JPH0528531Y2 - - Google Patents

Info

Publication number
JPH0528531Y2
JPH0528531Y2 JP16543285U JP16543285U JPH0528531Y2 JP H0528531 Y2 JPH0528531 Y2 JP H0528531Y2 JP 16543285 U JP16543285 U JP 16543285U JP 16543285 U JP16543285 U JP 16543285U JP H0528531 Y2 JPH0528531 Y2 JP H0528531Y2
Authority
JP
Japan
Prior art keywords
charging
discharge
electrostatic discharge
discharging
probe
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP16543285U
Other languages
Japanese (ja)
Other versions
JPS6273273U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP16543285U priority Critical patent/JPH0528531Y2/ja
Publication of JPS6273273U publication Critical patent/JPS6273273U/ja
Application granted granted Critical
Publication of JPH0528531Y2 publication Critical patent/JPH0528531Y2/ja
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Testing Of Individual Semiconductor Devices (AREA)
  • Testing Relating To Insulation (AREA)
  • Testing Electric Properties And Detecting Electric Faults (AREA)
  • Tests Of Electronic Circuits (AREA)

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、大規模集積回路、集積回路、半導体
素子、微細構造の電子部品又は各種電子機器等に
対して静電気放電が与える電気的オーバーストレ
ス或は電磁妨害作用若しくは上記各種電子回路、
部品及び機器等の静電気放電に対する感受性等を
試験評価するために、静電気放電を人為的に生ぜ
しめる静電気放電シミユレータに関するものであ
る。
[Detailed description of the invention] (Field of industrial application) The present invention deals with the electrical overstress caused by electrostatic discharge to large-scale integrated circuits, integrated circuits, semiconductor elements, microstructured electronic components, and various electronic devices. or electromagnetic interference or the various electronic circuits mentioned above,
This invention relates to an electrostatic discharge simulator that artificially generates electrostatic discharge in order to test and evaluate the sensitivity of parts, equipment, etc. to electrostatic discharge.

(従来の技術及び考案が解決しようとする問題
点) 上記のような各種電子回路、部品及び機器等に
対する静電気放電は、地気から絶縁された導体よ
り成る帯電体、就中、人体の帯電電荷による静電
気放電が最も多く、したがつて、従来の静電気放
電シミユレータの多くは、帯電人体を等価的にモ
デル化したものが用いられている。
(Problems to be solved by conventional techniques and inventions) Electrostatic discharge to various electronic circuits, parts, equipment, etc. as described above is due to the electrostatic charge of a charged body made of a conductor insulated from the earth, especially the human body. Most conventional electrostatic discharge simulators use an equivalent model of a charged human body.

第11図は、従来の静電気放電シミユレータの
一例を示す図で、SDCは充電用電源、SWSはリレ
ースイツチ等より成る電源スイツチ、SWDはリレ
ースイツチSWSの開閉制御用スイツチ、SDはリレ
ースイツチSWSの駆動用電源、RCは充電抵抗、
CCDは充放電コンデンサ、RDは放電抵抗、SEDは
放電電極、CASIは絶縁材料より成る筺体、RGW
は帰線(リターン・グラウンド・ワイヤ)で、そ
の一端を充放電コンデンサCCDの接地側電極に直
接接続してある。GAPは放電間隙、EUTは被試
験体である。
FIG. 11 is a diagram showing an example of a conventional electrostatic discharge simulator, where S DC is a charging power source, SW S is a power switch consisting of a relay switch, etc., SW D is a switch for controlling opening/closing of the relay switch SW S , and S D is the power supply for driving the relay switch SW S , R C is the charging resistor,
C CD is a charge/discharge capacitor, R D is a discharge resistor, SED is a discharge electrode, CAS I is a housing made of insulating material, RGW
is the return wire (return ground wire), one end of which is directly connected to the ground electrode of the charging/discharging capacitor C CD . GAP is the discharge gap and EUT is the test object.

人体の帯電電圧は通常数kVから10数kVに達
し、場合によつては最高30数kVに及ぶこともあ
るので、上記従来の静電気放電シミユレータにお
いても充電用電源SDCの出力電圧を0V乃至30数
kVの範囲に亙つて可変ならしめ、充放電コンデ
ンサCCDの充電電圧を各種所要値に設定し得るよ
うに構成している。
The charging voltage of the human body usually reaches from several kV to 10-odd kV, and in some cases it can reach up to 30-odd kV. Therefore, in the conventional electrostatic discharge simulator mentioned above, the output voltage of the charging power supply S DC can be set to 0 V or more. 30 numbers
It is configured to be variable over a range of kV, so that the charging voltage of the charging/discharging capacitor C CD can be set to various required values.

又、充放電コンデンサCCDの静電容量及び放電
抵抗RDの抵抗値は、帯電した人体の静電容量及
び抵抗と等価ならしめるが、人体の静電容量及び
抵抗の実測値は相当広い変化範囲を有し、代表値
として充放電コンデンサCCDの等価静電容量は
50pF乃至250pF、放電抵抗RDの等価抵抗は100Ω
乃至1500Ωの各範囲から適当な固定値を選択して
いる。
In addition, the capacitance of the charge/discharge capacitor C CD and the resistance value of the discharge resistor R D are made equivalent to the capacitance and resistance of a charged human body, but the actual measured values of the capacitance and resistance of the human body vary widely. As a typical value, the equivalent capacitance of the charge/discharge capacitor C CD is
50pF to 250pF, equivalent resistance of discharge resistance R D is 100Ω
An appropriate fixed value is selected from each range from 1500Ω to 1500Ω.

