JPH0528530Y2 - - Google Patents
Info
- Publication number
- JPH0528530Y2 JPH0528530Y2 JP7471285U JP7471285U JPH0528530Y2 JP H0528530 Y2 JPH0528530 Y2 JP H0528530Y2 JP 7471285 U JP7471285 U JP 7471285U JP 7471285 U JP7471285 U JP 7471285U JP H0528530 Y2 JPH0528530 Y2 JP H0528530Y2
- Authority
- JP
- Japan
- Prior art keywords
- discharge
- charging
- discharging
- conductor
- human body
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 239000003990 capacitor Substances 0.000 claims description 23
- 238000007599 discharging Methods 0.000 claims description 21
- 239000004020 conductor Substances 0.000 claims description 16
- 238000009413 insulation Methods 0.000 claims 1
- 238000010586 diagram Methods 0.000 description 7
- 230000000694 effects Effects 0.000 description 3
- 230000005672 electromagnetic field Effects 0.000 description 3
- 239000012212 insulator Substances 0.000 description 2
- 230000006866 deterioration Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Landscapes
- Testing Of Individual Semiconductor Devices (AREA)
- Testing Relating To Insulation (AREA)
- Testing Electric Properties And Detecting Electric Faults (AREA)
- Tests Of Electronic Circuits (AREA)
Description
【考案の詳細な説明】
(産業上の利用分野)
本考案は、大規模集積回路、集積回路、半導体
素子、微細構造の電子部品又は各種電子機器等に
対して静電気放電が与える電気的オーバーストレ
ス又は電磁妨害作用或は上記各種電子回路、部品
及び機器等の静電気放電に対する感受性等を試験
評価するために、静電気放電を人為的に生ぜしめ
る静電気放電シミユレータに関するものである。[Detailed description of the invention] (Field of industrial application) The present invention is designed to reduce the electrical overstress caused by electrostatic discharge to large-scale integrated circuits, integrated circuits, semiconductor elements, microstructured electronic components, and various electronic devices. The present invention also relates to an electrostatic discharge simulator that artificially generates electrostatic discharge in order to test and evaluate electromagnetic interference or the susceptibility to electrostatic discharge of the various electronic circuits, parts, equipment, etc. mentioned above.
(従来の技術)
上記のような各種電子回路、部品及び機器等に
対する静電気放電は、地気から絶縁された導体よ
り成る帯電体、就中、人体の帯電電荷による静電
気放電が最も多く、したがつて、従来の静電気放
電シミユレータの多くは、帯電人体を等価的にモ
デル化したものが用いられている。(Prior Art) The electrostatic discharges to the various electronic circuits, parts, and equipment mentioned above are most often caused by electrostatic charges from charged objects made of conductors insulated from the earth, especially from the human body. Therefore, many conventional electrostatic discharge simulators use equivalent models of a charged human body.
第5図は、従来の静電気放電シミユレータの一
例を示す図で、SDCは充電用電源、SWSはリレー
スイツチ等により成る電源スイツチ、SWDはリレ
ースイツチSWSの開閉制御用スイツチ、SDはリレ
ースイツチSWSの駆動用電源、RCは充電抵抗、
CCDは充放電コンデンサ、RDは放電抵抗、SEDは
放電電極、CASIは絶縁材料より成る筺体、RGW
は帰線(リターン・グラウンド・ワイヤ)で、そ
の一端を充放電コンデンサCCDの接地電極側に直
接接続してある。GAPは放電間隙、EUTは被試
験体である。 Figure 5 is a diagram showing an example of a conventional electrostatic discharge simulator, where S DC is a charging power source, SW S is a power switch consisting of a relay switch, etc., SW D is a switch for controlling the opening/closing of the relay switch SW S , and S D is the power supply for driving the relay switch SW S , R C is the charging resistor,
C CD is a charge/discharge capacitor, R D is a discharge resistor, SED is a discharge electrode, CAS I is a casing made of insulating material, RGW
is the return wire (return ground wire), and one end of it is directly connected to the ground electrode side of the charging/discharging capacitor C CD . GAP is the discharge gap, and EUT is the test object.
