JPH05284990A - Production of bacterium cellulose by spinner culture - Google Patents

Production of bacterium cellulose by spinner culture

Info

Publication number
JPH05284990A
JPH05284990A JP9420292A JP9420292A JPH05284990A JP H05284990 A JPH05284990 A JP H05284990A JP 9420292 A JP9420292 A JP 9420292A JP 9420292 A JP9420292 A JP 9420292A JP H05284990 A JPH05284990 A JP H05284990A
Authority
JP
Japan
Prior art keywords
culture tank
stirring
spinner culture
cellulose
culture
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9420292A
Other languages
Japanese (ja)
Inventor
Otohiko Watabe
乙比古 渡部
Hiroshi Toyosaki
宏 豊崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP9420292A priority Critical patent/JPH05284990A/en
Publication of JPH05284990A publication Critical patent/JPH05284990A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M27/00Means for mixing, agitating or circulating fluids in the vessel
    • C12M27/02Stirrer or mobile mixing elements
    • C12M27/08Stirrer or mobile mixing elements with different stirrer shapes in one shaft or axis

Landscapes

  • Wood Science & Technology (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Zoology (AREA)
  • Biomedical Technology (AREA)
  • Sustainable Development (AREA)
  • Microbiology (AREA)
  • Biochemistry (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Biotechnology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To efficiently produce bacterium cellulose by using a spinner culture tank having a specific coefficient of shear rate, culturing a bacterium capable of producing cellulose under a stirring condition of a specific oxygen transfer rate to increase production rate and maximum accumulative concentration of bacterium cellulose. CONSTITUTION:A stirring shaft rotatable out of a spinner culture bath is installed at the central part of the spinner culture tank, the shaft is equipped with a bottom paddle, having a lower part in close vicinity to the bottom of the spinner culture tank, arranged at the bottom the tank and an arm paddle and a strip extending in the direction of a shaft are attached to a part higher than the bottom of paddle of the stirring shaft to constitute a lattice blade. Plural baffle plates set along the axial direction from the bottom to the top are attached at intervals to a side wall face of the spinner culture tank to give the spinner culture tank having >=15 coefficient of shear rate. A bacterium capable of producing cellulose is cultured by using the spinner culture tank under a stirring condition of >=0.5X10<6>mol/ml/minute to efficiently produce bacterium cellulose at increased production rate and in the increased maximum accumulative concentration.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微生物セルロースの生
産方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing microbial cellulose.

【0002】微生物セルロースは、各種工業材料、衣料
材料、医療材料、機能性素材、食品素材等に用いること
ができる。
Microbial cellulose can be used in various industrial materials, clothing materials, medical materials, functional materials, food materials and the like.

【0003】[0003]

【従来の技術】微生物セルロースは、生産された状態で
は、結晶性や一軸配向性の非常に高いセルロースからな
る非常に細い繊維(ミクロフィブリル、フィブリル、リ
ボン等と称されている。)が複雑に絡み合いネットワー
ク状の構造を作り上げている。電子顕微鏡観察によると
この繊維の幅は、約数十〜数百nmである。このネット
ワーク状の構造の隙間に多量の液体を含んでいるため
に、出来た微生物セルロースの外観はゲル状である。こ
のゲル状物質の重量に対して、微生物セルロース分は約
1%である。またこのゲル状物質に含まれる固形分は微
生物セルロースだけではなく、菌体等も含まれている。
このようなゲル状物質を市販のミキサー等で離解するこ
とにより短い繊維の懸濁物(離解物)として得られるこ
とが特開昭61−113601号公報に開示されてい
る。
2. Description of the Related Art Microbial cellulose, in a produced state, has extremely fine fibers (called microfibrils, fibrils, ribbons, etc.) made of cellulose having extremely high crystallinity and uniaxial orientation. It creates a tangled network-like structure. According to electron microscope observation, the width of this fiber is about several tens to several hundreds nm. Since a large amount of liquid is contained in the interstices of this network-like structure, the appearance of the microbial cellulose produced is gel-like. The microbial cellulose content is about 1% based on the weight of the gel material. Further, the solid content contained in this gel-like substance includes not only microbial cellulose but also microbial cells and the like.
It is disclosed in JP-A-61-113601 that a suspension (disaggregated product) of short fibers can be obtained by disaggregating such a gel-like substance with a commercially available mixer or the like.

