JPH0435816Y2 - - Google Patents

Info

Publication number
JPH0435816Y2
JPH0435816Y2 JP17041685U JP17041685U JPH0435816Y2 JP H0435816 Y2 JPH0435816 Y2 JP H0435816Y2 JP 17041685 U JP17041685 U JP 17041685U JP 17041685 U JP17041685 U JP 17041685U JP H0435816 Y2 JPH0435816 Y2 JP H0435816Y2
Authority
JP
Japan
Prior art keywords
discharge
electrode
flanged
electrodes
insulating support
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired
Application number
JP17041685U
Other languages
Japanese (ja)
Other versions
JPS6279175U (en
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed filed Critical
Priority to JP17041685U priority Critical patent/JPH0435816Y2/ja
Publication of JPS6279175U publication Critical patent/JPS6279175U/ja
Application granted granted Critical
Publication of JPH0435816Y2 publication Critical patent/JPH0435816Y2/ja
Expired legal-status Critical Current

Links

Description

【考案の詳細な説明】 (産業上の利用分野) 本考案は、大規模集積回路、集積回路、半導体
素子、微細構造の電子部品又は各種電子機器等に
対して静電気放電が与える電気的オーバーストレ
ス又は電磁妨害作用或は上記のような各種回路、
部品、各種電子機器等の静電気放電に対する感受
性等を試験評価するために静電気放電を人為的に
生ぜしめる静電気放電シミユレータに関するもの
である。
[Detailed description of the invention] (Field of industrial application) The present invention is designed to reduce the electrical overstress caused by electrostatic discharge to large-scale integrated circuits, integrated circuits, semiconductor elements, microstructured electronic components, and various electronic devices. or electromagnetic interference or various circuits as mentioned above,
This invention relates to an electrostatic discharge simulator that artificially generates electrostatic discharge in order to test and evaluate the susceptibility of parts, various electronic devices, etc. to electrostatic discharge.

(従来の技術) 上記のような各種電子回路、部品、各種電子機
器等に対する静電気放電は、地気から絶縁された
導体より成る帯電体、就中、人体の帯電電荷によ
る静電気放電が最も多く、したがつて、静電気放
電シミユレータの多くは、帯電した人体を等価的
にモデル化したものが用いられている。
(Prior Art) The electrostatic discharges to various electronic circuits, parts, various electronic devices, etc. mentioned above are most often caused by electrostatic charges on charged objects made of conductors insulated from the earth, especially the human body. Therefore, many electrostatic discharge simulators use equivalent models of a charged human body.

第3図は、従来の静電気放電シミユレータの一
例を示す要部回路図で、CCDは帯電した人体の静
電容量と等価の静電容量を有する充放電コンデン
サ、RDは帯電した人体の抵抗と等価の抵抗値を
有する放電抵抗、SEDは放電電極、GAPは放電
間隙、EUTは被試験体である。
Figure 3 is a circuit diagram of the main parts of an example of a conventional electrostatic discharge simulator, where C CD is a charging/discharging capacitor with a capacitance equivalent to that of a charged human body, and R D is the resistance of a charged human body. SED is the discharge electrode, GAP is the discharge gap, and EUT is the test object.

人体の帯電電圧は通常数kVから最高30数kVに
及ぶこともあるので、充放電コンデンサCCDの充
電電圧をOV乃至30数kVの範囲に亙つて設定し
得るように充電電源回路(図示していない)を構
成し、充放電コンデンサCCDの等価静電容量及び
放電抵抗RDの等価抵抗も亦人体の実測値に応じ
て定めるが、何れの値も相当広い変化範囲を有す
るので、代表値として充放電コンデンサCCDの等
価静電容量は50pF乃至250pF、放電抵抗RDの等
価抵抗は100Ω乃至1500Ωの各範囲から適当な固
定値を選択している。
The charging voltage of the human body usually ranges from several kV to a maximum of 30-odd kV, so a charging power supply circuit (not shown) is designed so that the charging voltage of the charging/discharging capacitor C CD can be set in the range of OV to 30-odd kV. The equivalent capacitance of the charging/discharging capacitor C CD and the equivalent resistance of the discharging resistor R D are also determined according to the actual measured values of the human body, but since each value has a fairly wide range of variation, the representative Appropriate fixed values are selected from a range of 50 pF to 250 pF for the equivalent capacitance of the charging/discharging capacitor C CD and 100 Ω to 1500 Ω for the equivalent resistance of the discharging resistor R D.