この従来の静電気放電シミユレータにおいて
は、充放電コンデンサCCDを予め所要電圧に充電
した後、帰線RGWの先端を被試験体EUTの接地
端子等に接続し、放電電極SEDを徐々に被試験
体EUTに接近(又は直接接触)させると、放電
間隙GAPの長さと気圧との積が充放電コンデン
サCCDの充電電圧に応じた値に達した際に、放電
電極SEDと被試験体EUT間に生ずる火花放電
(又は接触導通)によつて充放電コンデンサCCD
電荷が瞬間的に被試験体EUTに加えられ、帰線
RGWを介して充放電コンデンサCCDの接地側電極
に戻る。
In this conventional electrostatic discharge simulator, the charge/discharge capacitor CCD is charged to a required voltage in advance, and then the tip of the return wire RGW is connected to the ground terminal of the EUT under test, and the discharge electrode SED is gradually brought closer to (or into direct contact with) the EUT under test. When the product of the length of the discharge gap GAP and the air pressure reaches a value corresponding to the charging voltage of the charge/discharge capacitor CCD , a spark discharge (or contact conduction) occurs between the discharge electrode SED and the EUT under test, and the charge of the charge/discharge capacitor CCD is instantaneously applied to the EUT under test, and the return wire
It returns to the ground electrode of the charge/discharge capacitor CCD via RGW.

第11図に示した従来の静電気放電シミユレー
タにおける帰線RGWは通常1m乃至2mの導線が
用いられるが、この帰線RGWに分布するインダ
クタンス分は帰線RGWの長さ及び直径に応じて
定まるばかりでなく、帰線RGWの布設形状、即
ち、帰線RGWが垂下した状態にあるか、緊張し
た状態に保たれているか等のような帰線RGW自
体の状態の他、帰線RGWの周囲状況に応じて定
まる帰線RGWとの間の相対的電磁環境によつて
帰線RGWの分布インダクタンス分が、概ね1μH
乃至2.5μHの範囲に亙つて変化する。この分布イ
ンダクタンス分の変化は放電電流の波形に変化を
与えるのみならず、放電回路の周囲空間に誘起さ
れる誘導電磁界及び放射電磁界のレベル及びTE,
TM.,TEM等の各モードを大幅に変化させるこ
ととなり、その結果、被試験体EUTに対する電
磁妨害効果が大きく変動し、放電試験の再現性が
著しく害なわれる欠点を有する。
The return line RGW in the conventional electrostatic discharge simulator shown in Figure 11 normally uses a 1m to 2m conductor, but the inductance distributed in this return line RGW is determined depending on the length and diameter of the return line RGW. In addition to the condition of the return line RGW itself, such as the installation shape of the return line RGW, i.e., whether the return line RGW is in a drooping state or maintained in a taut state, the surrounding situation of the return line RGW is The distributed inductance of the return line RGW is approximately 1μH due to the relative electromagnetic environment between the return line RGW and the return line RGW, which is determined according to
It varies over a range of 2.5μH to 2.5μH. This change in distributed inductance not only changes the waveform of the discharge current, but also changes the level of the induced electromagnetic field and the radiated electromagnetic field induced in the space around the discharge circuit, TE,
Each mode such as TM., TEM, etc. is changed significantly, and as a result, the electromagnetic interference effect on the EUT under test varies greatly, which has the disadvantage that the reproducibility of the discharge test is significantly impaired.

本考案者は、このような欠点を除くために、さ
きに、第3図に断面を示すような静電気放電シミ
ユレータを提案した。
In order to eliminate such drawbacks, the present inventor proposed an electrostatic discharge simulator whose cross section is shown in FIG. 3.

第3図においてCASCは筺状導体より成る筺体、
SEDは球状又は針端状電極より成る放電電極、
INS1は筺体CASCの一端と放電電極SED間に介在
せしめた絶縁体、TSは充電用電源回路の接続端
子で、筺体CASCの他端に固着した絶縁端壁INS2
のほぼ中心部に固定して取付けてある。尚、充電
用電源回路は図示していないが、例えば、第11
図に示した回路と同様の回路、即ち、充電用電源
SDC、電源スイツチSWS、その開閉制御用スイツ
チSWD、電源スイツチSWSの駆動用電源SD及び充
電抵抗RCを以て構成した回路等より成る。CSW
は線又は棒状の支持導体で、一端に端子TSを固
着し、他端に放電抵抗RDを介して放電電極SED
を固定して取付けてある。CCD1,CCD2,……は充
放電コンデンサで、各一方の電極を支持導体
CSWに接続し、各他方の電極を筺体CASCの内壁
に接続してある。RBはバツフア抵抗、RGWは帰
線で、その一端を導体より成る筺体CASCの適宜
個所に固着接続してある。
In Figure 3, CAS C is a housing made of a housing-like conductor;
SED is a discharge electrode consisting of a spherical or needle-shaped electrode.
INS 1 is an insulator interposed between one end of the casing CAS C and the discharge electrode SED, T S is a connection terminal for the charging power circuit, and the insulating end wall INS 2 is fixed to the other end of the casing CAS C.
It is fixedly installed almost in the center of the Although the charging power supply circuit is not shown, for example, the 11th
A circuit similar to that shown in the figure, i.e. a charging power supply
It consists of a circuit including S DC , a power switch SW S , a switch SW D for controlling opening/closing thereof, a power source SD for driving the power switch SW S , and a charging resistor RC . CSW
is a wire or rod-shaped support conductor, with a terminal T S fixed to one end and a discharge electrode SED connected to the other end via a discharge resistor R D.
is fixed and installed. C CD1 , C CD2 , ... are charge/discharge capacitors, each with one electrode connected to the supporting conductor.
CSW, and each other electrode is connected to the inner wall of the housing CAS C. R B is a buffer resistor, and RGW is a return wire, one end of which is fixedly connected to an appropriate location on the casing CAS C made of a conductor.