【0004】これまで、攪拌培養槽の剪断速度係数に着
目して行った、微生物セルロースの生産方法に関する報
告は知られていない。
Up to now, no report has been known regarding a method for producing microbial cellulose, which has been carried out focusing on the shear rate coefficient of a stirred culture tank.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、特に
振盪培養、攪拌培養などの静置培養以外の培養系におい
て、微生物セルロースの生産性を高めることにある。
The object of the present invention is to increase the productivity of microbial cellulose particularly in culture systems other than static culture such as shaking culture and stirring culture.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するために鋭意検討を重ねた結果、特定の剪断
速度係数をもつ攪拌培養槽を用いてセルロース産生微生
物を培養することにより、微生物セルロースを従来より
も効率的に生産することができることを見いだし本発明
を完成するに至った。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventors have cultivated a cellulose-producing microorganism using a stirring culture tank having a specific shear rate coefficient. As a result, they have found that microbial cellulose can be produced more efficiently than before, and have completed the present invention.

【0007】即ち、本発明は剪断速度係数が15以上の
攪拌培養槽を用い、かつ酸素移動速度が0.5×10-6
mol/ml/分以上の攪拌条件下でセルロース産生微
生物を培養することにより、微生物セルロースを生産す
る方法に関する。
That is, the present invention uses a stirred culture tank having a shear rate coefficient of 15 or more and an oxygen transfer rate of 0.5 × 10 -6.
The present invention relates to a method for producing microbial cellulose by culturing a cellulose-producing microorganism under a stirring condition of mol / ml / min or more.

【0008】本発明の攪拌培養槽の剪断速度係数は15
望ましくは19以上であることが、従来よりも効率的に
微生物セルロースを生産できるので好ましい。ここでい
う剪断速度係数とは、攪拌翼の形状によって左右される
値である。この剪断速度係数とは、1957年にMet
znerとOttoによって導入された以下の式によっ
て定義される(AIChE Journal,
(1),3−10)。つまり、攪拌培養槽内の平均剪断
速度をγav(m/sec)、攪拌回転数をn(rps)
とすると、剪断速度係数K=γav/nとなる。一般的な
タービン羽根の場合は約10〜13である。
The shear rate coefficient of the stirred culture tank of the present invention is 15
Desirably 19 or more is more efficient than conventional
It is preferable because microbial cellulose can be produced. Stay here
The shear rate coefficient depends on the shape of the stirring blade.
It is a value. This shear rate coefficient was calculated in 1957 by Met.
According to the following formula introduced by zner and Otto
(AIChE Journal,Three
(1), 3-10). That is, the average shear in the stirred culture tank
Speed γav(M / sec), stirring rotation speed is n (rps)
Then, the shear rate coefficient K = γav/ N. general
In the case of turbine blades, it is about 10-13.

【0009】本発明で用いた剪断速度係数Kの値は、ニ
ュートン流体であるマルトース溶液、及び非ニュートン
流体であるカルボキシメチルセルロース溶液を用いた実
験から得られた動力データを用いて算出した。算出法の
概略を述べると、まず剪断速度係数の仮定値K’を用い
てカルボキシメチルセルロース溶液の流動曲線から同溶
液の見かけ粘度を算出した。さらに、この見かけ粘度の
値から攪拌培養槽内の見かけレイノルズ数を算出した。
次に、この見かけレイノルズ数を横軸、動力数を縦軸と
した両対数プロット(動力曲線)を作製した。この動力
曲線がマルトース溶液の動力曲線と同一となるK’の値
を剪断速度係数Kとした。
The value of the shear rate coefficient K used in the present invention was calculated by using power data obtained from an experiment using a maltose solution which is a Newtonian fluid and a carboxymethylcellulose solution which is a non-Newtonian fluid. To explain the outline of the calculation method, first, the apparent viscosity of the carboxymethylcellulose solution was calculated from the flow curve of the carboxymethylcellulose solution using the assumed value K ′ of the shear rate coefficient. Further, the apparent Reynolds number in the stirred culture tank was calculated from the apparent viscosity value.
Next, a double logarithmic plot (power curve) with the apparent Reynolds number on the horizontal axis and the power number on the vertical axis was prepared. The value of K ′ at which this power curve is the same as that of the maltose solution was defined as the shear rate coefficient K.