充放電コンデンサCCDを予め所要電圧に充電し
た後、放電電極SEDを徐々に被試験体EUTに接
近させると、放電間隙GAPの長さと気圧の積が
充放電コンデンサCCDの充電電圧に応じた値に達
した際に生ずる火花放電によつて充放電コンデン
サCCDの電荷が瞬間的に被試験体EUTに加えられ
る。
After charging the charging/discharging capacitor C CD in advance to the required voltage, when the discharging electrode SED is gradually brought closer to the EUT under test, the product of the length of the discharging gap GAP and the atmospheric pressure changes according to the charging voltage of the charging/discharging capacitor C CD . The spark discharge that occurs when this value is reached causes the electric charge of the charging/discharging capacitor C CD to be instantaneously applied to the EUT under test.

(考案が解決しようとする問題点) 静電気放電電流の波形は、原理的には指数関数
曲線に一致するが、放電工学上の火花放電現象特
有の原因によつて実際の放電電流の波形は、原理
的波形とは可成り異なつた波形となる。
(Problem to be solved by the invention) In principle, the waveform of an electrostatic discharge current corresponds to an exponential curve, but due to causes specific to the spark discharge phenomenon in electrical discharge engineering, the actual waveform of the discharge current is The resulting waveform is quite different from the original waveform.

このような波形の変化は、充放電コンデンサ
CCDの電圧、即ち、放電間隙GAPにおける放電開
始電圧の変化に依存することが従来から知られて
いたが、本考案者が静電気放電シミユレータによ
る放電実験を繰り返し行つて検討した結果、次の
ような原因によつても波形変化を生ずることを明
らかにすることが出来た。
This kind of waveform change is due to the charging/discharging capacitor.
It has long been known that the voltage of C CD depends on the change in the discharge starting voltage in the discharge gap GAP, but as a result of repeated discharge experiments using an electrostatic discharge simulator, the inventor of the present invention found the following. We were able to clarify that waveform changes occur due to various causes.

即ち、放電間隙GAPに充放電コンデンサCCD
電荷が供給されると、その初期において火花空間
の導電率が上昇し、その上昇過程において充放電
コンデンサCCDの電荷の一部が火花空間において
失われ、火花放電の生成過程における火花空間の
電界強度が低下し、この電界強度の低下によつて
導電率の上昇作用が弱められ、本来の上昇時間に
対応する軌跡に沿つての導電率の上昇が行われな
くなり、放電電流の立上り時間が、放電間隙
GAPの長さ及び気圧に依存して定まる一定時間
に比し著しく遅れ、その結果、放電電流の波形に
歪を生じ、放電試験の信頼性を低下せしめること
となる。
That is, when the electric charge of the charging/discharging capacitor C CD is supplied to the discharge gap GAP, the conductivity of the spark space increases in the initial stage, and in the rising process, a part of the electric charge of the charging/discharging capacitor C CD is lost in the spark space. During the spark discharge generation process, the electric field strength in the spark space decreases, and this decrease in electric field strength weakens the effect of increasing conductivity, causing the conductivity to increase along the trajectory corresponding to the original rise time. is no longer performed, and the rise time of the discharge current becomes shorter than the discharge gap.
There is a significant delay compared to the fixed time determined depending on the length of the GAP and the atmospheric pressure, and as a result, the waveform of the discharge current is distorted, reducing the reliability of the discharge test.

(問題点を解決するための手段及び作用) 第3図に示した静電気放電シミユレータの放電
電極SEDと、被試験体EUTの一部によつて形成
される放電電極との間における放電間隙GAPに
は、放電電極の表面積及び放電間隙GAPの長さ
に応じて1pF乃至数PF程度の浮遊容量が存在し、
火花放電生成の初期において、浮遊容量の電荷は
火花空間において速やかに消滅するので浮遊容量
の存在を殆ど無視し得るが、浮遊容量の大きさを
意図的に増大させると、次のような作動が行われ
る筈である。
(Means and actions for solving the problem) In the discharge gap GAP between the discharge electrode SED of the electrostatic discharge simulator shown in Fig. 3 and the discharge electrode formed by a part of the EUT under test. There is a stray capacitance of about 1 pF to several PF depending on the surface area of the discharge electrode and the length of the discharge gap GAP.
At the beginning of spark discharge generation, the charge on the stray capacitance quickly disappears in the spark space, so the existence of the stray capacitance can be almost ignored. However, if the size of the stray capacitance is intentionally increased, the following operation occurs. It should be done.

即ち、放電間隙GAPにおける火花放電開始の
初期において、充放電コンデンサCCDの電荷が放
電抵抗RDを介して火花空間に注入されようとす
るが、放電抵抗RD及び放電間隙GAPにおける火
花抵抗により制限されて火花空間に注入される電
荷量は極めて僅かとなる。
That is, at the beginning of the spark discharge in the discharge gap GAP, the charge of the charge/discharge capacitor C CD tries to be injected into the spark space via the discharge resistance R D , but due to the discharge resistance R D and the spark resistance in the discharge gap GAP, The amount of charge that is limited and injected into the spark space is extremely small.