この静電気放電シミユレータにおいても、電源
接続端子TSを介して充放電コンデンサCCD1
CCD2,……を所要電圧に充電し、帰線RGWの先
端を被試験体の接地端子等に接続した後、導体よ
り成る筺体CASCを手で保持して放電電極SEDを
徐々に被試験体に接近(又は直接接触)させる
と、放電電極SEDと被試験体間の放電間隙の長
さと気圧の積が充放電コンデンサCCD1,CCD2,…
…の充電電圧に応じた値に達した際に生ずる火花
放電(又は接触導通)によつて充放電コンデンサ
CCD1,CCD2,……の電荷が瞬間的に被試験体に加
えられる。
In this electrostatic discharge simulator, the charging/ discharging capacitor C CD1 ,
After charging C CD2 ,... to the required voltage and connecting the tip of the return wire RGW to the ground terminal of the test object, hold the conductor casing CAS C by hand and gradually introduce the discharge electrode SED into the test object. When brought close to (or in direct contact with) the body, the product of the length of the discharge gap and the atmospheric pressure between the discharge electrode SED and the body under test is the charge/discharge capacitor C CD1 , C CD2 ,...
A charging/discharging capacitor is charged and discharged by a spark discharge (or contact conduction) that occurs when the charging voltage of
Charges C CD1 , C CD2 , ... are instantaneously applied to the test object.

第8図は、上記静電気放電シミユレータの試験
状態における等価回路図で、CCDTは充放電コンデ
ンサCCD1,CCD2,……の合成容量、Bは人体、r
は人体抵抗、CSTBは人体Bと地気間及び人体Bと
被試験体EUT間に存在する浮遊容量、Lは帰線
RGWの分布インダクタンス分で、他の符号は第
3図と同様である。
Figure 8 is an equivalent circuit diagram of the above electrostatic discharge simulator under test conditions, where C CDT is the combined capacitance of charge/discharge capacitors C CD1 , C CD2 , ..., B is the human body, and r
is the human body resistance, C STB is the stray capacitance that exists between human body B and the earth, and between human body B and the EUT under test, and L is the return line.
This is the distributed inductance of RGW, and the other symbols are the same as in FIG. 3.

この静電気放電シミユレータにおいては、筺体
CASCを導体を以て形成し、この筺体CASCを介し
て充放電コンデンサCCD1,CCD2,……の各接地側
電極と帰線RGWとを接続してあるため、第8図
に示したように、人体Bと地気間及び人体Bと被
試験体EUT間における浮遊容量CSTB及び人体抵
抗rを介して高周波電流の帰路が、帰線RGWと
並列に形成される。
In this electrostatic discharge simulator, the housing
CAS C is formed of a conductor, and the ground side electrodes of the charging/discharging capacitors C CD1 , C CD2 , ... and the return wire RGW are connected through this casing CAS C , as shown in Figure 8. In addition, a return path for the high frequency current is formed in parallel with the return line RGW via the stray capacitance C STB and the human body resistance r between the human body B and the earth and between the human body B and the EUT under test.

したがつて、被試験体EUTに加えられた高周
波放電電流は、帰線RGW及び導体より成る筺体
CASC(第8図に示していない)を介して充放電コ
ンデンサCCD1,CCD2,……の接地側電極に戻る
が、エネルギの大部分は浮遊容量CSTB及び人体抵
抗rを介して充放電コンデンサCCD1,CCD2,……
の接地側電極に戻ることとなるので、帰線RGW
のみによつて帰路を形成する第11図示の静電気
放電シミユレータに比較して、帰線RGWの布設
形状による放電電流の波形変化、誘導電磁界及び
放射電磁界のレベル及びTE,TM,TEMの各モ
ード変化等を小ならしめて放電試験の再現性を良
好ならしめることが出来る。
Therefore, the high-frequency discharge current applied to the EUT under test is transmitted through the return wire RGW and the casing made of the conductor.
It returns to the ground side electrode of the charging/discharging capacitors C CD1 , C CD2 , ... via CAS C (not shown in Figure 8), but most of the energy is charged via stray capacitance C STB and human body resistance r Discharge capacitor C CD1 , C CD2 ,...
Since the return wire RGW returns to the ground side electrode of
Compared to the electrostatic discharge simulator shown in Fig. 11 in which the return path is formed only by the return line RGW, the waveform change of the discharge current, the level of the induced electromagnetic field and the radiated electromagnetic field, and each of TE, TM, and TEM due to the installation shape of the return line RGW. It is possible to reduce mode changes and the like and improve the reproducibility of discharge tests.

又、放電時に端子TSの電位が急速に低下し、
この電位変化に伴つて端子TSと充電用電源回路
との接続線から電磁エネルギが放射され、放電試
験結果に誤差を与えるおそれがあるが、端子TS
と支持導体CSWとの間に介在せしめたバツフア
抵抗RBによつて、前記のような電磁エネルギの
放射を抑えることが出来る。
Also, during discharge, the potential of terminal T S decreases rapidly,
With this potential change, electromagnetic energy is radiated from the connection wire between the terminal T S and the charging power supply circuit, which may cause an error in the discharge test results .
By the buffer resistor R B interposed between the support conductor CSW and the supporting conductor CSW, the radiation of electromagnetic energy as described above can be suppressed.

然しながら、人体Bと被試験体EUT間の浮遊
容量CSTBは、人体Bの個人差及び人体Bと被試験
体EUTとの機械的相対関係等に応じて変化し、
人体Bと地気間の浮遊容量CSTBも亦人体Bの個人
差及び人体Bの床との相対関係等に応じて異なる
と共に、人体抵抗rも個人差があり、これらが原
因となつて放電電流の波形変化を生じ、放電試験
の再現性が阻害されることとなる。
However, the stray capacitance C STB between the human body B and the EUT under test changes depending on the individual differences in the human body B and the relative mechanical relationship between the human body B and the EUT under test.
The stray capacitance C STB between the human body B and the ground air also varies depending on the individual differences in the human body B and the relative relationship of the human body B with the floor, etc., and the human body resistance r also varies among individuals, and these are the causes of discharge. This causes a change in the current waveform, which impedes the reproducibility of the discharge test.