【0010】このような攪拌装置としては、攪拌培養槽
内中心部に槽外から回転ができる攪拌軸を設置し、該軸
に、攪拌培養槽の底面に下端部を近接させて槽底部に配
置されるボトムパドルを装着し、前記攪拌軸のボトムパ
ドルより上の部分に、アームパドルと軸方向に延びるス
トリップを装着して、格子翼を構成すると共に、攪拌培
養槽の側壁面に下部から上部まで軸方向に沿う複数本の
邪魔板を間隔をおいて設置した攪拌培養槽が上げられ、
具体的には特開昭61−200842号公報にその詳細
が開示されているものなどがある。この攪拌培養槽の最
も大きな特徴は、その攪拌翼の形状にある。従来の発酵
槽によく用いられてきた攪拌翼とは、タービン型が多か
ったが、上記公報に記載されている攪拌翼は特殊な形状
をしており、従来のタービン型のものよりも、小さな攪
拌動力や攪拌回転数でも、液の混合の能率が大きくな
る。特にこの攪拌翼は、培養液が高粘度の場合に好適と
されている。
As such a stirring device, a stirring shaft which can be rotated from the outside of the tank is provided at the center of the inside of the stirring culture tank, and the lower end of the stirring shaft is placed close to the bottom of the stirring culture tank and placed at the bottom of the tank. The bottom paddle of the stirring shaft is attached, and the arm paddle and the strip extending in the axial direction are attached to the portion above the bottom paddle of the stirring shaft to form a lattice blade and the side wall surface of the stirring culture tank from the bottom to the top. The agitated culture tank with multiple baffles along the axial direction installed at intervals is raised,
Specifically, there is one disclosed in detail in JP-A-61-200842. The most important feature of this stirring culture tank is the shape of its stirring blade. The stirring blade that has been often used in conventional fermenters is often a turbine type, but the stirring blade described in the above publication has a special shape and is smaller than the conventional turbine type. The mixing efficiency of the liquid becomes large even with the stirring power and the stirring rotation speed. In particular, this stirring blade is said to be suitable when the culture solution has a high viscosity.

【0011】また、本発明で用いる攪拌培養条件とし
て、酸素移動速度が0.5×10-6mol/min/分
以上であることが望ましい。更に好ましくは、1.0×
10-6mol/min/分以上であればよい。該酸素移
動速度は,供給ガス中と排気ガス中にそれぞれ含まれる
酸素分圧の差から計算した、単位時間及び培養液単位体
積当りの気相から液相への酸素移動量である。なお、酸
素分圧は通常の酸素電極で測定できる。
Further, as the stirring culture condition used in the present invention, it is desirable that the oxygen transfer rate is 0.5 × 10 −6 mol / min / min or more. More preferably 1.0 x
It may be 10 −6 mol / min / min or more. The oxygen transfer rate is the amount of oxygen transfer from the gas phase to the liquid phase per unit time and culture solution unit volume, calculated from the difference between the oxygen partial pressures contained in the supply gas and the exhaust gas. The oxygen partial pressure can be measured with a normal oxygen electrode.