然しながら、浮遊容量の電荷は放電抵抗RD
関係なく放電間隙GAPにおける火花抵抗にのみ
制限されることとなるから、浮遊容量から火花空
間に注入される電荷量は、充放電コンデンサCCD
から注入される電荷量に比し遥かに大となり、放
電間隙GAPにおける導電率の増大に伴つて浮遊
容量の電荷の全てが火花空間にのみ注入される。
However, since the charge of the stray capacitance is limited only by the spark resistance in the discharge gap GAP, regardless of the discharge resistance R D , the amount of charge injected from the stray capacitance into the spark space is equal to the charge/discharge capacitor C C D
The amount of charge injected from the spark gap is much larger than that of the spark, and as the conductivity in the discharge gap GAP increases, all of the charge in the stray capacitance is injected only into the spark space.

そして浮遊容量と放電間隙GAPとを結ぶ電流
径路のインピーダンスを小ならしめることによつ
て浮遊容量から火花空間への電荷の注入を速やか
ならしめることが出来、充放電コンデンサCCD
電荷を殆ど失うことなく放電間隙GAPを閃絡せ
しめて、充放電コンデンサCCDの電荷の殆ど全て
を被試験体EUTに加え得ることとなる。
By reducing the impedance of the current path connecting the stray capacitance and the discharge gap GAP, charge can be quickly injected from the stray capacitance into the spark space, and most of the charge in the charge/discharge capacitor C CD is lost. By flashing the discharge gap GAP without causing any damage, almost all of the charge in the charging/discharging capacitor C CD can be applied to the EUT under test.

尚、被試験体EUTに加えられるエネルギは、
充放電コンデンサCCDから放電間隙GAPを通して
放出される電流によつてのみ定まり、浮遊容量の
電荷には無関係である。
The energy applied to the EUT under test is
It is determined only by the current discharged from the charge/discharge capacitor C CD through the discharge gap GAP, and is independent of the charge of stray capacitance.

本考案は、放電間隙に存在する浮遊容量を意図
的に大ならしめるために放電間隙と並列に静電容
量素子を接続すると共に、この並列静電容量素子
と放電間隙とを結ぶ電流径路のインピーダンスを
極めて小ならしめることによつて、充放電コンデ
ンサの静電容量、放電抵抗の抵抗値、放電開始電
圧、即ち、放電間隙の長さ等を変化せしめた場合
においても放電電流の波形の歪及び放電電流の立
上り時間等の電気的特性を従来に比し著しく改善
し得ると共に、火花生成機構の不確定性によつて
放電毎に生ずる上記電気的特性のばらつきを極め
て小ならしる得る静電気放電シミユレータを実現
することを目的とする。
This invention connects a capacitance element in parallel with the discharge gap in order to intentionally increase the stray capacitance existing in the discharge gap, and also reduces the impedance of the current path connecting this parallel capacitance element and the discharge gap. By making this extremely small, distortion of the waveform of the discharge current and Electrostatic discharge that can significantly improve electrical characteristics such as the rise time of discharge current compared to conventional ones, and that can minimize variations in the electrical characteristics that occur from discharge to discharge due to uncertainty in the spark generation mechanism. The purpose is to realize a simulator.

第1図は、本考案の一実施例の要部を示す図
で、BED1及びBED2は鍔状対向電極、SED1及び
SED2は放電電極、CMF1及びCMF2は接続金具
で、各弾力性を有する導体より成り、例えば、第
2図に平面図を示すように中心部に孔隙を穿つた
リング状部分の周縁から接触片を放射状に突設せ
しめ、接続金具CMF1の場合には、接触片を斜め
下方に折曲げ、その端部が鍔状対向電極BED1
内周辺における上面に圧接され、接続金具CMF2
の場合には、接触片の端部が鍔状対向電極BED2
の内周辺における下面に圧接されるように形成し
てある。接続金具CMF1及びCMF2の各中心部に
穿つた孔隙は、その直径を放電電極SED1及び
SED2の各直径より適宜小ならしめて、放電電極
SED1及びSED2が接続金具CMF1及びCMF2の孔
隙を通り抜けることなく、孔隙の内周縁に圧接さ
れるように形成してある。第2図には、接触片を
4本突設せしめた場合を例示してあるが、3本以
上であれば任意複数本を突設せしめて差支えな
い。SUP1は絶縁支持体で、適当な硬質合成樹脂
等より成り、鍔状対向電極BED1及びBED2の対
向間隙内に介在せしめると共に、鍔状対向電極
BED1及びBED2の外周を密閉するように設けて
ある。
FIG. 1 is a diagram showing the main parts of an embodiment of the present invention, in which BED 1 and BED 2 are flanged counter electrodes, SED 1 and
SED 2 is a discharge electrode, and CMF 1 and CMF 2 are connection fittings, each made of a conductor with elasticity. In the case of the connecting metal fitting CMF 1 , the contact piece is provided to protrude radially, and in the case of the connecting metal fitting CMF 1, the contact piece is bent diagonally downward, and its end is pressed against the upper surface of the inner periphery of the brim-shaped counter electrode BED 1 .
In this case, the end of the contact piece is a flanged counter electrode BED 2
It is formed so as to be pressed against the lower surface of the inner periphery. The diameter of the hole drilled in the center of each of the connecting fittings CMF 1 and CMF 2 is the same as that of the discharge electrodes SED 1 and CMF 2.
Make the diameter of each discharge electrode appropriately smaller than that of SED 2 .
SED 1 and SED 2 are formed so as to be pressed against the inner peripheral edge of the connecting fittings CMF 1 and CMF 2 without passing through the openings. Although FIG. 2 shows an example in which four contact pieces are provided protrudingly, any number of three or more contact pieces may be provided protrudingly. SUP 1 is an insulating support made of a suitable hard synthetic resin, etc., and is interposed in the opposing gap between the brim-shaped counter electrodes BED 1 and BED 2 .
The outer peripheries of BED 1 and BED 2 are sealed.