人体の帯電電圧は通常数kVから10数kVに達
し、場合によつては最高30数kVに及ぶこともあ
るので、上記従来の静電気放電シミユレータにお
いても充電用電源SDCの出力電圧を0V乃至30数
kVの範囲に亙つて可変ならしめ、充放電コンデ
ンサCCDの充電電圧を各種所要値に設定し得るよ
うに構成している。 The charging voltage of the human body usually reaches from several kV to 10-odd kV, and in some cases it can reach up to 30-odd kV. Therefore, in the conventional electrostatic discharge simulator mentioned above, the output voltage of the charging power supply S DC can be set to 0 V or more. 30 numbers
It is configured to be variable over a range of kV, so that the charging voltage of the charging/discharging capacitor C CD can be set to various required values.
又、充放電コンデンサCCDの静電容量及び放電
抵抗RDの抵抗は、帯電した人体の静電容量及び
抵抗と等価ならしめるが、人体の静電容量及び抵
抗の実測値は相当広い変化範囲を有し、代表値と
して充放電コンデンサCCDの等価静電容量は50pF
乃至250pF、放電抵抗RDの等価抵抗は100Ω乃至
1500Ωの各範囲から適当な固定値を選択してい
る。 In addition, the capacitance of the charging/discharging capacitor C CD and the resistance of the discharging resistor R D are made equivalent to the capacitance and resistance of a charged human body, but the actual values of the capacitance and resistance of the human body vary over a fairly wide range. As a typical value, the equivalent capacitance of the charge/discharge capacitor C CD is 50 pF.
250pF to 250pF, the equivalent resistance of discharge resistance R D is 100Ω to
An appropriate fixed value is selected from each range of 1500Ω.
(本考案が解決しようとする問題点)
第5図に示した従来の静電気放電シミユレータ
においては、充放電コンデンサCCDを予め所要電
圧に充電した後、帰線RGWの先端を被試験体
EUTの接地端子等に接続し、放電電極を徐々に
被試験体EUTに接近(又は直接接触)させると、
放電間隙GAPの長さと気圧との積が充放電コン
デンサCCDの充電電圧に応じた値に達した際に生
ずる火花放電(又は接触導通)によつて充放電コ
ンデンサCCDの電荷が瞬間的に被試験体EUTに加
えられ、帰線RGWを介して充放電コンデンサCCD
の接地電極に戻る。(Problem to be solved by the present invention) In the conventional electrostatic discharge simulator shown in Fig. 5, after charging the charging/discharging capacitor C CD to the required voltage in advance, the tip of the return wire RGW is connected to the test object.
Connect it to the ground terminal of the EUT, etc., and gradually bring the discharge electrode closer to (or come into direct contact with) the EUT under test.
When the product of the length of the discharge gap GAP and the atmospheric pressure reaches a value corresponding to the charging voltage of the charge/discharge capacitor C CD , the charge of the charge/discharge capacitor C CD is instantaneously reduced by the spark discharge (or contact conduction). A charging/discharging capacitor C CD is added to the EUT under test and is connected to the return line RGW.
Return to the ground electrode.
この帰線RGWは通常1m乃至2mの導線が用い
られるが、この帰線に分布するインダクタンス分
は帰線の長さ及び直径に応じて定まるばかりでな
く、帰線の布設形状、即ち、帰線が垂下又は緊張
状態の何れであるか等のような帰線自体の状態及
び帰線の周囲状況に応じて定まる帰線との間の相
対的電磁環境等によつて帰線の分布インダクタン
スが、概ね1μH乃至2.5μHの範囲に亙つて変化す
る。この分布インダクタンスの変化は、放電電流
の波形に変化を与えるのみならず、誘導電磁界及
び放射電磁界のレベル及びTE,TM,TEM等の
各モードを大幅に変化させることとなり、その結
果被試験体EUTに対する電磁妨害効果が大きく
変動し、放電試験の再現性が著しく害われる欠点
を有する。 This return wire RGW usually uses a 1m to 2m conducting wire, but the inductance distributed in this return wire is determined not only according to the length and diameter of the return wire, but also the configuration of the return wire, that is, the return wire The distributed inductance of the retrace wire is determined by the relative electromagnetic environment between the retrace wire and the retrace wire, which is determined depending on the state of the retrace wire itself, such as whether it is drooping or under tension, and the surrounding conditions of the retrace wire. It varies over a range of approximately 1 μH to 2.5 μH. This change in distributed inductance not only changes the waveform of the discharge current, but also significantly changes the levels of the induced and radiated electromagnetic fields and modes such as TE, TM, and TEM. The disadvantage is that the electromagnetic interference effect on the body EUT fluctuates greatly, significantly impairing the reproducibility of discharge tests.