【0012】本発明における微生物セルロースとは、セ
ルロースおよびセルロースを主鎖としたヘテロ多糖を含
むものおよびβ、α等のグルカンを含むものである、ヘ
テロ多糖の場合の微生物セルロース以外の構成成分は、
マンノース、フラクトース、ガラクトース、キシロー
ス、アラビノース、ラムノース、ウロン酸等の六炭糖、
五炭糖および有機酸等である。これらの多糖が単一物質
である場合もあるし、2種類以上の多糖が混在していて
もよい。微生物セルロースは上記のようなものであれば
特に限定されない。
The microbial cellulose in the present invention includes cellulose and a heteropolysaccharide having cellulose as a main chain and glucans such as β and α. In the case of a heteropolysaccharide, constituent components other than microbial cellulose are
Hexoses such as mannose, fructose, galactose, xylose, arabinose, rhamnose, and uronic acid,
Examples include pentose sugar and organic acids. These polysaccharides may be a single substance, or two or more types of polysaccharides may be mixed. The microbial cellulose is not particularly limited as long as it is as described above.

【0013】具体的には、微生物セルロースを生産する
微生物として、アセトバクター・パスツリアヌス(Aceto
bacter pasteurianus)ATCC23769、FERM
P−12884、あるいは同アセチ(A. aceti)、同
キシリナム(A.xylinum)、同ランセンス(A.ransen
s)、サルシナ・ベントリクリ(Sarcina ventricul
i)、バクテリウム・キシロイデス(Bacterium xyloide
s)、シュードモナス属細菌、アグロバクテリウム属細
菌、リゾビウム属細菌、藻類、カビ等を利用することが
出来る。
Specifically, as a microorganism that produces microbial cellulose, Acetobacter pasteurianus (Aceto
bacter pasteurianus) ATCC23769, FERM
P-12884, or A. aceti, A. xylinum, A. ransen
s), Sarcina ventricul
i), Bacterium xyloide
s), Pseudomonas spp, Agrobacterium spp, Rhizobium spp, algae, molds and the like can be used.

【0014】微生物セルロースの生成蓄積のためには、
上記の微生物を用いて、通常の細菌を培養する一般的な
方法に従えばよい。すなわち、炭素源、窒素源、無機塩
類、その他必要に応じて、アミノ酸、ビタミン等の有機
微量栄養素を含有する通常の栄養培地に添加すればよ
い。温度については、20℃ないし40℃に制御し培養
を行なえばよい。
For the production and accumulation of microbial cellulose,
A general method for culturing ordinary bacteria using the above-mentioned microorganism may be followed. That is, it may be added to a normal nutrient medium containing a carbon source, a nitrogen source, inorganic salts, and other organic trace nutrients such as amino acids and vitamins, if necessary. The temperature may be controlled at 20 ° C to 40 ° C to carry out the culture.

【0015】具体的に一例を上げると培地としては、フ
ラクトース50.0g/l、コーンスティープリカー5
0ml/l、硫酸アンモニウム3.0g/l、リン酸1
カリウム1.0g/l、硫酸マグネシウム7水塩1.0
g/l、フィチン酸100mg/l、クエン酸鉄アンモ
ニウム15mg/l、塩化カルシウム15mg/l、モ
リブデン酸アンモニウム1mg/l、硫酸亜鉛7水塩2
mg/l、硫酸マンガン4水塩1mg/l、硫酸銅5水
塩0.02mg/l、ニコチン酸0.5mg/l、ピリ
ドキシン塩酸塩0.5mg/l、チアミン塩酸塩0.5
mg/l、パントテン酸カルシウム0.2mg/l、リ
ボフラビン0.2mg/l、葉酸0.02mg/l、ビ
オチン0.02mg/l、酵母エキス100mg/l、
マルトエキストラクト100mg/l(pH5.0)の
組成のものを用いればよい。また、特に好適な培養温度
は、25〜30℃である。
To give a concrete example, the medium is fructose 50.0 g / l, corn steep liquor 5
0 ml / l, ammonium sulfate 3.0 g / l, phosphoric acid 1
Potassium 1.0 g / l, magnesium sulfate heptahydrate 1.0
g / l, phytic acid 100 mg / l, ammonium iron citrate 15 mg / l, calcium chloride 15 mg / l, ammonium molybdate 1 mg / l, zinc sulfate heptahydrate 2
mg / l, manganese sulfate tetrahydrate 1 mg / l, copper sulfate pentahydrate 0.02 mg / l, nicotinic acid 0.5 mg / l, pyridoxine hydrochloride 0.5 mg / l, thiamine hydrochloride 0.5
mg / l, calcium pantothenate 0.2 mg / l, riboflavin 0.2 mg / l, folic acid 0.02 mg / l, biotin 0.02 mg / l, yeast extract 100 mg / l,
A malt extract having a composition of 100 mg / l (pH 5.0) may be used. Further, a particularly preferable culture temperature is 25 to 30 ° C.