本考案は、第11図に示した静電気放電シミユ
レータにおける欠点は勿論、第3図に示した静電
気放電シミユレータにおける欠点をも一掃し得る
静電気放電シミユレータを実現することを目的と
する。
The object of the present invention is to realize an electrostatic discharge simulator that can eliminate not only the drawbacks of the electrostatic discharge simulator shown in FIG. 11 but also the drawbacks of the electrostatic discharge simulator shown in FIG.

(問題点を解決するための手段、実施例) 第1図は、本考案の一実施例を示す側面図、第
2図は、その正面図で、両図において、PLNは
適当な金属材料より成る断面L字形の支持板、
HODは適宜の金属材料より成る支持筒で、その
一端に設けた鍔部FLを、支持板PLNの垂直部分
の一部に穿つた挿通孔の周辺部に熔着するか、図
示のようにボルトBT及びナツトNTによつて着
脱自在に取付けてある。PRBは充放電プローブ
で、例えば、第3図に示した充放電プローブ、即
ち、筒状導体より成る筺体CASC、球状又は針端
状電極より成る放電電極SED、絶縁体INS1及び
INS2、充電用電源回路接続端子TS、支持導体
CSW、バツフア抵抗RB、100Ω乃至1500Ωの範囲
内において適宜の値に定めた放電抵抗RD、合成
容量を50pF乃至250pFの範囲内において適宜の値
に選ぶと共に、各接地側電極を筺体CASCに接続
した充放電コンデンサCCD1,CCD2,……、一端を
筺体CASCに接続した帰線RGW等を以て構成し
た充放電プローブより成る。
(Means for solving problems, embodiments) Fig. 1 is a side view showing an embodiment of the present invention, Fig. 2 is a front view thereof, and in both figures, PLN is made of a suitable metal material. A support plate having an L-shaped cross section,
HOD is a support tube made of a suitable metal material, and the flange FL provided at one end of the HOD is either welded to the periphery of an insertion hole drilled in a part of the vertical part of the support plate PLN, or bolted as shown in the figure. It is detachably attached using BT and nut NT. PRB is a charge/discharge probe, for example, the charge/discharge probe shown in Fig. 3, that is, a housing CAS C made of a cylindrical conductor, a discharge electrode SED made of a spherical or needle-shaped electrode, an insulator INS 1 , and
INS 2 , charging power supply circuit connection terminal T S , support conductor
CSW, buffer resistance R B , discharge resistance R D set to an appropriate value within the range of 100Ω to 1500Ω, combined capacitance set to an appropriate value within the range of 50 pF to 250 pF, and each ground side electrode is connected to the housing CAS C It consists of a charging/discharging probe consisting of charging/discharging capacitors C CD1 , C CD2 , ... connected to the casing CAS C, return wire RGW, etc. connected to the casing CAS C at one end.

尚、支持板PLNの垂直部分の一部に穿つた挿
通孔及び支持筒HODの各内径を、それぞれ充放
電プローブPRBの外径よりも適宜大ならしめて、
充放電プローブPRBの筺体と支持筒HOD間の電
気的接触を保ちながら充放電プローブPRBを支
持筒HODの軸方向に滑動せしめ得るように形成
し、支持板PLNの下部水平部分は、これを螺子
止め等の手段によつて床又は適当な支持台等に固
定するか、水平部分の幅を適当に大ならしめ、必
要に応じて水平部分を図面に向つて左側にも設け
て支持板PLN全体を逆T字形に形成し、床等に
単に置くのみで自立し得るように形成する。
In addition, the inner diameters of the insertion hole drilled in a part of the vertical part of the support plate PLN and the support tube HOD are made larger than the outer diameter of the charge/discharge probe PRB as appropriate.
The charge/discharge probe PRB is formed so as to be able to slide in the axial direction of the support tube HOD while maintaining electrical contact between the housing of the charge/discharge probe PRB and the support tube HOD, and the lower horizontal portion of the support plate PLN is attached to a screw. Either fix it to the floor or a suitable support by means such as a stopper, or increase the width of the horizontal part appropriately, and if necessary, install a horizontal part on the left side when facing the drawing to secure the whole support plate PLN. is formed into an inverted T-shape so that it can stand on its own by simply placing it on the floor or the like.

このように構成した本案静電気放電シミユレー
タにおいては、支持板PLNと相対向する個所に
被試験体EUTを固定し、充電用電源回路接続端
子TSを介して充放電コンデンサCCD1,CCD2,……
を所要電圧に充電し、帰線RGWの先端を被試験
体EUTの接地端子TG又は筺体壁等の中、接地可
能な個所或は交流電源線の中の接地線等に接続し
た後、支持筒HODに支持された充放電プローブ
PRBを徐々に滑動前進せしめて放電電極SEDを
被試験体EUTに接近(又は直接接触)させると、
放電電極SEDと被試験体EUT間の距離、即ち、
放電間隙の長さと気圧の積が充放電コンデンサ
CCD1,CCD2,……の充電電圧に応じた値に達した
際に放電間隙に生ずる火花放電(又は接触導通)
によつて充放電コンデンサCCD1,CCD2,……の電
荷が瞬間的に被試験体EUTに加えられる。
In the electrostatic discharge simulator of the present invention configured as described above, the test object EUT is fixed at a location opposite to the support plate PLN , and the charging/discharging capacitors C CD1 , C CD2 ,... …
After charging the return wire RGW to the required voltage and connecting the tip of the return wire RGW to the grounding terminal T G of the EUT under test, a grounding point inside the housing wall, etc., or a grounding wire in the AC power line, Charge/discharge probe supported by tube HOD
When the PRB is gradually slid forward and the discharge electrode SED approaches (or comes into direct contact with) the EUT under test,
The distance between the discharge electrode SED and the EUT under test, i.e.
The product of discharge gap length and atmospheric pressure is the charge/discharge capacitor.
Spark discharge (or contact conduction) that occurs in the discharge gap when C CD1 , C CD2 , ... reaches a value depending on the charging voltage
As a result, the electric charges of the charging/discharging capacitors C CD1 , C CD2 , ... are instantaneously applied to the EUT under test.