(問題点を解決するための手段及び作用)
本考案は、上記従来の欠点を除くために、筺体
を導体を以て形成し、充放電コンデンサの接地側
電極を筺体を介して操作者の人体及び帰線に接続
されるように構成し、人体と地気及び人体と被試
験体間に存在する浮遊容量を介して高周波電流の
帰路を帰線と並列に形成せしめることにより、放
電電流の波形をほぼ一定に保ち、誘導電磁界及び
放射電磁界のレベル及びモードを安定に保つて放
電試験の再現性の良好な静電気放電シミユレータ
を実現することを目的とする。(Means and effects for solving the problems) In order to eliminate the above-mentioned conventional drawbacks, the present invention forms the housing with a conductor, and connects the ground side electrode of the charging/discharging capacitor to the human body of the operator and the human body through the housing. The waveform of the discharge current can be approximately The purpose is to realize an electrostatic discharge simulator with good reproducibility in discharge tests by keeping the level and mode of the induced electromagnetic field and the radiated electromagnetic field stable.
(実施例)
第1図は、本考案の一実施例を示す断面図で、
CASCは筒状導体より成る筺体、SEDは放電電極
で、図には球体より成る場合を例示してあるが、
針端状電極を以て形成してもよい。ISN1は絶縁
体で、筺体CASCの一端と放電電極SED間に介在
せしめてある。TERは充電用電源回路(図示し
ていない)の接続端子で、筺体CASCの他端に固
着した絶縁端壁INS2のほぼ中心部に固定して取
付けてある。CSWは線又は棒状の支持導体で、
一端に端子TERを固着し、他端に放電抵抗RDを
介して放電電極SEDを固定して取付けてある。
CCD1,CCD2,……は充放電コンデンサで、各一方
の電極を支持導体CSWに固着し、各他方の電極
を筺体CASCの内壁に固着してある。RGWは帰
線で、その一端を導体より成る筺体CASCの適宜
個所に固着してある。(Example) FIG. 1 is a sectional view showing an example of the present invention.
CAS C is a housing made of a cylindrical conductor, SED is a discharge electrode, and the figure shows an example of a case made of a sphere.
It may also be formed using a needle-end electrode. ISN 1 is an insulator and is interposed between one end of the housing CAS C and the discharge electrode SED. TER is a connection terminal for a charging power supply circuit (not shown), and is fixedly attached to approximately the center of the insulating end wall INS 2 fixed to the other end of the casing CAS C. CSW is a wire or rod-shaped supporting conductor.
A terminal TER is fixed to one end, and a discharge electrode SED is fixed and attached to the other end via a discharge resistor R D.
C CD1 , C CD2 , . . . are charging/discharging capacitors, each of which has one electrode fixed to the support conductor CSW, and each other electrode fixed to the inner wall of the casing CAS C. RGW is a return wire, and one end of it is fixed to an appropriate location on the casing CAS C made of a conductor.
本案シミユレータにおいても放電抵抗RD及び
充放電コンデンサCCD1,CCD2,……の合成容量を
従来同様、人体抵抗及び人体容量に対応する値、
即ち、100Ω乃至1500Ω及び50pF乃至250pFの範囲
内において適宜定める。 In the proposed simulator as well, the combined capacitance of the discharging resistor R D and the charging/discharging capacitors C CD1 , C CD2 , ... is set to a value corresponding to the human body resistance and human body capacitance, as in the conventional case.