尚、鍔状対向電極BED1及びBED2の各内周縁
からの沿面放電を防止するために、各内周縁を絶
縁体で覆うことが望ましい。
In addition, in order to prevent creeping discharge from each inner periphery of the brim-shaped counter electrodes BED 1 and BED 2 , it is desirable to cover each inner periphery with an insulator.

SUP2はほぼ筒状の絶縁支持体で、絶縁支持体
SUP1と同様の材質より成り、その鍔状突出部分
を螺子止め又は適当な接着剤を用いる等の手段に
よつて絶縁支持体SUP1と一体に結合せしめ、筒
状絶縁支持体SUP2の中空内部と絶縁支持体SUP1
に穿つた孔隙とが連通するように形成してある。
SUP3も亦ほぼ筒状の絶縁支持体で、絶縁支持体
SUP1と同様の材質より成り、その鍔状突出部分
を螺子止め又は適当な接着剤を用いる等の手段に
よつて絶縁支持体SUP1と一体に結合せしめ、筒
状絶縁支持体SUP3に設けた螺子孔と絶縁支持体
SUP1に穿つた孔隙とが連通するように形成して
ある。
SUP 2 is an almost cylindrical insulating support, with an insulating support
It is made of the same material as SUP 1 , and its brim-like protruding part is integrally connected to insulating support SUP 1 by means such as screwing or using a suitable adhesive, and the hollow part of cylindrical insulating support SUP 2 is Internal and insulating support SUP 1
The holes are formed in such a way that they communicate with each other.
SUP 3 also has an approximately cylindrical insulating support;
It is made of the same material as SUP 1 , and its brim-like protruding part is integrally connected to insulating support SUP 1 by means such as screwing or using a suitable adhesive, and is attached to cylindrical insulating support SUP 3. screw hole and insulating support
It is formed so that it communicates with the hole drilled in SUP 1 .

FSは放電間隙の調整素子で、マイクロメータ
等において用いられる送り螺子機構より成り、回
転操作つまみを正又は逆方向に回転せしめること
によつて可動軸を前進又は後退せしめ得ると共
に、可動軸の移動距離を目盛によつて指示し得る
よに形成し、筒状絶縁支持体SUP2の中空内部に
固く嵌入すると共に、筒状絶縁支持体SUP2の外
周に締付リングを装着するか、適当な接着剤又は
止め螺子を用いる等の手段によつて筒状絶縁支持
体SUP2に固定して取り付け、その可動軸の内端
に放電電極SED1を固着せしめてある。ZSは零調
整螺子で、筒状絶縁支持体SUP3に設けた螺子孔
に螺合せしめ、その内端に放電電極SED2を固着
支持せしめてある。ISは絶縁用螺子で、筒状絶縁
支持体SUP3に設けた螺子孔に螺合せしめ、零調
整螺子ZSの頂部が直接外部に露出するのを防止
する。
FS is a discharge gap adjustment element, which consists of a feed screw mechanism used in micrometers, etc., and can move the movable shaft forward or backward by rotating the rotation control knob in the forward or reverse direction, and can also move the movable shaft. It is formed so that the distance can be indicated by a scale, and is firmly fitted into the hollow interior of the cylindrical insulating support SUP 2 , and a tightening ring is attached to the outer periphery of the cylindrical insulating support SUP 2 , or a suitable It is fixedly attached to a cylindrical insulating support SUP 2 by using adhesive or a set screw, and a discharge electrode SED 1 is fixed to the inner end of its movable shaft. ZS is a zero adjustment screw, which is screwed into a screw hole provided in the cylindrical insulating support SUP 3 , and the discharge electrode SED 2 is fixedly supported at the inner end thereof. IS is an insulating screw that is screwed into a screw hole provided in the cylindrical insulating support SUP 3 to prevent the top of the zero adjustment screw ZS from being directly exposed to the outside.