【0016】このようにして生成された微生物セルロー
スを含むゲル状物質は、液体成分とともに菌体と培地成
分も含むので、希アルカリ、希酸、有機溶剤、熱水、界
面活性剤等を単独あるいは組み合わせて洗浄を行うこと
により精製される。ゲル状物質を、希アルカリ、希酸、
有機溶剤、熱水、界面活性剤等を単独あるいは組み合わ
せて洗浄を行うことにより精製することが可能である。
The gel-like substance containing the microbial cellulose thus produced contains not only liquid components but also bacterial cells and medium components. Therefore, dilute alkali, dilute acid, organic solvent, hot water, surfactant, etc. may be used alone or It is purified by washing in combination. The gel-like substance is
It is possible to purify by washing with an organic solvent, hot water, a surfactant or the like alone or in combination.

【0017】[0017]

【実施例】以下、実施例により本発明を具体的に説明す
る。
EXAMPLES The present invention will be specifically described below with reference to examples.

【実施例1】微生物セルロース生産培地としては、フラ
クトース40.0g/l、コーンスティープリカー50
ml/l、硫酸アンモニウム3.0g/l、リン酸1カ
リウム1.0g/l、硫酸マグネシウム7水塩1.0g
/l、フィチン酸100mg/l、クエン酸鉄アンモニ
ウム15mg/l、塩化カルシウム15mg/l、モリ
ブデン酸アンモニウム1mg/l、硫酸亜鉛7水塩2m
g/l、硫酸マンガン4水塩1mg/l、硫酸銅5水塩
0.02mg/l、ニコチン酸0.5mg/l、ピリド
キシン塩酸塩0.5mg/l、チアミン塩酸塩0.5m
g/l、パントテン酸カルシウム0.2mg/l、リボ
フラビン0.2mg/l、葉酸0.02mg/l、ビオ
チン0.02mg/l、酵母エキス100mg/l、マ
ルトエキストラクト100mg/l(pH5.0)の組
成のものを用いた。この組成の培地400mlを1L容
の図1に示すような独自に作製した攪拌培養槽(剪断速
度係数は、19.5)に張り込んで主培養を行った。
Example 1 As a microbial cellulose production medium, fructose 40.0 g / l, corn steep liquor 50
ml / l, ammonium sulfate 3.0 g / l, potassium phosphate 1 g / l, magnesium sulfate heptahydrate 1.0 g
/ L, phytic acid 100 mg / l, ammonium iron citrate 15 mg / l, calcium chloride 15 mg / l, ammonium molybdate 1 mg / l, zinc sulfate heptahydrate 2 m
g / l, manganese sulfate tetrahydrate 1 mg / l, copper sulfate pentahydrate 0.02 mg / l, nicotinic acid 0.5 mg / l, pyridoxine hydrochloride 0.5 mg / l, thiamine hydrochloride 0.5 m
g / l, calcium pantothenate 0.2 mg / l, riboflavin 0.2 mg / l, folic acid 0.02 mg / l, biotin 0.02 mg / l, yeast extract 100 mg / l, malto extract 100 mg / l (pH 5.0 ) Composition was used. 400 ml of a medium having this composition was poured into a 1 L volume of a stirring culture tank (shear rate coefficient: 19.5) that was independently produced as shown in FIG. 1 for main culture.

