electro-chemical machining

Info

Publication number
JPH05285735A
JPH05285735A JP4092720A JP9272092A JPH05285735A JP H05285735 A JPH05285735 A JP H05285735A JP 4092720 A JP4092720 A JP 4092720A JP 9272092 A JP9272092 A JP 9272092A JP H05285735 A JPH05285735 A JP H05285735A
Authority
JP
Japan
Prior art keywords
graphite
electrode
base material
pyrolytic carbon
electro
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4092720A
Other languages
Japanese (ja)
Other versions
JP2876095B2 (en
Inventor
Takashi Takagi
俊 高木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ibiden Co Ltd
Original Assignee
Ibiden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ibiden Co Ltd filed Critical Ibiden Co Ltd
Priority to JP4092720A priority Critical patent/JP2876095B2/en
Publication of JPH05285735A publication Critical patent/JPH05285735A/en
Application granted granted Critical
Publication of JP2876095B2 publication Critical patent/JP2876095B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide a graphite electrode for electro-chemical machining whose film is hardly peeled off ; and is durable for a long time in the electrode which is made of graphite for electro-chemical machining and covered with a film made of thermal cracking carbon. CONSTITUTION:This graphite electrode for electro-chemical machining 10 comprises a film made of thermal cracking carbon 12 formed on the surface of graphite substrate material 11, and the average thermal expansion coefficient of the graphite substrate material shall be 1.3X10<-6>/ deg.C to 6.0X10<-6>/ deg.C at the temperature of 20 deg.C to 400 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鍛造型、ダイキャスト
型、プラスチック成形型等三次元形状に加工された金型
等の金属表面の光沢仕上げ加工に利用される電解仕上加
工に使用される黒鉛製電解加工用電極に関する。
FIELD OF THE INVENTION The present invention is used in electrolytic finishing for use in gloss finishing of metal surfaces such as forging dies, die cast dies, and plastic dies which have been processed into three-dimensional shapes. The present invention relates to a graphite electrolytic processing electrode.

【0002】[0002]

【従来の技術】電解加工装置は、図2に示すように、ワ
ーク20とこのワーク20の加工面に倣った電極面を有
する電極10とを静止した電解液30中で所定の間隙で
対設させ、その極間にパルス状電流を加えることによっ
て、ワーク20表面から金属イオンを溶出させ、ワーク
20の光沢面加工を行う構造となっている。
2. Description of the Related Art As shown in FIG. 2, an electrolytic processing apparatus is provided with a work 20 and an electrode 10 having an electrode surface following the working surface of the work 20 in a stationary electrolytic solution 30 at a predetermined gap. Then, by applying a pulsed current between the electrodes, metal ions are eluted from the surface of the work 20 and the work 20 has a glossy surface.

【0003】従来、この電解加工の電極には、電極の製
作が容易で、電極消耗が無い黒鉛が使用されている。し
かしながら、黒鉛はもともとポーラスな構造であるか
ら、電解加工時に電解液が電極の気孔内に浸透し、使用
後、乾燥によって電解液成分が結晶となって析出してく
るので、電極の洗浄に手間がかかり、又、析出物による
作業環境の悪化が問題となっていた。
Conventionally, graphite has been used for this electrolytically processed electrode because the electrode is easy to manufacture and the electrode is not consumed. However, since graphite has a porous structure from the beginning, the electrolytic solution permeates into the pores of the electrode during electrolytic processing, and after use, the electrolytic solution component crystallizes and precipitates due to drying. However, there is a problem that the work environment is deteriorated due to the precipitates.

【0004】これに対し、出願人は、電極となる黒鉛基
材の表面に緻密な熱分解炭素の被膜を形成した電解加工
用電極を提案している(特願平3−333478号)。
On the other hand, the applicant has proposed an electrode for electrolytic processing in which a dense pyrolytic carbon film is formed on the surface of a graphite base material as an electrode (Japanese Patent Application No. 3-333478).