以上は、充放電コンデンサを集中定数形コンデ
ンサを以て形成した充放電プローブPRBを用い
た場合を例示したが、第4図に断面図を示すよう
に分布定数形コンデンサを以て充放電コンデンサ
を形成した充放電プローブを用いても本考案を実
施することが出来る。
The above example uses a charge/discharge probe PRB in which the charge/discharge capacitor is formed using a lumped constant type capacitor. The present invention can also be implemented using a probe.

第4図において、INS3は筒状絶縁体、TED1
筒状電極で、筒状絶縁体INS3の内表面に固着し、
その前端縁(又は後端縁)に端壁TEDEを電極
TED1と一体に設け、その中心部に穿つた挿通孔
に支持導体CSWを挿通固着し、端壁TEDEを介し
て支持導体CSWと筒状電極TED1とを電気的に接
続してある。TED2は筒状絶縁体INS3の外表面に
固着した筒状電極で、内外の筒状電極TED1及び
TED2によつて分布定数形の充放電コンデンサが
形成される。他の符号は第3図と同様である。
In Fig. 4, INS 3 is a cylindrical insulator, TED 1 is a cylindrical electrode, which is fixed to the inner surface of the cylindrical insulator INS 3 ,
Electrode the end wall TED E on its front edge (or rear edge)
It is provided integrally with TED 1 , and the supporting conductor CSW is inserted and fixed into the insertion hole bored in the center thereof, and the supporting conductor CSW and the cylindrical electrode TED 1 are electrically connected through the end wall TED E. TED 2 is a cylindrical electrode fixed to the outer surface of the cylindrical insulator INS 3 , and the inner and outer cylindrical electrodes TED 1 and
A distributed constant charge/discharge capacitor is formed by TED 2 . Other symbols are the same as in FIG. 3.

この充放電プローブは、充放電コンデンサを分
布定数形コンデンサを以て形成すると共に、外部
の筒状電極TED2が導体より成る筺体を兼ねる点
において第3図示の充放電プローブと異なるのみ
で、電気的作動は第3図示のものと全く同様であ
る。
This charge/discharge probe differs from the charge/discharge probe shown in Figure 3 only in that the charge/discharge capacitor is formed by a distributed constant type capacitor, and the external cylindrical electrode TED 2 also serves as a casing made of a conductor. is exactly the same as that shown in the third figure.

第3図及び第4図に示したように、充放電コン
デンサを形成する接地側電極が導体より成る筺体
を介するか、又は直接支持板PLNと電気的に接
続されるように構成された充放電プローブであれ
ば、第3図又は第4図に示した以外の他の構成の
充放電プローブであつても、これを用いて本考案
を実施することが出来る。
As shown in Figures 3 and 4, the charging/discharging capacitor is configured such that the ground side electrode forming the charging/discharging capacitor is electrically connected to the support plate PLN through a casing made of a conductor or directly to the support plate PLN. The present invention can be implemented using a charging/discharging probe having a configuration other than that shown in FIG. 3 or 4 as long as it is a probe.

充放電プローブの構成が何れの場合において
も、充放電プローブの断面形状は、支持板PLN
に取付けた支持筒HOD内において微細に滑動可
能ならしめるためには円形に形成することが最も
望ましいが、方形等任意の断面形状に形成しても
本考案を実施すことが出来る。
Regardless of the configuration of the charge/discharge probe, the cross-sectional shape of the charge/discharge probe is the same as that of the support plate PLN.
Although it is most desirable to form the support tube HOD into a circular shape in order to be able to slide finely within the support tube HOD attached to the HOD, the present invention can also be implemented by forming the support tube into any cross-sectional shape such as a rectangle.

又、支持筒HOD内において充放電プローブ
PRBを微細に滑動せしめるための操作を容易な
らしめるために、第5図に要部背面図を示すよう
に、充放電プローブPRBの導体より成る筺体
CASC又は外部の筒状電極TED2の後部側面に把
手H1及びH2を左右に突設せしめるが、第6図に
側面図を示すように把手H3を下方に突設せしめ
てもよい。
In addition, the charge/discharge probe is installed inside the support tube HOD.
In order to facilitate the operation of finely sliding the PRB, a housing made of the conductor of the charge/discharge probe PRB is installed, as shown in the rear view of the main part in Figure 5.
Handles H1 and H2 are provided to protrude left and right on the rear side of CAS C or external cylindrical electrode TED2 , but handle H3 may be provided to protrude downward as shown in the side view in Fig. 6. .