【0018】まず初めに種母培養として、500ml容
のバッフル付きフラスコに100ml上記培地を張り込
み、アセトバクター・パスツリアヌスFERM P−1
2884を接種した後、200rpmで3日間30℃で
培養をおこなったものを用いた。これを一旦ブレンダー
で破砕後、主培養に接種した。接種濃度は、10%とし
た。
First, as a seed culture, 100 ml of the above medium was placed in a 500 ml baffled flask, and Acetobacter pasteurianus FERM P-1.
After being inoculated with 2884, the one that was cultured at 200 rpm for 3 days at 30 ° C. was used. This was once crushed with a blender and then inoculated into the main culture. The inoculation concentration was 10%.

【0019】主培養の培養温度は30℃、攪拌速度は4
00rpm、通気量は1VVMとした。培養途中にフラ
クトース濃度を計測しながら1%を下回ったところで、
フラクトースを追添加した。また、フラクトース以外の
培地成分については、培養48時間目と72時間目に培
養の開始時と同じ濃度となるように添加した。
The main culture temperature is 30 ° C. and the stirring speed is 4
The rpm was set to 00 rpm and the ventilation amount was set to 1 VVM. While measuring the fructose concentration during the culture, when it fell below 1%,
Fructose was additionally added. In addition, medium components other than fructose were added at the same concentrations as at the start of culture at 48 hours and 72 hours of culture.

【0020】比較対照として、図2に示すようなタービ
ン羽が装着された攪拌培養槽を用いた。図1の攪拌培養
槽と異なる点は、攪拌翼の形状が異なる点であった。こ
の攪拌培養槽の剪断速度係数は12であった。図1の攪
拌培養槽を用いた培養を培養A、図2の攪拌培養槽を用
いた培養を培養Bとした。また、図2の攪拌培養槽を用
いた培養において、酸素移動速度(mol/ml/分)
を図1の攪拌培養槽を用いた場合と同一にするため、攪
拌速度を600rpmに設定したものについても培養を
行った(培養C)。この場合の酸素移動速度は1.5×
10-6 mol/ml/分であった。
As a comparative control, a stirring culture tank equipped with turbine blades as shown in FIG. 2 was used. The difference from the stirring culture tank of FIG. 1 was that the shape of the stirring blade was different. The shear rate coefficient of this stirred culture tank was 12. The culture using the stirring culture tank of FIG. 1 was designated as culture A, and the culture using the stirring culture tank of FIG. 2 was designated as culture B. In addition, in the culture using the stirred culture tank of FIG. 2, the oxygen transfer rate (mol / ml / min)
In order to make the same as the case where the stirring culture tank of FIG. 1 was used, the culture was also carried out for the stirring speed of 600 rpm (culture C). The oxygen transfer rate in this case is 1.5 ×
It was 10 −6 mol / ml / min.

【0021】培養開始後それぞれ120時間経過後培養
を終了した。培養終了後、培養液中の全ての固形分を遠
心分離処理を用いて回収した。この回収物を2%水酸化
ナトリウム溶液の中に室温で24時間浸漬することによ
り、微生物セルロース以外の成分である菌体や培地成分
を除去した。この精製操作は、3回繰り返し、回収物が
ほぼ白色になるまで行い精製した状態の微生物セルロー
スを得た。この精製微生物セルロースのアルカリを十分
水洗することにより、除去した後乾燥し重量を測定し
た。測定結果を表1に示す。また培養経過を図3に示
す。
120 hours after the start of the culture, the culture was terminated. After completion of the culture, all solids in the culture solution were collected by centrifugation. The recovered product was immersed in a 2% sodium hydroxide solution at room temperature for 24 hours to remove bacterial cells and media components other than microbial cellulose. This purification operation was repeated three times until the collected product became almost white to obtain a purified microbial cellulose. The purified microbial cellulose was thoroughly washed with water to remove it, then dried and weighed. The measurement results are shown in Table 1. The culture process is shown in FIG.