【0005】[0005]

【発明が解決しようとする課題】しかしながら、複雑な
形態のワークを電解加工する場合には、電極自体の形状
も複雑となるため、電極基材と熱分解炭素被膜の熱膨張
差によって応力が発生することにより、熱分解炭素の被
膜と黒鉛基材との剥離が発生しやすくなり、さらに剥離
によってその部分からの加工液の浸透が発生し、これが
電極寿命を短くする原因になるといった問題があった。
However, when electrolytically machining a work having a complicated shape, the shape of the electrode itself becomes complicated, so that stress is generated due to the difference in thermal expansion between the electrode base material and the pyrolytic carbon coating. By doing so, there is a problem that the pyrolytic carbon coating and the graphite substrate are likely to peel off, and the peeling causes penetration of the working fluid from that part, which causes the shortening of the electrode life. It was

【0006】本発明は、このような事情に鑑みなされた
ものであり、その目的とするところは、熱分解炭素の被
膜を有する黒鉛製電解加工用電極において、被膜が剥離
しにくく長寿命の黒鉛製電解加工用電極を提供すること
にある。
The present invention has been made in view of the above circumstances, and it is an object of the present invention to provide a graphite electrolysis machining electrode having a pyrolytic carbon coating, in which the coating is unlikely to peel off and which has a long life. It is to provide an electrode for electrolytic processing.

【0007】[0007]

【課題を解決するための手段】すなわち、上記目的を達
成するための手段として、請求項1記載の発明は、「黒
鉛基材の表面に熱分解炭素の被膜を形成して成る黒鉛製
電解加工用電極であって、前記黒鉛基材の20℃〜40
0℃における平均熱膨張係数が1.3×10 -6/℃〜
6.0×10-6/℃であることを特徴とする黒鉛製電解
加工用電極」を、その要旨としている。
[Means for Solving the Problems]
As a means for achieving the above, the invention according to claim 1 is "black
Made of graphite with a pyrolytic carbon coating on the surface of a lead substrate
An electrode for electrolytic processing, wherein the graphite base material has a temperature of 20 ° C to 40 ° C.
Average coefficient of thermal expansion at 0 ° C is 1.3 x 10 -6/ ℃ ~
6.0 x 10-6Electrolysis made of graphite, characterized in that
The main point is "processing electrodes".

【0008】また、請求項2記載の発明は、「黒鉛基材
の表面に熱分解炭素の被膜を形成して成る黒鉛製電解加
工用電極であって、前記黒鉛基材の20℃〜400℃に
おける平均熱膨張係数が1.3×10 -6/℃〜6.0×
10-6/℃であり、かつ水銀圧入法で測定される75オ
ングストローム〜75000オングストロームの径を有
する微細気孔の占める容積が0.02cc/g〜0.1
5cc/gであることを特徴とする黒鉛製電解加工用電
極」を、その要旨としている。
The invention according to claim 2 is the "graphite base material".
Graphite electrolytic treatment with a pyrolytic carbon coating on the surface of
It is a working electrode, and is at 20 ° C to 400 ° C of the graphite base material.
Average coefficient of thermal expansion is 1.3 × 10 -6/°C-6.0x
10-6/ ° C and measured by mercury porosimetry
With a diameter of ngstrom to 75000 angstrom
The volume occupied by fine pores is 0.02 cc / g to 0.1
5 cc / g for graphite electrolytic machining electrode
The pole is the gist.