充放電プローブPRBの内装部品の寸法形状等
に応じて充放電プローブPRBの外径が各種異な
る場合には、充放電プローブPRBの外径に応じ
た内径を有する支持筒HODを取付けた支持板
PLNを各種用意するか、共通の支持板PLNに内
径の異なる支持筒HODを交換して取付け得るよ
うに形成してもよく、第7図に要部の拡大背面図
を示すように、支持筒を断面弧状の対向片HOD1
及びHOD2を以て形成し、各対向片に設けた鍔部
FL1及びFL2に穿つたボルトの挿通孔LHを細長
く形成し、対向片HOD1及びHOD2の対向間隙を
変化せしめて各種外径の充放電プローブPRBに
共通に用い得るように構成してもよい。この場
合、対向片HOD1及びHOD2の各鍔部FL1及び
FL2に穿つた挿通孔を細長く形成する代りに、支
持板PLNの垂直部分に穿つた充放電プローブ
PRBの挿通孔HOLの周辺部に穿つたボルトの挿
通孔を細長く形成してもよいこと勿論である。
If the outer diameter of the charge/discharge probe PRB varies depending on the dimensions and shape of the internal parts of the charge/discharge probe PRB, a support plate with a support tube HOD attached that has an inner diameter that corresponds to the outer diameter of the charge/discharge probe PRB.
Various types of PLN may be prepared, or support tubes HOD with different inner diameters may be attached to a common support plate PLN by replacing them. The cross-section arc-shaped opposing piece HOD 1
and a flange formed with HOD 2 and provided on each opposing piece.
The bolt insertion holes LH drilled in FL 1 and FL 2 are formed to be elongated, and the opposing gaps between the opposing pieces HOD 1 and HOD 2 are changed so that it can be commonly used for charging/discharging probe PRB of various outside diameters. Good too. In this case, the respective flanges FL 1 and HOD 2 of the opposing pieces HOD 1 and HOD 2
Instead of forming an elongated insertion hole in FL 2 , a charge/discharge probe is drilled in the vertical part of the support plate PLN.
Of course, the insertion hole for the bolt drilled around the insertion hole HOL of the PRB may be formed in a long and narrow manner.

(考案の効果) 第9図は、本案静電気放電シミユレータの試験
状態における等価回路図で、PLNは支持板、CSTP
は支持板PLNと被試験体EUT間及び支持板PLN
と地気間の浮遊容量で、他の符号は第8図と同様
である。
(Effect of the invention) Figure 9 is an equivalent circuit diagram of the proposed electrostatic discharge simulator under test conditions, where PLN is the support plate, C STP
is between the support plate PLN and the EUT under test, and between the support plate PLN
The other symbols are the same as in Fig. 8.

第9図から明らかなように、本案静電気放電シ
ミユレータにおいては、高周波放電電流の帰路が
帰線RGWによつて形成されると共に、これと並
列に、支持板PLNと地気間及び支持板PLNと被
試験体EUT間の各浮遊容量CSTP並びに支持板
PLNより成る帰路が形成され、この帰路には第
8図の等価回路における人体抵抗rを全く含ま
ず、又、支持板PLNの面積を大ならしめるが、
支持板PLNと被試験体EUT間の距離を小ならし
めることにより浮遊容量を大ならしめ得るから、
並列帰路のインピーダンスを第8図の場合に比し
小ならしめ得ると共に、浮遊容量を常にほぼ一定
に保つことが可能である。したがつて、放電エネ
ルギの大部分は支持板PLN側の帰路を介して充
放電コンデンサの接地側電極に戻ることとなり、
放電電流の波形の乱れを押え得ると共に、常に試
験条件を一定に保ち得るから、試験結果の再現性
も良好である。
As is clear from FIG. 9, in the electrostatic discharge simulator of the present invention, the return path of the high-frequency discharge current is formed by the return wire RGW, and in parallel with this, the return path is formed between the support plate PLN and the ground air, and between the support plate PLN. Stray capacitance C STP and support plate between EUT under test
A return path consisting of PLN is formed, and this return path does not include the human body resistance r in the equivalent circuit of FIG. 8 at all, and also increases the area of the support plate PLN.
By reducing the distance between the support plate PLN and the EUT under test, the stray capacitance can be increased.
The impedance of the parallel return path can be made smaller than in the case of FIG. 8, and the stray capacitance can always be kept almost constant. Therefore, most of the discharge energy returns to the ground side electrode of the charge/discharge capacitor via the return path on the support plate PLN side,
Since disturbances in the waveform of the discharge current can be suppressed and the test conditions can always be kept constant, the reproducibility of the test results is also good.

尚、理想的には、支持板PLNにおける垂直部
分の幅及び高さを、本案静電気放電シミユレータ
の取扱者の身体が被試験体EUTから見て完全に
遮蔽され、被試験体EUTと取扱者との間に浮遊
容量を生ずることのないように選び、又、支持板
PLNにおける水平部分の面積も大にして、地気
との間の浮遊容量を出来るだけ大ならしめること
が望ましいが、試作機による実験結果によれば、
支持板PLNにおける垂直部分によつて取扱者が
ほぼ遮蔽される程度に垂直部分の面積を選ぶこと
により、実用上十分満足し得る結果が得られた。
Ideally, the width and height of the vertical portion of the support plate PLN should be such that the body of the operator of the proposed electrostatic discharge simulator is completely shielded from the EUT under test, and the distance between the EUT under test and the operator is The support plate should be selected so as not to create stray capacitance between the
It is desirable to increase the area of the horizontal part of the PLN to maximize the floating capacity between it and the ground air, but according to experimental results using a prototype machine,
Practically satisfactory results were obtained by selecting the area of the vertical portion of the support plate PLN to such an extent that the handler was almost shielded by the vertical portion.

又、水平部分の面積については、例えば、水平
部分に適宜数の螺子孔を穿ち、水平部分を床又は
適当な支持台等に螺子止めし得る程度の幅に形成
した場合でも、放電電流の波形の乱れを従来に比
し極めて高度に抑えることが出来た。
Regarding the area of the horizontal part, for example, even if an appropriate number of screw holes are drilled in the horizontal part and the horizontal part is formed to a width that can be screwed to the floor or a suitable support, the waveform of the discharge current will be affected. We were able to suppress the turbulence to an extremely high degree compared to conventional methods.