That is, it is appropriately determined within the range of 100Ω to 1500Ω and 50pF to 250pF.
このように構成した本案シミユレータにおいて
は、電源接続端子TERを介して充放電コンデン
サCCD,CCD2,……を所要電圧に充電し、帰線
RGWの先端を被試験体の接地端子又は筺体壁等
の中、接地可能な個所或は交流電源線の接地線等
に接続した後、導体より成る筺体CASCを手で保
持して放電電極を徐々に被試験体に接近(又は直
接接触)させると、放電間隙の長さと気圧の積が
充放電コンデンサCCD1,CCD2,……の充電電圧に
応じた値に達した際に生ずる火花放電(又は接触
導通)によつて充放電コンデンサCCD1,CCD2,…
…の電荷が瞬間的に被試験体に加えられる。 In the proposed simulator configured in this way, the charge/discharge capacitors C CD , C CD2 , ... are charged to the required voltage via the power supply connection terminal TER, and the return wire is
After connecting the tip of the RGW to the grounding terminal of the test object, a grounding point inside the housing wall, etc., or the grounding wire of the AC power line, hold the conductor housing CAS C with your hand and connect the discharge electrode. When the test object is gradually approached (or brought into direct contact), a spark discharge occurs when the product of the length of the discharge gap and the atmospheric pressure reaches a value corresponding to the charging voltage of the charging/discharging capacitors C CD1 , C CD2 ,... (or contact continuity) to charge and discharge capacitors C CD1 , C CD2 ,...
A charge of ... is instantaneously applied to the test object.
第2図は、試験状態における等価回路図で、
CCDTは充放電コンデンサCCD1,CCD2,……の合成
容量、Bは人体、rは人体抵抗、CSTは人体Bと
地気及び人体Bと被試験体EUT間に存在する浮
遊容量、Lは帰線RGWの分布インダクタンス
で、他の符号は第1図と同様である。 Figure 2 is an equivalent circuit diagram under test conditions.
C CDT is the combined capacitance of the charging and discharging capacitors C CD1 , C CD2 , ..., B is the human body, r is the human body resistance, C ST is the stray capacitance existing between the human body B and the earth, and between the human body B and the test object EUT, L is the distributed inductance of the retrace line RGW, and the other symbols are the same as in FIG.
被試験体EUTに加えられた高周波放電電流は、
帰線RGW及び導体より成る筺体CASC(第2図に
は示していない)を介して充放電コンデンサ
CCD1,CCD2,……の接地側電極に戻るが、エネル
ギの大部分は浮遊容量CST及び人体抵抗rを介し
て充放電コンデンサCCD1,CCD2,……の接地側電
極に戻ることとなる。 The high frequency discharge current applied to the EUT under test is
The charging/discharging capacitor is connected via the return wire RGW and the casing CAS C (not shown in Figure 2) consisting of the conductor.
Most of the energy returns to the grounding electrodes of the charge/discharge capacitors C CD1 , C CD2 , ... through stray capacitance C ST and human body resistance r. becomes.
第3図は、本考案の他の実施例を示す図で、導
対より成る筺体CASCの一部に導体より成る把手
Hを筺体と一体に取付け、必要に応じてその一部
に指形に対応する凹凸を設ける。他の符号及び構
成は、前実施例と全く同様である。 Fig. 3 is a diagram showing another embodiment of the present invention, in which a handle H made of a conductor is attached to a part of the case CAS C made of a conductor pair, and a finger shape is attached to a part of the case as necessary. Providing corresponding unevenness. Other symbols and configurations are completely the same as in the previous embodiment.
このように構成するときは、把手Hによつてシ
ミユレータの保持取扱いが極めて容易となるばか
りでなく、筺体と人体との電気的接触を十分確実
ならしめて、接触抵抗による帰路の品質低下を防
ぐことが出来る。 When configured in this way, the handle H not only makes it extremely easy to hold and handle the simulator, but also ensures sufficient electrical contact between the housing and the human body to prevent quality deterioration of the return path due to contact resistance. I can do it.