【0009】この黒鉛製電解加工用電極の黒鉛基材は、
石炭系あるいは石油系のタール、ピッチ、天然黒鉛、人
造黒鉛等の材料から得ることができる。熱分解炭素の被
膜を黒鉛基材の表面に形成させる方法としては、各種化
学蒸着法により行うことができる。通常は、黒鉛基材を
加熱し、メタン、プロパン等の炭化水素ガスを高温の黒
鉛基材に接触させることにより反応させ、黒鉛基材の表
面に熱分解炭素を生成させる方法による。熱分解炭素の
被膜は、十分な気密性が得られる範囲としては厚みが1
0μm以上であり、好ましくは、20μm〜500μm
の範囲がよい。
The graphite base material of this graphite electrode for electrolytic processing is
It can be obtained from materials such as coal-based or petroleum-based tar, pitch, natural graphite and artificial graphite. As a method for forming a coating film of pyrolytic carbon on the surface of the graphite base material, various chemical vapor deposition methods can be used. Usually, this is a method in which a graphite base material is heated and a hydrocarbon gas such as methane or propane is brought into contact with a high temperature graphite base material to cause a reaction, thereby generating pyrolytic carbon on the surface of the graphite base material. The pyrolytic carbon coating has a thickness of 1 as a range in which sufficient airtightness can be obtained.
0 μm or more, preferably 20 μm to 500 μm
The range is good.

【0010】[0010]

【作用】請求項1記載の黒鉛製電解加工用電極にあって
は、黒鉛基材の平均熱膨張係数が1.3×10-6/℃〜
6.0×10-6/℃の範囲内であり、熱分解炭素の熱膨
張係数に対応している。このため、黒鉛基材と熱分解炭
素の被膜との熱膨張差によって被膜が剥離するのが防止
される。
In the graphite electrolytic processing electrode according to claim 1, the graphite base material has an average coefficient of thermal expansion of 1.3 × 10 −6 / ° C. or more.
It is within the range of 6.0 × 10 −6 / ° C. and corresponds to the thermal expansion coefficient of pyrolytic carbon. For this reason, the coating is prevented from peeling off due to the difference in thermal expansion between the graphite base material and the coating of pyrolytic carbon.

【0011】請求項2記載の黒鉛製電解加工用電極にあ
っては、さらに黒鉛基材の水銀圧入法で測定される75
オングストローム〜75000オングストロームの径を
有する微細気孔の占める容積が0.02cc/g〜0.
15cc/gとしていることから黒鉛基材の気孔内に熱
分解炭素被膜の一部が入り込んでアンカー効果が生じ黒
鉛基材と熱分解炭素の被膜との密着性が高められ、被膜
がさらに剥離しにくくなる。
In the graphite electrolytic processing electrode according to the second aspect of the invention, it is further measured by the mercury intrusion method of the graphite base material.
The volume occupied by fine pores having a diameter of angstrom to 75000 angstrom is 0.02 cc / g to 0.
Since it is set to 15 cc / g, a part of the pyrolytic carbon coating enters the pores of the graphite base material, an anchor effect occurs, the adhesion between the graphite base material and the pyrolytic carbon coating is enhanced, and the coating is further peeled off. It gets harder.

【0012】黒鉛基材に存在する微細気孔の占める容積
を上記範囲内としたのは、0.02cc/g未満では十
分なアンカー効果が得られず、又、0.20cc/gを
超えると基材表面の凹凸が大きくなり、そこに被覆され
る膜の微小な部位で応力が集中し、被膜が剥離しやすく
なるからである。
The volume occupied by the fine pores present in the graphite base material is set within the above range because the sufficient anchoring effect cannot be obtained below 0.02 cc / g, and when the volume exceeds 0.20 cc / g. This is because the unevenness of the surface of the material becomes large, the stress concentrates on minute portions of the film covered with the material, and the coating easily peels off.

【0013】[0013]

【実施例】以下、実施例について説明する。 実施例 黒鉛基材として等方性黒鉛を使用し、図1に示すよう
に、100mm×200mm×50mmの大きさの複数
の凸部を電極面10aに形成した電解加工用電極を作製
し、これを反応炉内に入れ、減圧下1400℃に加熱
し、水素ガスをキャリアとしてメタンを供給し、黒鉛基
材11上に50μmの熱分解炭素被膜12を形成させた
電解加工用電極10を作製した。これをサンプル1〜3
とし、それらの物性を表1に示す。
EXAMPLES Examples will be described below. Example Using isotropic graphite as a graphite base material, as shown in FIG. 1, an electrode for electrolytic processing was prepared in which a plurality of convex portions having a size of 100 mm × 200 mm × 50 mm were formed on the electrode surface 10a. Was placed in a reaction furnace, heated to 1400 ° C. under reduced pressure, methane was supplied using hydrogen gas as a carrier, and an electrode 10 for electrolytic processing in which a 50 μm pyrolytic carbon coating 12 was formed on a graphite base material 11 was produced. .. This is sample 1-3
And the physical properties thereof are shown in Table 1.