【0022】[0022]

【表1】 [Table 1]

【0023】本発明のように、剪断速度係数の高い攪拌
培養槽で攪拌培養を行なった場合の方が、通常の発酵槽
を用いるよりも、効率よく微生物セルロースの生産を行
うことができた。また、通常の発酵槽の場合は、微生物
セルロースの蓄積量が多くなってくるに従い、培養液の
粘度が上昇し、攪拌混合が十分行われなくなったが、本
発明の発酵槽では、肉眼観察においても発酵槽内部の培
養液の攪拌が均一に行われていた。そのため、微生物セ
ルロースの最終蓄積濃度も高くなった。
As in the present invention, when the stirring culture was carried out in the stirring culture tank having a high shear rate coefficient, the microbial cellulose could be produced more efficiently than when the ordinary fermentation tank was used. Further, in the case of a normal fermenter, as the accumulation amount of microbial cellulose increases, the viscosity of the culture solution increases, stirring and mixing was not sufficiently performed, in the fermenter of the present invention, in visual observation Also, the culture solution inside the fermenter was uniformly stirred. Therefore, the final accumulation concentration of microbial cellulose also increased.

【0024】[0024]

【実施例2】実施例1と同様の培地で培養を行った。但
し、培養装置としては、3.0L容の住友重機械工業
(株)製のマックスブレンド発酵槽(MBF型)を用い
て培養を行った(培養D)。なお培地の張り込み量は2
Lとした。比較対照として、攪拌翼として、同径のター
ビン型の攪拌翼を2段に装着させた発酵槽で培養を行っ
た(培養E)。菌株は、アセトバクター、パスツリアヌ
スATCC53263を用いた。種母培養の作製条件、
通気条件、培養温度などは実施例1と同様とした。培養
DもEも攪拌速度を400rpmに設定した。尚、剪断
速度係数Kは培養Dでは20、培養Eでは13であっ
た。
Example 2 Culture was performed in the same medium as in Example 1. However, as the culturing device, the culturing was performed using a 3.0-liter Max Blend fermenter (MBF type) manufactured by Sumitomo Heavy Industries, Ltd. (Culture D). Note that the amount of overhanging medium is 2
It was set to L. As a comparative control, culture was performed in a fermenter equipped with two stages of turbine-type stirring blades having the same diameter as the stirring blades (culture E). Acetobacter, Pasteurianus ATCC53263 was used as the strain. Seed culture preparation conditions,
The aeration conditions, culture temperature, etc. were the same as in Example 1. In both cultures D and E, the stirring speed was set to 400 rpm. The shear rate coefficient K was 20 in the culture D and 13 in the culture E.

【0025】培養を5日間おこなった結果終了時には表
2にみられる微生物セルロースの蓄積が認められた。
After culturing for 5 days, accumulation of microbial cellulose shown in Table 2 was recognized at the end.

【0026】[0026]

【表2】 [Table 2]

【0027】[0027]

【発明の効果】本発明の方法によれば、攪拌培養におい
て微生物セルロースの最大蓄積濃度を増加させることが
できることから、工業上の利用に有効である。
According to the method of the present invention, the maximum cumulative concentration of microbial cellulose can be increased in agitation culture, which is effective for industrial use.

【図面の簡単な説明】[Brief description of drawings]

【図1】攪拌培養槽(剪断速度係数は19.5)を示
す。
FIG. 1 shows a stirred culture tank (shear rate coefficient is 19.5).

【図2】タービン羽を装着した攪拌培養槽(剪断速度係
数は12)を示す。
FIG. 2 shows a stirring culture tank (shear rate coefficient is 12) equipped with turbine blades.