(本考案の効果)
本案シミユレータにおいては、筺体CASCを導
体を以て形成することにより、これを操作する人
体を介して帰線RGWと並列に高周波電流の帰路
を形成せしめることが出来、帰線のみによつて帰
路を形成する従来のシミユレータのように、帰線
の布設形状によつて放電電流の波形に変化を生ず
るおそれなく、誘導電磁界及び放射電磁界のレベ
ル及びTE,TM,TEMの各モードに変化を与え
るおそれもなく、放電試験の再現性を極めて良好
ならしめることが出来る。(Effects of the present invention) In the present simulator, by forming the housing CAS C with a conductor, it is possible to form a high-frequency current return path in parallel with the return line RGW through the human body operating it, and only the return line RGW can be formed. Unlike conventional simulators that form a return path using a return wire, there is no fear that the waveform of the discharge current will change depending on the configuration of the return wire. There is no fear of changing the mode, and the reproducibility of the discharge test can be made extremely good.
第4図イは放電電流の理想波形、ロは従来のシ
ミユレータによる放電電流の波形、ハは本案シミ
ユレータによる放電電流の波形を、それぞれ示す
もので、従来のシミユレータによる波形の乱れの
大なるに比し、本案シユミレータによる波形は、
理想波形に極めて近く、本案シミユレータの効果
の著しいことを示している。尚、各図において、
横軸は経過時間t、縦軸は電流iである。 Figure 4 A shows the ideal waveform of the discharge current, B shows the waveform of the discharge current produced by a conventional simulator, and C shows the waveform of the discharge current produced by the simulator of the present invention. However, the waveform created by the proposed simulator is
The waveform is extremely close to the ideal waveform, demonstrating the remarkable effectiveness of the simulator of the present invention. In addition, in each figure,
The horizontal axis is the elapsed time t, and the vertical axis is the current i.
又、各図とも放電開始電圧を1kV、充放電コン
デンサの静電容量を120pF、放電抵抗を250Ωに選
び、帰線の長さは、イの場合、10cm、ロ及びハは
何れも2mである。 Also, in each figure, the discharge starting voltage is 1kV, the capacitance of the charging/discharging capacitor is 120pF, and the discharge resistance is 250Ω.The length of the return wire is 10cm for A, and 2m for both B and C. .
尚、本案シミユレータの筺体CASCは導体より
成り、これを直接手で保持するが、放電試験時に
は帰線RGW及び被試験体の接地線を介して接地
されるので、人体に危険を与えるおそれは全くな
い。 The CAS C housing of the proposed simulator is made of a conductor and is held directly by hand, but during the discharge test it is grounded through the return wire RGW and the grounding wire of the test object, so there is no risk of danger to the human body. Not at all.
第1図及び第3図は、本考案の一実施例を示す
図、第2図は、その放電試験時における等価回路
図、第4図は、放電電流の波形図、第5図は、従
来の静電気放電シミユレータを示す図で、CASC
……筺体、SED……放電電極、INS1及びINS2…
…絶縁体、TER……充電用電源回路接続端子、
CSW……支持導体、CCD1,CCD2,……充放電コン
デンサ、RD……放電抵抗、RGW……帰線、CCDT
……合成容量、B……人体、r……人体抵抗、
CST……浮遊容量、EUT……被試験体、L……分
布インダクタンス、H……把手、SDC及びSD……
電源、SWS及びSWD……スイツチ、RC……充電
抵抗、CCD……充放電コンデンサ、CASI……筺
体、GAP……放電間隙である。
Figures 1 and 3 are diagrams showing one embodiment of the present invention, Figure 2 is an equivalent circuit diagram during a discharge test, Figure 4 is a waveform diagram of the discharge current, and Figure 5 is a conventional Diagram showing the electrostatic discharge simulator for CAS C
...Housing, SED...Discharge electrode, INS 1 and INS 2 ...