尚、放電間隙の調整素子FSの中心軸、放電電
極SED1及びSED2の各中心を連ねる線及び零調整
螺子ZSの中心軸が一軸をなすように、又はほぼ
一軸をなすように形成する。
The center axis of the discharge gap adjustment element FS, the line connecting the centers of the discharge electrodes SED 1 and SED 2 , and the center axis of the zero adjustment screw ZS are formed so as to form one axis or almost one axis.

CTTは棒状導体より成る接触子で、先端を先
鋭ならしめ、後端部を絶縁支持体SUP1の外周面
から中心方向に設けた螺子孔に螺合せしめるか、
固く嵌入せしめ、後端面が鍔状対向電極BED1
(接地側電極)の周縁に圧着して電気的に接続さ
れるように固定してある。HOLは絶縁保持筒で、
その前端部に設けた孔隙部に絶縁支持体SUP1
周辺部を固く嵌入し、必要に応じて接着剤又は止
め螺子等を用いて絶縁保持筒HOLと絶縁支持体
SUP1とを一体に結合せしめると共に、絶縁保持
筒HOLの中空内部に挿入された絶縁支持体SUP1
の周辺部分の一部を切欠いて鍔状対向電極BED2
の周辺の一部を絶縁保持筒HOLの中空内部に露
出せしめるか、鍔状対向電極BED2に接続した引
出線の端部を絶縁保持筒HOLの中空内部に引き
出してある。
The CTT is a contact made of a rod-shaped conductor with a sharp tip and a rear end screwed into a screw hole provided from the outer circumferential surface of the insulating support SUP 1 toward the center.
The counter electrode BED 1 is firmly inserted and has a brim-like rear end surface.
It is fixed to the periphery of the (ground side electrode) so that it is crimped and electrically connected. HOL is an insulated holding tube,
Firmly fit the peripheral part of the insulating support SUP 1 into the hole provided at the front end, and use adhesive or set screws as necessary to connect the insulating support cylinder HOL and the insulating support.
The insulating support SUP 1 is integrated with SUP 1 and inserted into the hollow interior of the insulating holding cylinder HOL.
A part of the peripheral part of the brim-shaped counter electrode BED 2 is cut out
A part of the periphery of the insulation holding cylinder HOL is exposed to the hollow interior of the insulation holding cylinder HOL, or the end of the leader wire connected to the brim-like counter electrode BED 2 is drawn out into the hollow inside of the insulation holding cylinder HOL.

尚、絶縁支持体SUP1と絶縁保持筒HOLを一体
に結合せとめるに当つて、接触子CTTの中心軸
方向と絶縁保持筒HOLの中心軸方向とを、ほぼ
一致せしめることによつて放電試験時の取扱操作
を容易ならしめることが出来る。
In addition, when joining the insulating support SUP 1 and the insulating holding tube HOL together, the discharge test was carried out by making the center axis direction of the contactor CTT almost coincide with the central axis direction of the insulating holding tube HOL. This makes it easier to handle the time.

図には示していないが、絶縁保持筒HOLの中
空内部に充放電コンデンサ及び放電抵抗を内装す
ると共に、絶縁保持筒HOLの後端部又は側壁等
から充電電源回路への接続線を導入し、充放電コ
ンデンサの高電位側電極を放電抵抗を介して鍔状
対向電極BED2(高圧側電極)に接続すると共に、
充電電源回路への接続線の中、高電位側の線に接
続し、又、充放電コンデンサの低電位側電極を充
電電源回路への接続線の中、低電位側の線に接続
し、更に、放電間隙の調整素子FSの適宜個所又
は接触子CTTのように鍔状対向電極BED1(接地
側電極)と電気的に接続されている個所と地気間
に適当な高抵抗を接続する。
Although not shown in the figure, a charging/discharging capacitor and a discharging resistor are installed inside the hollow interior of the insulating holding cylinder HOL, and a connecting wire to the charging power supply circuit is introduced from the rear end or side wall of the insulating holding cylinder HOL, Connect the high potential side electrode of the charge/discharge capacitor to the flanged counter electrode BED 2 (high voltage side electrode) via the discharge resistor,
Connect to the high potential side of the connection wire to the charging power supply circuit, connect the low potential side electrode of the charge/discharge capacitor to the low potential side of the connection wire to the charging power supply circuit, and , connect an appropriate high resistance between an appropriate location of the discharge gap adjustment element FS or a location electrically connected to the brim-shaped counter electrode BED 1 (ground side electrode) and the ground, such as a contactor CTT.