【図3】各攪拌培養槽を用いた際の培養経過を示す。FIG. 3 shows the progress of culturing when using each agitation culture tank.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 剪断速度係数が15以上の攪拌培養槽を
用い、かつ酸素移動速度が0.5×10-6mol/ml
/分以上の攪拌条件下でセルロース産生微生物を培養す
ることにより、微生物セルロースを生産することを特徴
とする微生物セルロースの生産方法。
1. A stirring culture vessel having a shear rate coefficient of 15 or more and an oxygen transfer rate of 0.5 × 10 −6 mol / ml.
A method for producing microbial cellulose, which comprises producing microbial cellulose by culturing the cellulose-producing microorganism under a stirring condition of not less than 1 minute.
【請求項2】 攪拌培養槽内中心部に槽外から回転がで
きる攪拌軸を設置し、該軸に、攪拌培養槽の底面に下端
部を近接させて槽底部に配置されるボトムパドルを装着
し、前記攪拌軸のボトムパドルより上の部分に、アーム
パドルと軸方向に延びるストリップを装着して、格子翼
を構成すると共に、攪拌培養槽の側壁面に下部から上部
まで軸方向に沿う複数本の邪魔板を間隔をおいて設置し
た攪拌培養槽を用いる、請求項1記載の生産方法。
2. A stirring shaft that can be rotated from the outside of the tank is provided at the center of the inside of the stirring culture tank, and a bottom paddle that is arranged at the bottom of the stirring culture tank so that the lower end is close to the bottom surface of the stirring culture tank is attached to the shaft. Then, an arm paddle and a strip extending in the axial direction are attached to a portion of the stirring shaft above the bottom paddle to form a lattice blade, and a plurality of sidewalls of the stirring culture tank are arranged along the axial direction from the lower part to the upper part. The production method according to claim 1, wherein a stirring culture tank in which baffle plates of a book are installed at intervals is used.
JP9420292A 1992-04-14 1992-04-14 Production of bacterium cellulose by spinner culture Pending JPH05284990A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9420292A JPH05284990A (en) 1992-04-14 1992-04-14 Production of bacterium cellulose by spinner culture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9420292A JPH05284990A (en) 1992-04-14 1992-04-14 Production of bacterium cellulose by spinner culture

Publications (1)

Publication Number Publication Date
JPH05284990A true JPH05284990A (en) 1993-11-02

Family

ID=14103719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9420292A Pending JPH05284990A (en) 1992-04-14 1992-04-14 Production of bacterium cellulose by spinner culture

Country Status (1)

Country Link
JP (1) JPH05284990A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112852917A (en) * 2020-12-09 2021-05-28 重庆医药高等专科学校 Titer determination equipment and method for defibrase

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112852917A (en) * 2020-12-09 2021-05-28 重庆医药高等专科学校 Titer determination equipment and method for defibrase

Similar Documents

Publication Publication Date Title
Chao et al. Bacterial cellulose production by Acetobacter xylinum in a 50‐L internal‐loop airlift reactor
Hiruta et al. Application of Maxblend Fermentor® for microbial processes
JPS5878597A (en) Heteropolysaccharide s-194
König et al. Process engineering investigations of penicillin production
EP0001895A1 (en) Heteropolysaccharide, its preparation by fermentation, and compositions and complexes containing it
US4352882A (en) Production of xanthan gum by emulsion fermentation
KR100771745B1 (en) Production of exopolysaccharides unattached to the surface of bacterial cells
US4692408A (en) Fermentation process for the production of polysaccharides
US6013490A (en) Method for cultivating apparatus for the production of bacterial cellulose in an aerated and agitated culture
Nakajima et al. Xanthan gum production in a fermentor with twin impellers
JP3800628B2 (en) Method for producing bacterial cellulose
JPH0568235B2 (en)
JPS62184001A (en) Heteropolysaccharides s-421 stable to acid
JPH05284990A (en) Production of bacterium cellulose by spinner culture
JPS58107174A (en) Production of polysaccharide
JPS61181393A (en) Production of xanthane type polysaccharides
Karkare et al. Continuous fermentation with fluidized slurries of immobilized microorganisms
US3281329A (en) Fermentation process for producing a heteropolysaccharide
JP3062725B2 (en) Method for producing bacterial cellulose by aeration and stirring culture and culture apparatus
JP3785686B2 (en) Production method of bacterial cellulose with high oxygen transfer capacity coefficient by aeration and agitation culture
JPH0833495A (en) Production of bacterial cellulose
JPH09220457A (en) Gate type blade for agitating high non-newtonian fluid
JPH05292984A (en) Production of microbial cellulose
JPS62265990A (en) Production of cellulosic substance by microorganism
JPH05284989A (en) Production of bacterium cellulose