…Insulator, TER…Charging power supply circuit connection terminal,
CSW...Support conductor, C CD1 , C CD2 ,...Charge/discharge capacitor, R D ...Discharge resistor, RGW...Return wire, C CDT
...Synthetic capacity, B...Human body, r...Human body resistance,
C ST ... Stray capacitance, EUT... Test object, L... Distributed inductance, H... Handle, S DC and S D ...
Power supply, SW S and SW D ...switch, R C ...charging resistor, C CD ...charging/discharging capacitor, CAS I ...housing, GAP...discharging gap.
Claims (1)
電抵抗の直列回路を内装し、この直列回路の放
電抵抗側端部に接続した放電電極を前記筺体と
の間の絶縁を保持して筺体外に突設せしめ、前
記直列回路の充放電コンデンサ側端部に接続し
た充電用電源回路接続端子を前記筺体との間の
絶縁を保持して筺体外に設けると共に、前記筺
体に帰線の一端を接続して成ることを特徴とす
る静電気放電シミユレータ。 (2) 導体より成る筺体の一部に導体より成る把手
を突設した実用新案登録請求の範囲第1項記載
の静電気放電シミユレータ。[Claims for Utility Model Registration] (1) A series circuit of a charging/discharging capacitor and a discharging resistor is housed in a casing made of a conductor, and a discharging electrode connected to the end of the series circuit on the discharging resistor side is connected to the casing. a charging power supply circuit connecting terminal connected to the charging/discharging capacitor side end of the series circuit is provided outside the housing while maintaining insulation from the housing; An electrostatic discharge simulator characterized in that one end of a return wire is connected to the casing. (2) The electrostatic discharge simulator according to claim 1, wherein a handle made of a conductor is protruded from a part of a casing made of a conductor.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7471285U JPH0528530Y2 (en) | 1985-05-20 | 1985-05-20 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7471285U JPH0528530Y2 (en) | 1985-05-20 | 1985-05-20 |
Publications (2)
Publication Number | Publication Date |
---|---|
JPS61190873U JPS61190873U (en) | 1986-11-27 |
JPH0528530Y2 true JPH0528530Y2 (en) | 1993-07-22 |
Family
ID=30615256
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7471285U Expired - Lifetime JPH0528530Y2 (en) | 1985-05-20 | 1985-05-20 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH0528530Y2 (en) |
-
1985
- 1985-05-20 JP JP7471285U patent/JPH0528530Y2/ja not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
JPS61190873U (en) | 1986-11-27 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5430604A (en) | Hand-held electrostatic discharge generator | |
KR940006233A (en) | Test method and test apparatus of semiconductor device | |
US5408236A (en) | High-voltage unit comprising a measuring divider/resistor arrangement | |
US4413304A (en) | Electromagnetic field compensated cable | |
JPH0528530Y2 (en) | ||
JPH0528531Y2 (en) | ||
JPS6141367Y2 (en) | ||
CN114089023A (en) | Detection method and device for secondary cable disturbance voltage by VFTO and computer equipment | |
US4613831A (en) | Audio, ultrasonic and RF noise generator for demonstration of electrical interference | |
JPH11502075A (en) | Electrical equipment | |
JPH0435818Y2 (en) | ||
Okabe et al. | Circuit models of gas insulated switchgear elements for electromagnetic wave leakage analysis | |
JPH0435819Y2 (en) | ||
JP2593951Y2 (en) | Static electricity generator | |
JPH0646237Y2 (en) | Charge / discharge device | |
Takagi | Theoretical and Experimental Study of Switching and Ignition Interference in Motor Vehicles | |
JPH0798355A (en) | Electrostatic breakdown test method and implementing device thereof | |
JPH10189282A (en) | Static eliminator | |
JPH0435816Y2 (en) | ||
JPS6119508Y2 (en) | ||
JP2918376B2 (en) | Cable head for device connection | |
Hagimoto et al. | Characteristics of a Long Duration Noise Induced on a Wearable Devices by Potential Drop of a Charged Proximity Object Caused by ESD | |
JPS6116532Y2 (en) | ||
JPH0435817Y2 (en) | ||
JPS59151170U (en) | Electrostatic discharge test equipment |