このように構成した本案静電気放電シミユレー
タにおいては、放電間隙の調整素子FSのつまみ
を操作して目盛を例に一致せしめ、零調整螺子
ZSを回転し、放電電極SED1及びSED2を互いに
密着させて零調整を行つた後、絶縁用螺子ISを螺
合せしめ、次いで、調整素子FSのつまみを操作
しながら目盛を読んで放電間隙を所要の長さに調
整する。放電電極SED1及びSED2の密着を確かめ
るには、例えば、充電電源回路を開放状態に保
ち、零調整螺子ZSと調整素子FSの適宜個所又は
接触子CTT間等の導通を回路試験器等によつて
検出する。
In the electrostatic discharge simulator of the present invention configured in this way, the knob of the discharge gap adjustment element FS is operated to match the scale as in the example, and the zero adjustment screw is adjusted.
After performing zero adjustment by rotating ZS and bringing the discharge electrodes SED 1 and SED 2 into close contact with each other, screw the insulating screw IS on, and then adjust the discharge gap by reading the scale while operating the knob of the adjustment element FS. Adjust to the required length. To check whether the discharge electrodes SED 1 and SED 2 are in close contact, for example, keep the charging power supply circuit open and check the continuity between the zero adjustment screw ZS and the adjustment element FS or between the contact CTT using a circuit tester, etc. Detect by tilting.

又、調整素子FSのつまみを、例えば正方向に
回転せしめると可動軸が前進し、接続金具CMF1
の弾力に抗して放電電極SED1が前進せしめられ、
つまみを逆方向に回転せしめると可動軸が後退
し、放電電極SED1が後退することとなるから、
つまみを正逆方向に回転せしめることによつて放
電間隙の長さの調整を行うことが出来る。
Also, when the knob of the adjustment element FS is rotated, for example, in the positive direction, the movable shaft moves forward, and the connection fitting CMF 1
The discharge electrode SED 1 is moved forward against the elasticity of the
If the knob is rotated in the opposite direction, the movable shaft will move back, and the discharge electrode SED 1 will move back.
By rotating the knob in forward and reverse directions, the length of the discharge gap can be adjusted.

放電電極SED1又はSED2が前進する際には、接
続金具CMF1又はCMF2が押圧され、周縁から放
射状に突設した接触片の端部が鍔状対向電極
BED1又はSED2の表面に圧接された状態で半径
方向に摺動し、接続金具CMF1又はCMF2の姿勢
が低くなるので、放電電極SED1又はSED2の前進
を妨げることなく、逆に、放電電極SED1又は
SED2が後退する場合には、接続金具CMF1又は
CMF2が各弾力により復旧して姿勢が高くなるの
で、鍔状対向電極BED1又はBED2と放電電極
SED1又はSED2間の電気的接続が断たれるおそれ
はない。
When the discharge electrode SED 1 or SED 2 moves forward, the connection fitting CMF 1 or CMF 2 is pressed, and the end of the contact piece protruding radially from the periphery connects to the flanged counter electrode.
It slides in the radial direction while being pressed against the surface of BED 1 or SED 2 , and the posture of the connection fitting CMF 1 or CMF 2 is lowered, so that it does not impede the forward movement of discharge electrode SED 1 or SED 2 , and vice versa. , discharge electrode SED 1 or
If SED 2 is retracted, connect fitting CMF 1 or
Since CMF 2 recovers due to each elasticity and becomes higher in posture, the flange-shaped counter electrode BED 1 or BED 2 and the discharge electrode
There is no possibility that the electrical connection between SED 1 or SED 2 will be broken.

放電間隙の長さを所要値に調整した後、接触子
CTTの先端を被試験体の所要個所に接触せしめ
て充放電コンデンサを充電すると、その充電電圧
が放電間隙の長さに対応する電圧に達した際に放
電が行われる。
After adjusting the length of the discharge gap to the required value, the contact
When a charging/discharging capacitor is charged by bringing the tip of the CTT into contact with a desired location on the test object, discharging occurs when the charging voltage reaches a voltage corresponding to the length of the discharge gap.

(考案の効果) 本案静電気放電シミユレータにおいては、鍔状
対向電極BED1及びBED2によつて放電間隙と並
列の容量が形成されると共に、この並列容量と放
電間隙間は接続金具CMF1及びCMF2並に放電電
極SED1及びSED2によつて接続されているので、
この接続部分におけるインピーダンスは極めて小
である。
(Effect of the invention) In the electrostatic discharge simulator of the present invention, a capacitance in parallel with the discharge gap is formed by the flanged counter electrodes BED 1 and BED 2 , and this parallel capacitance and the discharge gap are connected to the connecting metal fittings CMF 1 and CMF. 2 and are connected by discharge electrodes SED 1 and SED 2 ,
The impedance at this connection is extremely small.