第10図(横軸は経過時間t、縦軸は電流i)
のイは放電電流の理想波形、ロは第3図について
説明した静電気放電シミユレータの試作機による
放電電流の波形の一例、ハは本案静電気放電シミ
ユレータの試作機による放電電流の波形の一例
を、それぞれ示すもので、ハの波形はロの波形に
比し!?かに理想波形に近いこと図から明らかであ
る。
Figure 10 (horizontal axis is elapsed time t, vertical axis is current i)
A shows an ideal waveform of the discharge current, B shows an example of the waveform of the discharge current produced by the prototype electrostatic discharge simulator described in FIG. 3, and C shows an example of the waveform of the discharge current produced by the prototype electrostatic discharge simulator of the present invention. It is clear from the figure that the waveform C is much closer to the ideal waveform than the waveform B.

尚、イの理想波形は、帰線RGWの布設形状等
に基づく波形の乱れを除くために帰線RGWの長
さを10cmとなして、理論計算により得られる波形
に近付けたもので、ロ及びハは何れも帰線RGW
の長さを2mに選んだ場合である。
In addition, the ideal waveform in (a) is made closer to the waveform obtained by theoretical calculation by setting the length of the retrace line RGW to 10 cm to remove waveform disturbances due to the installation shape of the retrace line RGW, etc. Ha is return line RGW
This is the case when the length of is selected as 2m.

又、各図とも放電開始電圧を1kV、充放電コン
デンサの静電容量を120pF、放電抵抗を250Ωに選
んだ場合である。
In each figure, the discharge starting voltage is 1kV, the capacitance of the charging/discharging capacitor is 120pF, and the discharge resistance is 250Ω.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図及び第2図は、本考案の一実施例を示す
図、第3図乃至第7図は、本考案において用いる
充放電プローブの構成を示す図、第8図及び第9
図は、静電気放電シミユレータの等価回路図、第
10図は、放電電流の波形図、第11図は、従来
の静電気放電シミユレータを示す図で、PLN…
…支持板、HOD……支持筒、FL,FL1及びFL2
……鍔部、BT……ボルト、NT……ナツト、
PRB……充放電プローブ、CASC……筺体、SED
……放電電極、INS1乃至INS3……絶縁体、TS
…充電用電源回路接続端子、CSW……支持導体、
RD……放電抵抗、CCD1,CCD2,……充放電コンデ
ンサ、RB……バツフア抵抗、RGW……帰線、
EUT……被試験体、TG……接地端子、TED1
びTED2……筒状電極、TEDE……端壁、H1乃至
H3……把手、HOD1及びHOD2……対向片、LH
……ボルトの挿通孔、HOL……充放電プローブ
の挿通孔、CCDT……充放電コンデンサの合成容
量、B……人体、r……人体抵抗、CSTB及びCSTP
……浮遊容量、L……分布インダクタンス分、
SDC及びSD……電源、SWS及びSWD……スイツチ、
RC……充電抵抗、CCD……充放電コンデンサ、
CASI……筺体、GAP……放電間隙である。
1 and 2 are diagrams showing an embodiment of the present invention, FIGS. 3 to 7 are diagrams showing the configuration of a charging/discharging probe used in the present invention, and FIGS. 8 and 9 are diagrams showing an embodiment of the present invention.
The figure is an equivalent circuit diagram of an electrostatic discharge simulator, Fig. 10 is a waveform diagram of a discharge current, and Fig. 11 is a diagram showing a conventional electrostatic discharge simulator.PLN...
...Support plate, HOD...Support tube, FL, FL 1 and FL 2
...Tsubabe, BT...Boruto, NT...Natsuto,
PRB...Charge/discharge probe, CAS C ...Housing, SED
...Discharge electrode, INS 1 to INS 3 ...Insulator, T S ...
...charging power supply circuit connection terminal, CSW...support conductor,
R D ...discharge resistance, C CD1 , C CD2 ,...charging/discharging capacitor, R B ...buffer resistance, RGW...return wire,
EUT...Test object, T G ...Ground terminal, TED 1 and TED 2 ...Cylindrical electrode, TED E ...End wall, H1 to
H 3 ... Handle, HOD 1 and HOD 2 ... Opposing piece, LH
...Bolt insertion hole, HOL...Charge/discharge probe insertion hole, C CDT ...Composite capacitance of charge/discharge capacitor, B...Human body, r...Human body resistance, C STB and C STP
... Stray capacitance, L ... Distributed inductance,
S DC and S D ... power supply, SW S and SW D ... switch,
R C ...Charging resistor, C CD ...Charging/discharging capacitor,
CAS I ...Housing, GAP...Discharge gap.

Claims (1)