【0014】比較例 黒鉛基材として等方性黒鉛を使用し、実施例と同じ形
状,同じ処理方法により黒鉛基材上に50μmの熱分解
炭素被膜を形成させた電解加工用電極を作製した。これ
をサンプル4、5とし、それらの物性を表1に示す。
Comparative Example Using isotropic graphite as a graphite base material, an electrode for electrolytic processing having a 50 μm pyrolytic carbon coating formed on the graphite base material was produced by the same shape and the same treatment method as in the examples. These are designated as Samples 4 and 5, and their physical properties are shown in Table 1.

【0015】 (平均熱膨張係数は20℃〜400℃における平均値、
微細気孔容積は水銀圧入法で測定される75オングスト
ローム〜75000オングストロームの径を有する微細
気孔の占める容積)
[0015] (The average coefficient of thermal expansion is an average value at 20 ° C to 400 ° C,
Micropore volume is the volume occupied by micropores having a diameter of 75 Å to 75,000 Å measured by mercury porosimetry)

【0016】上記サンプル1〜5について、それぞれ電
解加工装置にセットし、硝酸ナトリウムの電解液中、電
流密度40A/cm2、ワーク材としてSKD−61を
使用し、あらかじめRma×30μmまで放電加工によ
り加工をしたワークを用い、取り代100μmの電解加
工による仕上げ処理を10回繰り返した。
Each of the above samples 1 to 5 was set in an electrolytic processing apparatus, a current density of 40 A / cm 2 was used in an electrolytic solution of sodium nitrate, SKD-61 was used as a work material, and electrical discharge machining was performed up to Rma × 30 μm in advance. Using the processed work, the finishing treatment by electrolytic processing with a stock removal of 100 μm was repeated 10 times.

【0017】その結果、サンプル1、2、3について
は、熱分解炭素被膜の剥離、クラックの発生もなく、電
解液成分の結晶の析出も認められなかった。サンプル4
については、熱分解炭素被膜の剥離がみられ、電解液成
分の結晶の析出が認められた。サンプル5については、
熱分解炭素被膜の剥離は見られなかったがクラックが発
生し、電解液成分の結晶の析出が認められた。
As a result, with respect to Samples 1, 2, and 3, the pyrolytic carbon coating was not peeled off or cracked, and no precipitation of crystals of the electrolyte solution component was observed. Sample 4
For No. 3, peeling of the pyrolytic carbon coating was observed, and precipitation of crystals of the electrolyte solution component was observed. For sample 5,
No peeling of the pyrolytic carbon coating was observed, but cracks were found and precipitation of crystals of the electrolyte solution component was observed.

【0018】[0018]