そして充放電コンデンサの充電に際して、予め
接触子CTTを被試験体に接触せしめた状態で充
放電コンデンサを充電する場合には、絶縁保持筒
HOLに内装された放電抵抗、鍔状対向電極BED2
及びBED1、接触子CTT並びに被試験体を介して
鍔状対向電極BED1及びBED2より成る並列容量
が充放電コンデンサと共に充電され、接触子
CTTを被試験体に接触せしめない状態で充放電
コンデンサを充電する場合には、放電間隙の調整
素子FSの適宜個所又は接触子CTT等のように鍔
状対向電極BED1と電気的に接続されている個所
と地気間に挿入した高抵抗及び絶縁保持筒HOL
に内装された放電抵抗を介して鍔状対向電極
BED1及びBED2より成る並列容量も亦充電され、
充放電コンデンサの放電時には、並列容量からの
電荷が大量に、かつ速やかに火花空間に注入さ
れ、充放電コンデンサの電荷を殆ど失うことなく
放電間隙を閃絡せしめて、充放電コンデンサの電
荷の殆ど全てを被試験体に加えることが出来、充
放電コンデンサの静電容量、放電抵抗の抵抗値及
び放電間隙の長さ等を変化せしめて実験を行つた
結果によれば、放電電流の立上り時間及び波形の
歪等の電気的特性を従来に比し著しく改善し、放
電毎における上記電気的特性のばらつきも極めて
小なることを確かめることが出来た。
When charging the charge/discharge capacitor, when charging the charge/discharge capacitor with the contactor CTT in contact with the test object in advance, the insulating holding tube
Discharge resistor built into HOL, flanged counter electrode BED 2
A parallel capacitor consisting of the flanged counter electrodes BED 1 and BED 2 is charged together with the charge/discharge capacitor through the contact CTT and the test object, and the contact
When charging the charging/discharging capacitor without bringing the CTT into contact with the test object, connect it electrically to the flanged counter electrode BED 1 at appropriate points on the discharge gap adjustment element FS or at the contactor CTT, etc. High resistance and insulation holding tube HOL inserted between the location and the ground air
A flanged counter electrode is connected through a discharge resistor built into the
The parallel capacitance consisting of BED 1 and BED 2 is also charged,
When the charge/discharge capacitor is discharged, a large amount of charge from the parallel capacitor is quickly injected into the spark space, causing the discharge gap to flash without losing much of the charge/discharge capacitor's charge. According to the results of experiments conducted by changing the capacitance of the charge/discharge capacitor, the resistance value of the discharge resistor, the length of the discharge gap, etc., it was found that the rise time and It was confirmed that the electrical characteristics such as waveform distortion were significantly improved compared to the conventional method, and that the variation in the electrical characteristics between discharges was also extremely small.

尚、鍔状対向電極BED1及びBED2より成る並
列容量の充電のために設けた高抵抗の抵抗値を被
試験体のインピーダンスに比し適当に大ならしめ
ておけば、放電電流がこの高抵抗に分流するおそ
れはない。
In addition, if the resistance value of the high resistance provided for charging the parallel capacitance consisting of the brim-shaped counter electrodes BED 1 and BED 2 is made appropriately larger than the impedance of the test object, the discharge current will be increased by this high resistance. There is no risk of the flow being diverted to

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は、本考案の一実施例を示す図、第2図
は、その構成部品の構造の一例を示す平面図、第
3図は、従来の静電気放電シミユレータの一例を
示す図で、BED1及びBED2……鍔状対向電極、
SED1及びSED2……放電電極、CMF1及びCMF2
……接続金具、SUP1乃至SUP3……絶縁支持体、
FS……放電間隙の調整素子、ZS……零調整螺
子、IS……絶縁用螺子、CTT……接触子、HOL
……絶縁保持筒、CCD……充放電コンデンサ、RD
……放電抵抗、SED……放電電極、GAP……放
電間隙、EUT……被試験体である。
Fig. 1 is a diagram showing an embodiment of the present invention, Fig. 2 is a plan view showing an example of the structure of its component parts, and Fig. 3 is a diagram showing an example of a conventional electrostatic discharge simulator. 1 and BED 2 ...flange-shaped counter electrode,
SED 1 and SED 2 ...Discharge electrode, CMF 1 and CMF 2
... Connection fittings, SUP 1 to SUP 3 ... Insulating support,
FS...discharge gap adjustment element, ZS...zero adjustment screw, IS...insulation screw, CTT...contact, HOL
...Insulation holding cylinder, C CD ...Charging and discharging capacitor, R D
...discharge resistance, SED...discharge electrode, GAP...discharge gap, EUT...test object.