【実用新案登録請求の範囲】 (1) 導体より成る筺体に、接地側電極を前記筺体
に接続した充放電コンデンサと放電抵抗の直列
回路を内装し、この直列回路における前記放電
抵抗側の端部に前記筺体との間の絶縁を保持し
て放電電極を設け、前記直列回路における前記
充放電コンデンサの非接地側電極に前記筺体と
の間を絶縁を保持して設けた充電用電源回路接
続端子を接続すると共に、前記筺体に帰線の一
端を接続して成る充放電プローブと、被試験体
に対向して設けられ、前記充放電プローブを板
面にほぼ直角にかつ軸方向に滑動自在に支持す
ると共に、導体を以て形成された支持板とより
成ることを特徴とする静電気放電シミユレー
タ。 (2) 充放電プローブを構成する充放電コンデンサ
が集中定数形コンデンサより成る実用新案登録
請求の範囲第1項記載の静電気放電シミユレー
タ。 (3) 充放電プローブを構成する充放電コンデンサ
が分布定数形コンデンサより成る実用新案登録
請求の範囲第1項記載の静電気放電シミユレー
タ。 (4) 支持板が断面L字形を成し、その垂直部分に
充放電プローブを滑動自在に支持する支持筒を
板面とほぼ直角方向に設けて成る実用新案登録
請求の範囲第1項記載の静電気放電シミユレー
タ。 (5) 分布定数形コンデンサが、導体より成る筒形
筺体及びこの筺体と絶縁体を介して対向するよ
うに前記筺体内に設けた筒形電極とより成る実
用新案登録請求の範囲第3項記載の静電気放電
シミユレータ。 (6) 支持筒が支持板に固着せしめられた実用新案
登録請求の範囲第4項記載の静電気放電シミユ
レータ。 (7) 支持筒が支持板に着脱自在に取付けられた実
用新案登録請求の範囲第4項記載の静電気放電
シミユレータ。 (8) 支持筒が断面弧状の対向片より成り、対向間
隙を変化せしめ得るように支持板に取付けられ
た実用新案登録請求の範囲第4項記載の静電気
放電シミユレータ。 (9) 互いに内径の異なる支持筒が選択的に支持板
に取付けられるように構成した実用新案登録請
求の範囲第7項記載の静電気放電シミユレー
タ。
[Claims for Utility Model Registration] (1) A series circuit of a charging/discharging capacitor and a discharging resistor with a grounding side electrode connected to the housing is housed in a casing made of a conductor, and the end of the series circuit on the discharging resistor side a charging power supply circuit connection terminal provided with a discharge electrode while maintaining insulation between the housing and the housing, and a charging power supply circuit connection terminal provided with a non-grounded electrode of the charging/discharging capacitor in the series circuit while maintaining insulation between the housing and the housing; and a charge/discharge probe which is connected to the housing and has one end of a return line connected to the housing, and a charge/discharge probe that is provided facing the test object and that allows the charge/discharge probe to slide approximately perpendicularly to the plate surface and in the axial direction. 1. An electrostatic discharge simulator comprising a supporting plate formed of a conductor and supporting the electrostatic discharge simulator. (2) The electrostatic discharge simulator according to claim 1, wherein the charging/discharging capacitor constituting the charging/discharging probe is a lumped constant capacitor. (3) The electrostatic discharge simulator according to claim 1, wherein the charging/discharging capacitor constituting the charging/discharging probe is a distributed constant capacitor. (4) The utility model claimed in claim 1, wherein the support plate has an L-shaped cross section, and a support tube for slidably supporting the charging/discharging probe is provided on the vertical portion of the support plate in a direction substantially perpendicular to the plate surface. Electrostatic discharge simulator. (5) A distributed constant type capacitor comprising a cylindrical casing made of a conductor and a cylindrical electrode provided inside the casing so as to face the casing with an insulator in between. electrostatic discharge simulator. (6) The electrostatic discharge simulator according to claim 4, wherein the support tube is fixed to the support plate. (7) The electrostatic discharge simulator according to claim 4, wherein the support cylinder is detachably attached to the support plate. (8) The electrostatic discharge simulator according to claim 4, wherein the support cylinder is composed of opposing pieces having an arcuate cross section and is attached to the support plate so that the opposing gap can be changed. (9) The electrostatic discharge simulator according to claim 7, wherein the support tubes having different inner diameters are selectively attached to the support plate.
JP16543285U 1985-10-28 1985-10-28 Expired - Lifetime JPH0528531Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP16543285U JPH0528531Y2 (en) 1985-10-28 1985-10-28

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP16543285U JPH0528531Y2 (en) 1985-10-28 1985-10-28

Publications (2)

Publication Number Publication Date
JPS6273273U JPS6273273U (en) 1987-05-11
JPH0528531Y2 true JPH0528531Y2 (en) 1993-07-22

Family

ID=31095467

Family Applications (1)

Application Number Title Priority Date Filing Date
JP16543285U Expired - Lifetime JPH0528531Y2 (en) 1985-10-28 1985-10-28

Country Status (1)

Country Link
JP (1) JPH0528531Y2 (en)

Also Published As

Publication number Publication date
JPS6273273U (en) 1987-05-11

Similar Documents

Publication Publication Date Title
US7495168B2 (en) Electric dipole streamer discharge type lightning conductor
US4617513A (en) Measurement device for use in high-voltage gas-insulated switch gear
US5408236A (en) High-voltage unit comprising a measuring divider/resistor arrangement
WO2014048340A1 (en) Device for testing response characteristic of metal oxide sample under steep-front pulse
JPH0528531Y2 (en)
CN100543475C (en) Voltage check device
US2866923A (en) Static eliminators
HU180696B (en) Equipment for measuring the voltage of inner a.c. conductor of earthed metal clad high-voltage switch filled with insulating material
JPH04504164A (en) Measuring device with auxiliary electrodes for gas-insulated hermetic high-voltage installations
CN115616306B (en) Surface charge collection system of low charge leakage
CN106645876A (en) Measurement system and measurement method for high-frequency transit voltage in GIS
JPH0528530Y2 (en)
CN205643567U (en) Sensitive type electromagnetic pulse protective material capability test device in field
CN104833859B (en) A kind of plane plate specimen distribution of space charge pressure wave method measurement apparatus
JPH0435818Y2 (en)
JPH0435819Y2 (en)
JPH10255564A (en) Shield effect testing instrument and inspection device, shield effect testing sheet, and static-electricity coupler
Okabe et al. Circuit models of gas insulated switchgear elements for electromagnetic wave leakage analysis
JPH0435816Y2 (en)
CN111769823B (en) Subnanosecond leading edge pulse power supply based on coaxial capacitor and generation method thereof
JPS5826678U (en) Electrostatic discharge tester
JP4524375B2 (en) Pulse wave generator
Rao et al. Measurement of very fast transient overvoltages (VFTO) in a GIS module
JPH02142309A (en) Grounding switch
JPH11202001A (en) Voltage detector