【発明の効果】以上説明したように、請求項1又は請求
項2記載の発明は、複雑な形態のワークを電解加工する
場合、熱膨張の差により熱分解炭素の被膜と黒鉛基材と
の剥離が発生しやすくなり、さらに剥離によってその部
分から加工液の浸透が発生し、これが電極寿命を短くす
る原因になっていた従来の問題を解決したものであっ
て、請求項1記載の発明にあっては、熱膨張の面から熱
分解炭素の被膜の剥離を防止する構造とし、請求項2記
載の発明にあっては、さらに黒鉛基材の微細気孔容積の
面から、熱分解炭素の被膜の密着性を高める構造とし、
これによって、表面に熱分解炭素の被膜を有する黒鉛製
電解加工用電極について被膜が剥離しにくく長寿命の電
極を提供することができる。
As described above, according to the invention described in claim 1 or 2, when electrolytically machining a work having a complicated shape, a film of pyrolytic carbon and a graphite base material are formed due to a difference in thermal expansion. The present invention according to claim 1 solves the conventional problem that peeling is more likely to occur, and the working liquid permeates from the portion due to peeling, which causes shortening of the electrode life. According to the invention of claim 2, the pyrolytic carbon coating has a structure that prevents peeling of the pyrolytic carbon coating from the viewpoint of thermal expansion. With a structure that enhances the adhesion of
This makes it possible to provide a long-life electrode for a graphite electrolytic processing electrode having a pyrolytic carbon coating on its surface, in which the coating is unlikely to peel off.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る黒鉛製電解加工用電極の一実施例
を模式的にあらわした断面図である。
FIG. 1 is a cross-sectional view schematically showing an embodiment of a graphite electrolytic processing electrode according to the present invention.

【図2】電解加工装置の概要を示す正面図である。FIG. 2 is a front view showing an outline of an electrolytic processing apparatus.

【符号の説明】[Explanation of symbols]

10 電極 11 黒鉛基材 12 熱分解炭素被膜 10 Electrode 11 Graphite Base 12 Pyrolytic Carbon Coating

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 黒鉛基材の表面に熱分解炭素の被膜を形
成して成る黒鉛製電解加工用電極であって、前記黒鉛基
材の20℃〜400℃における平均熱膨張係数が1.3
×10-6/℃〜6.0×10-6/℃であることを特徴と
する黒鉛製電解加工用電極。
1. An electrode for electrolytic machining made of graphite, comprising a graphite base material and a film of pyrolytic carbon formed on the surface thereof, wherein the graphite base material has an average coefficient of thermal expansion at 20 ° C. to 400 ° C. of 1.3.
Graphite electrochemical machining electrode which is a × 10 -6 /℃~6.0×10 -6 / ℃.
【請求項2】 黒鉛基材の表面に熱分解炭素の被膜を形
成して成る黒鉛製電解加工用電極であって、前記黒鉛基
材の20℃〜400℃における平均熱膨張係数が1.3
×10-6/℃〜6.0×10-6/℃であり、かつ水銀圧
入法で測定される75オングストローム〜75000オ
ングストロームの径を有する微細気孔の占める容積が
0.02cc/g〜0.15cc/gであることを特徴
とする黒鉛製電解加工用電極。
2. A graphite electrolytic processing electrode comprising a graphite base material having a pyrolytic carbon coating formed on the surface thereof, wherein the graphite base material has an average coefficient of thermal expansion at 20 ° C. to 400 ° C. of 1.3.
A × 10 -6 /℃~6.0×10 -6 / ℃, and the volume occupied by fine pores having a diameter of 75 Å ~75000 angstroms as measured by mercury porosimetry is 0.02cc / g~0. An electrode for electrolytic processing made of graphite, which is 15 cc / g.
JP4092720A 1992-04-13 1992-04-13 Graphite electrolytic electrode Expired - Fee Related JP2876095B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4092720A JP2876095B2 (en) 1992-04-13 1992-04-13 Graphite electrolytic electrode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4092720A JP2876095B2 (en) 1992-04-13 1992-04-13 Graphite electrolytic electrode

Publications (2)

Publication Number Publication Date
JPH05285735A true JPH05285735A (en) 1993-11-02
JP2876095B2 JP2876095B2 (en) 1999-03-31

Family

ID=14062292

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4092720A Expired - Fee Related JP2876095B2 (en) 1992-04-13 1992-04-13 Graphite electrolytic electrode

Country Status (1)