Claims (1)

【実用新案登録請求の範囲】[Scope of utility model registration request] 適宜間隔を隔てて対向せしめた第1及び第2の
鍔状対向電極と、この第1及び第2の鍔状対向電
極の各中心部における孔隙を介して対向せしめた
第1及び第2の放電電極と、前記第1の鍔状対向
電極及び前記第1の放電電極間に介在して両電極
に圧接せしめられ、弾力性を有する導体より成る
第1の接続金具と、前記第2の鍔状対向電極及び
前記第2の放電電極間に介在して両電極に圧接せ
しめられ、弾力性を有する導体より成る第2の接
続金具と、前記第1及び第2の鍔状対向電極並に
前記第1及び第2の放電電極の各外周に設けた絶
縁支持体と、可動軸の内端に前記第1の放電電極
を支持せしめると共に、軸方向を前記第1及び第
2の放電電極の各中心を結ぶ方向にほぼ一致せし
めて前記絶縁支持体に支持せしめた送り螺子機構
より成る放電間隙の調整素子と、内端に前記第2
の放電電極を支持せしめると共に、前記絶縁支持
体に螺着せしめた零調整螺子と、前記第1の鍔状
対向電極に接続した導体より成る接触子と、放電
抵抗を介して前記第2の鍔状対向電極に接続され
る充放電コンデンサを内装し、前記絶縁支持体に
取り付けられた絶縁保持筒とを備えたことを特徴
とする静電気放電シミユレータ。
First and second flanged counter electrodes facing each other at an appropriate interval, and first and second discharges facing each other through a hole in the center of each of the first and second flanged opposing electrodes. a first connecting fitting made of a conductor having elasticity and interposed between the electrode, the first flanged counter electrode and the first discharge electrode and pressed against both electrodes; and the second flanged electrode. A second connecting fitting made of a conductor having elasticity is interposed between the counter electrode and the second discharge electrode and is brought into pressure contact with both electrodes; The first discharge electrode is supported by an insulating support provided on the outer periphery of each of the first and second discharge electrodes, and the first discharge electrode is supported by the inner end of a movable shaft, and the axial direction is aligned with the center of each of the first and second discharge electrodes. a discharge gap adjustment element comprising a feed screw mechanism supported by the insulating support body in a direction substantially aligned with the direction in which the second
a zero adjustment screw screwed onto the insulating support, a contact made of a conductor connected to the first flanged opposing electrode, and the second flanged electrode via a discharge resistor. 1. An electrostatic discharge simulator comprising: a charging/discharging capacitor connected to a shaped counter electrode; and an insulating holding tube attached to the insulating support.
JP17041685U 1985-11-07 1985-11-07 Expired JPH0435816Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17041685U JPH0435816Y2 (en) 1985-11-07 1985-11-07

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17041685U JPH0435816Y2 (en) 1985-11-07 1985-11-07

Publications (2)

Publication Number Publication Date
JPS6279175U JPS6279175U (en) 1987-05-20
JPH0435816Y2 true JPH0435816Y2 (en) 1992-08-25

Family

ID=31105126

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17041685U Expired JPH0435816Y2 (en) 1985-11-07 1985-11-07

Country Status (1)

Country Link
JP (1) JPH0435816Y2 (en)

Also Published As

Publication number Publication date
JPS6279175U (en) 1987-05-20

Similar Documents

Publication Publication Date Title
US5523699A (en) Method and apparatus for testing semiconductor device
NL7605270A (en) METHOD AND DEVICE FOR FORMING AN ELECTRICAL CONDUCTIVE CONNECTION BETWEEN COMPONENTS AND / OR CIRCUITS OF SMALL DIMENSIONS.
CN109406851B (en) Coaxial type resistance voltage divider and high-frequency response compensation method thereof
CN107229007B (en) Method for testing impact breakdown in air of composite insulator
CA1115366A (en) Connector plug for vehicle electrical tester
JPH0435816Y2 (en)
US4742427A (en) Electrostatic discharge simulation
US4875133A (en) Simulating staticelectricity discharges
US3316467A (en) Spark gap electronic component
JPH0435817Y2 (en)
JP3315683B2 (en) Electrical property measurement device
US2795738A (en) Short duration, high intensity spark gap arrangement
JPH0435819Y2 (en)
JPH0435818Y2 (en)
JPS6217731Y2 (en)
JPH0528532Y2 (en)
JP2886779B2 (en) Ground rod for surge arrester
JP2807268B2 (en) Surge voltage / current generator
JP2593951Y2 (en) Static electricity generator
JP2000061366A (en) Powder spray device with external and internal charging
JPH0528531Y2 (en)
CN109873572A (en) A kind of surge voltage generating device of testing film insulating materials dielectric strength
US4803594A (en) Wave-shaped electrostatic discharge
US5923130A (en) Repetitive and constant energy impulse current generator
CN111769823B (en) Subnanosecond leading edge pulse power supply based on coaxial capacitor and generation method thereof