Country Link
JP (1) JP2876095B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1223146A1 (en) * 2001-01-11 2002-07-17 Wacker-Chemie GmbH Apparatus and process for producing polycrystalline silicon rods
JP2010503605A (en) * 2006-09-12 2010-02-04 グラフテック、インターナショナル、ホールディングス、インコーポレーテッド Low CTE isotropic graphite
CN112279679A (en) * 2019-07-23 2021-01-29 揖斐电株式会社 Carbon composite member
CN113698231A (en) * 2020-05-22 2021-11-26 揖斐电株式会社 Carbon composite member
CN114026378A (en) * 2019-06-26 2022-02-08 揖斐电株式会社 Carbon-based composite material

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1223146A1 (en) * 2001-01-11 2002-07-17 Wacker-Chemie GmbH Apparatus and process for producing polycrystalline silicon rods
JP2010503605A (en) * 2006-09-12 2010-02-04 グラフテック、インターナショナル、ホールディングス、インコーポレーテッド Low CTE isotropic graphite
JP4734674B2 (en) * 2006-09-12 2011-07-27 グラフテック インターナショナル ホールディングス インコーポレーテッド Low CTE isotropic graphite
CN114026378A (en) * 2019-06-26 2022-02-08 揖斐电株式会社 Carbon-based composite material
CN112279679A (en) * 2019-07-23 2021-01-29 揖斐电株式会社 Carbon composite member
KR20210011884A (en) 2019-07-23 2021-02-02 이비덴 가부시키가이샤 Carbon composite material
JP2021017391A (en) * 2019-07-23 2021-02-15 イビデン株式会社 Carbon composite material
CN113698231A (en) * 2020-05-22 2021-11-26 揖斐电株式会社 Carbon composite member

Also Published As

Publication number Publication date
JP2876095B2 (en) 1999-03-31

Similar Documents

Publication Publication Date Title
Wang et al. Fabrication and evaluation of platinum/diamond composite electrodes for electrocatalysis: Preliminary studies of the oxygen-reduction reaction
JP5265181B2 (en) Protective film manufacturing method
RU2463390C1 (en) Method of metallisation and device for its realisation
JP4986267B2 (en) Electrode manufacturing method
TW200426247A (en) Electrolytic electrode and process of producing the same
JPS596388A (en) Manufacture of electrode activated with tungsten carbide
Wang et al. Study on energy consumption of Al2O3 coating prepared by cathode plasma electrolytic deposition
RU2001115940A (en) An electrode with a firmly applied outer catalytic layer
JPH05285735A (en) Graphite electrode for electro-chemical machining
CN111394771B (en) Method for preparing coating on surface of copper and copper alloy and copper product
TW200303935A (en) Anode for oxygen evolution and relevant substrate background of the invention
DeClements et al. Freestanding diamond thin films grown on glassy carbon substrates
CN105755428B (en) Expand penetration enhancer and ooze Magnesiumalloy surface modifying method using the powder thermal expansion of the expansion penetration enhancer
KR101304990B1 (en) Method for forming hydroxyapatite coating layer on titanium implant surface and titanium implant having coating layer formed by the same
US3357858A (en) Platinizing process
IE46061B1 (en) Manufacture of titanium anodes suitable for use in the electrolytic production of manganese dioxide
SU1554769A3 (en) Electrolyzer for ekectrolytic reduction of aluminium from alumina
CN109504996B (en) Cathode micro-arc oxidation solution and method for preparing DLC composite oxide film on steel surface
Pogrebnjak et al. The structure and properties of Al 2 O 3 and Al coatings deposited by microarc oxidation on graphite substrates
Bakhtiari-Zamani et al. Comparing Morphology and Corrosion Behavior of Nanostructured Coatings Obtained via Plasma Electrolytic Oxidation with Direct and Pulse Currents on Commercial Titanium Substrate
JPH08225977A (en) Electrode for electrolysis and its production
JP2010077464A (en) Partial electroplating method
Padervand et al. Determining the Optimal Processing Time for Tantalum Surface Modification through Plasma Electrolytic Nitridation
JP2729835B2 (en) Method for forming ceramic film on aluminum substrate surface
CN104032349B (en) Method for preparing high-purity corundum coating layer on aluminum surface

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080122

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090122

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100122

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100122

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110122

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120122

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees