JPH05284989A - Production of bacterium cellulose - Google Patents

Production of bacterium cellulose

Info

Publication number
JPH05284989A
JPH05284989A JP9420092A JP9420092A JPH05284989A JP H05284989 A JPH05284989 A JP H05284989A JP 9420092 A JP9420092 A JP 9420092A JP 9420092 A JP9420092 A JP 9420092A JP H05284989 A JPH05284989 A JP H05284989A
Authority
JP
Japan
Prior art keywords
cellulose
dissolved oxygen
partial pressure
bacterium
concentration
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9420092A
Other languages
Japanese (ja)
Inventor
Hiroshi Toyosaki
宏 豊崎
Otohiko Watabe
乙比古 渡部
Shigeru Yamanaka
茂 山中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP9420092A priority Critical patent/JPH05284989A/en
Publication of JPH05284989A publication Critical patent/JPH05284989A/en
Pending legal-status Critical Current

Links

Landscapes

  • Preparation Of Compounds By Using Micro-Organisms (AREA)

Abstract

PURPOSE:To efficiently produce bacterium cellulose by culturing a bacterium capable of producing cellulose while controlling partial pressure of dissolved oxygen to >= critical partial pressure of dissolved oxygen and concentration of saccharide in a specific range to improve accumulative concentration of cellulose of bacterium. CONSTITUTION:A bacterium [e.g. Acetobacter pasteurianus (FERM P-12,884) capable of producing cellulose is inoculated into a liquid medium containing fructose, corn steep liquor, ammonium sulfate, monopotassium phosphate, magnesium sulfate, etc., subjected to spinner culture at 30 deg.C for 20 hours while introducing an oxygen-containing gas controlling partial pressure of dissolved oxygen in the medium in a range of critical partial pressure of dissolved oxygen to 0.063atm and concentration of saccharide in 0.5-20g/l to form and accumulate bacterium cellulose as a gelatinous substance. Then the bacterium cellulose is separated and cleaned with a diluted acid, an organic solvent, hot water, a surfactant, etc., alone or in combination to efficiently product bacterium cellulose.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、微生物セルロースの生
産方法に関する。
FIELD OF THE INVENTION The present invention relates to a method for producing microbial cellulose.

【0002】微生物セルロースは、各種工業材料、衣料
材料、医療材料、機能性素材、食品素材等に用いること
ができる。
Microbial cellulose can be used in various industrial materials, clothing materials, medical materials, functional materials, food materials and the like.

【0003】[0003]

【従来の技術】特開昭62−175190号公報におい
ては、微生物セルロース生産性の高いある特定の菌株を
用いることにより、通気攪拌培養における微生物セルロ
ースの生産性を高めるという内容の技術の開示がある。
また、この公報においては、酸素濃度を30%空気飽和
(溶存酸素分圧に換算すると0.063atmに相当)
に保持するとの記載があるのみである。低溶存酸素分圧
でのセルロースの発酵生産については不明であった。
2. Description of the Related Art Japanese Unexamined Patent Publication (Kokai) No. 62-175190 discloses a technique of increasing the productivity of microbial cellulose in aeration and agitation culture by using a specific strain having high microbial cellulose productivity. ..
In this publication, the oxygen concentration is 30% air saturated (corresponding to 0.063 atm when converted to the dissolved oxygen partial pressure).
There is only a description that it will be retained in. Fermentation production of cellulose at low dissolved oxygen partial pressure was unknown.

【0004】また、特開昭63−202394号公報、
特開平1−273599号公報において、培地中の炭素
源の濃度を0〜0.5g/lに保持しながら微生物セル
ロースの生産を行う技術の開示がある。この公報では、
最初の段階では、炭素源の濃度を10〜20g/lに保
持することにより、微生物の増殖のみをおこなわしめた
後、後の段階で炭素源の濃度を0〜0.5g/lに保持
しセルロース生産をおこなわしめている。この場合のセ
ルロースの最大蓄積量は約5g/lである。しかし、炭
素源濃度が高い条件下での微生物セルロースの発酵生産
については知見がない。
Further, Japanese Patent Application Laid-Open No. 63-202394,
JP-A-1-273599 discloses a technique for producing microbial cellulose while maintaining the concentration of carbon source in the medium at 0 to 0.5 g / l. In this publication,
In the first stage, the concentration of the carbon source was maintained at 10 to 20 g / l, so that only the growth of microorganisms was performed, and then the concentration of the carbon source was maintained at 0 to 0.5 g / l in the later stage. Producing cellulose. The maximum accumulated amount of cellulose in this case is about 5 g / l. However, there is no information on the fermentative production of microbial cellulose under the condition of high carbon source concentration.

【0005】[0005]

【発明が解決しようとする課題】本発明の課題は、特に
攪拌培養などの静置培養以外の培養系において、微生物
セルロースの生産性を高めることにある。
An object of the present invention is to increase the productivity of microbial cellulose particularly in culture systems other than static culture such as stirring culture.

【0006】[0006]

【課題を解決するための手段】本発明者らは、上記の課
題を解決するために鋭意検討を重ねた結果、攪拌培養に
おいて溶存酸素分圧を臨界溶存酸素分圧以上に保持する
ことにより微生物セルロース生産が効率よくおこなわれ
ることと、攪拌培養において培地中の糖濃度を制限する
ことにより、微生物セルロースの生産が効率よく行われ
ることとを見いだし、本発明を完成するに至った。すな
わち本発明は、攪拌培養において、溶存酸素分圧を臨界
溶存酸素分圧以上に保持しながら培養をおこなうことを
特徴とする微生物セルロースの生産方法に関する。ま
た、本発明は、攪拌培養において、培地中の糖濃度を
0.5〜20g/lに制御しながら培養をおこなう微生
物セルロースの生産方法に関する。
Means for Solving the Problems As a result of intensive studies to solve the above-mentioned problems, the present inventors have found that by maintaining the dissolved oxygen partial pressure at or above the critical dissolved oxygen partial pressure in stirring culture, microorganisms The inventors have found that cellulose can be efficiently produced and that microbial cellulose can be efficiently produced by limiting the sugar concentration in the medium in agitation culture, and completed the present invention. That is, the present invention relates to a method for producing microbial cellulose, which comprises performing culture while stirring while maintaining the dissolved oxygen partial pressure at or above the critical dissolved oxygen partial pressure. The present invention also relates to a method for producing microbial cellulose, which comprises performing culture with stirring while controlling the sugar concentration in the medium to 0.5 to 20 g / l.

【0007】本発明でいう攪拌培養とは、振盪培養、振
動培養、通気攪拌培養、酸素含有ガスを通気することに
より攪拌を行うエアリフト型の培養などをいう。
The agitation culture referred to in the present invention refers to shaking culture, vibration culture, aeration and agitation culture, airlift type culture in which agitation is performed by aerating an oxygen-containing gas.

【0008】本発明における微生物セルロースとは、セ
ルロースおよびセルロースを主鎖としたヘテロ多糖を含
むものおよびβ、α等のグルカンを含むものである、ヘ
テロ多糖の場合の微生物セルロース以外の構成成分は、
マンノース、フラクトース、ガラクトース、キシロー
ス、アラビノース、ラムノース、ウロン酸等の六炭糖、
五炭糖および有機酸等である。これらの多糖が単一物質
である場合もあるし、2種類以上の多糖が混在していて
もよい。微生物セルロースは上記のようなものであれば
何でもよい。
The microbial cellulose in the present invention includes cellulose and a heteropolysaccharide having cellulose as a main chain and glucans such as β and α. In the case of a heteropolysaccharide, constituent components other than microbial cellulose are:
Hexoses such as mannose, fructose, galactose, xylose, arabinose, rhamnose, and uronic acid,
Examples include pentose sugar and organic acids. These polysaccharides may be a single substance, or two or more types of polysaccharides may be mixed. The microbial cellulose may be any as long as it is as described above.

【0009】以上のような微生物セルロースを生産する
微生物は、特に限定されないが、一例を挙げると、アセ
トバクター・パスツリアヌス(Acetobacter pasteurian
us)ATCC23769、FERM P−12884、
あるいは同アセチ(A. aceti)、同キシリナム(A.xyli
num)、同ランセンス(A.ransens)、サルシナ・ベント
リクリ(Sarcina ventriculi)、バクテリウム・キシロ
イデス(Bacterium xyloides)、シュードモナス属細
菌、アグロバクテリウム属細菌、リゾビウム属細菌等を
利用することが出来る。
The microorganisms that produce microbial cellulose as described above are not particularly limited, but one example thereof is Acetobacter pasteurian.
us) ATCC23769, FERM P-12884,
Alternatively, A. aceti and A. xyli
num), A. ransens, Sarcina ventriculi, Bacterium xyloides, Pseudomonas bacteria, Agrobacterium bacteria, Rhizobium bacteria, etc. can be used.

【0010】微生物セルロースの生成蓄積のためには、
上記の微生物を用いて、通常の細菌を培養する一般的な
方法に従えばよい。すなわち、炭素源、窒素源、無機塩
類、その他必要に応じて、アミノ酸、ビタミン等の有機
微量栄養素を含有する通常の栄養培地に添加すればよ
い。温度については、10℃〜40℃に制御し培養を行
なえばよい。
For the production and accumulation of microbial cellulose,
A general method for culturing ordinary bacteria using the above-mentioned microorganism may be followed. That is, it may be added to a normal nutrient medium containing a carbon source, a nitrogen source, inorganic salts, and other organic trace nutrients such as amino acids and vitamins, if necessary. The temperature may be controlled at 10 ° C to 40 ° C to carry out the culture.

【0011】具体的に一例を挙げると、培地としては、
フラクトース50.0g/l、コーンスティープリカー
50ml/l、硫酸アンモニウム3.0g/l、リン酸
1カリウム1.0g/l、硫酸マグネシウム7水塩1.
0g/l、フィチン酸100mg/l、クエン酸鉄アン
モニウム15mg/l、塩化カルシウム15mg/l、
モリブデン酸アンモニウム1mg/l、硫酸亜鉛7水塩
2mg/l、硫酸マンガン4水塩1mg/l、硫酸銅5
水塩0.02mg/l、ニコチン酸0.5mg/l、ピ
リドキシン塩酸塩0.5mg/l、チアミン塩酸塩0.
5mg/l、パントテン酸カルシウム0.2mg/l、
リボフラビン0.2mg/l、葉酸0.02mg/l、
ビオチン0.02mg/l、酵母エキス100mg/
l、マルトエキストラクト100mg/l(pH5.
0)の組成のものを用いればよい。また、特に好適な培
養温度は、25℃〜30℃である。
[0011] To give a concrete example, as the medium,
Fructose 50.0 g / l, corn steep liquor 50 ml / l, ammonium sulfate 3.0 g / l, potassium monophosphate 1.0 g / l, magnesium sulfate heptahydrate 1.
0 g / l, phytic acid 100 mg / l, ammonium iron citrate 15 mg / l, calcium chloride 15 mg / l,
Ammonium molybdate 1 mg / l, zinc sulfate heptahydrate 2 mg / l, manganese sulfate tetrahydrate 1 mg / l, copper sulfate 5
Water salt 0.02 mg / l, nicotinic acid 0.5 mg / l, pyridoxine hydrochloride 0.5 mg / l, thiamine hydrochloride 0.
5 mg / l, calcium pantothenate 0.2 mg / l,
Riboflavin 0.2 mg / l, folic acid 0.02 mg / l,
Biotin 0.02mg / l, yeast extract 100mg /
l, malto extract 100 mg / l (pH 5.
The composition of 0) may be used. Moreover, a particularly suitable culture temperature is 25 ° C to 30 ° C.

【0012】本発明では、液中の酸素の溶解量を溶存酸
素分圧で表現している。液中の酸素の溶解量を、溶存酸
素濃度(例えば、ppmまたはmol/lなど)で表す
ことも多いが、本発明においては、1atmの空気(す
なわち酸素濃度21%)と平衡状態にある液中の酸素濃
度を溶存酸素分圧0.21atmと定義した。すなわ
ち、菌を接種していない状態で1atmの空気を通気し
て平衡状態にある液中の酸素の溶解量を溶存酸素分圧で
表すと0.21atmであり、菌体を接種して増殖が進
んで酸素が消費され、培養液中に溶解している酸素が無
くなっている場合には、溶存酸素分圧は0atmであ
る。実際には、溶存酸素分圧の測定には市販の酸素電極
を用いればよい。
In the present invention, the dissolved amount of oxygen in the liquid is expressed by the dissolved oxygen partial pressure. Although the dissolved amount of oxygen in a liquid is often expressed by a dissolved oxygen concentration (for example, ppm or mol / l), in the present invention, a liquid in equilibrium with 1 atm of air (that is, an oxygen concentration of 21%). The oxygen concentration in the solution was defined as a dissolved oxygen partial pressure of 0.21 atm. That is, the dissolved amount of oxygen in the liquid in equilibrium in which 1 atm of air was aerated without inoculation of the bacteria was 0.21 atm in terms of the dissolved oxygen partial pressure, and the cells were inoculated and proliferated. When oxygen is consumed and oxygen dissolved in the culture medium disappears, the partial pressure of dissolved oxygen is 0 atm. In practice, a commercially available oxygen electrode may be used to measure the dissolved oxygen partial pressure.

【0013】本発明でいう臨界溶存酸素分圧とは、以下
に定義される。好気性の菌の場合、一般に、菌の呼吸速
度は溶存酸素分圧の増加に伴って増加するが、溶存酸素
分圧がある数値以上になると、それ以上の呼吸速度の増
加は認められなくなる。この時の溶存酸素分圧を臨界溶
存酸素分圧と呼ぶ。
The critical dissolved oxygen partial pressure referred to in the present invention is defined below. In the case of aerobic bacteria, generally, the respiratory rate of the bacteria increases with an increase in the dissolved oxygen partial pressure, but when the dissolved oxygen partial pressure exceeds a certain value, no further increase in the respiratory rate is observed. The dissolved oxygen partial pressure at this time is called the critical dissolved oxygen partial pressure.

【0014】本発明では、臨界溶存酸素分圧が0.00
2atm付近であることから、溶存酸素分圧を0.00
2atm以上望ましくは0.005atm以上に保持す
る必要がある。一般に発酵において、培養している微生
物の濃度が増加してくると、呼吸により消費される酸素
が増えるので溶存酸素が下がる。したがって上記の濃度
に溶存酸素を保持する方法としては、通気量を増す、攪
拌速度を上げる、通気ガスと培養液との気液界面面積を
増加させる、酸素ガスを通気ガスに積極的に混合する、
培養系を加圧するなどの操作を行えばよい。
In the present invention, the critical dissolved oxygen partial pressure is 0.00
Since it is around 2 atm, the dissolved oxygen partial pressure is 0.00
It is necessary to maintain at least 2 atm and preferably at least 0.005 atm. Generally, in fermentation, as the concentration of the microorganisms in culture increases, the oxygen consumed by respiration increases, and the dissolved oxygen decreases. Therefore, as a method for maintaining the dissolved oxygen at the above concentration, the amount of aeration is increased, the stirring speed is increased, the gas-liquid interface area between the aeration gas and the culture solution is increased, and oxygen gas is positively mixed with the aeration gas. ,
Operations such as pressurizing the culture system may be performed.

【0015】炭素源となる糖については、微生物セルロ
ースの生産中に培養液中の濃度をある一定レベルに制御
することにより微生物セルロースの収率が上がったり、
蓄積濃度が増加したりする。一定レベルとは、0.5〜
20g/lの範囲で、望ましくは5〜15g/lであ
る。用いる糖は、フラクトース、グルコース、シュクロ
ース、ガラクトース、マンノース、糖アルコールなどを
1種以上用いることができる。
Regarding sugar as a carbon source, the yield of microbial cellulose may be increased by controlling the concentration in the culture solution to a certain level during the production of microbial cellulose.
Accumulated concentration may increase. A certain level is 0.5-
In the range of 20 g / l, it is preferably 5 to 15 g / l. As the sugar to be used, one or more kinds of fructose, glucose, sucrose, galactose, mannose, sugar alcohol and the like can be used.

【0016】このようにして生成された微生物セルロー
スを含むゲル状物質は、液体成分とともに菌体と培地成
分も含むので、希アルカリ、希酸、有機溶剤、熱水、界
面活性剤等を単独あるいは組み合わせて洗浄を行うこと
により精製される。ゲル状物質を、希アルカリ、希酸、
有機溶剤、熱水、界面活性剤等を単独あるいは組み合わ
せて洗浄を行うことにより精製することが可能である。
The gel-like substance containing the microbial cellulose thus produced contains not only liquid components but also bacterial cells and medium components. Therefore, dilute alkali, dilute acid, organic solvent, hot water, surfactant, etc. may be used alone or It is purified by washing in combination. The gel-like substance is
It is possible to purify by washing with an organic solvent, hot water, a surfactant or the like alone or in combination.

【0017】[0017]

【実施例】以下、実施例により本発明を具体的に説明す
る。
EXAMPLES The present invention will be specifically described below with reference to examples.

【0018】[0018]

【実施例1】微生物セルロース生産培地として、フラク
トース50.0g/l、コーンスティープリカー50m
l/l、硫酸アンモニウム3.0g/l、リン酸1カリ
ウム1.0g/l、硫酸マグネシウム7水塩1.0g/
l、フィチン酸100mg/l、クエン酸鉄アンモニウ
ム15mg/l、塩化カルシウム15mg/l、モリブ
デン酸アンモニウム1mg/l、硫酸亜鉛7水塩2mg
/l、硫酸マンガン4水塩1mg/l、硫酸銅5水塩
0.02mg/l、ニコチン酸0.5mg/l、ピリド
キシン塩酸塩0.5mg/l、チアミン塩酸塩0.5m
g/l、パントテン酸カルシウム0.2mg/l、リボ
フラビン0.2mg/l、葉酸0.02mg/l、ビオ
チン0.02mg/l、酵母エキス100mg/l、マ
ルトエキストラクト100mg/l(pH5.0)の組
成のものを用いた。この組成の培地400mlを1L容
の図1に示すような攪拌培養槽に張り込んで主培養を行
った。
Example 1 As a microbial cellulose production medium, fructose 50.0 g / l, corn steep liquor 50 m
l / l, ammonium sulfate 3.0 g / l, potassium phosphate 1 g / l, magnesium sulfate heptahydrate 1.0 g /
1, phytic acid 100 mg / l, ammonium iron citrate 15 mg / l, calcium chloride 15 mg / l, ammonium molybdate 1 mg / l, zinc sulfate heptahydrate 2 mg
/ L, manganese sulfate tetrahydrate 1 mg / l, copper sulfate pentahydrate 0.02 mg / l, nicotinic acid 0.5 mg / l, pyridoxine hydrochloride 0.5 mg / l, thiamine hydrochloride 0.5 m
g / l, calcium pantothenate 0.2 mg / l, riboflavin 0.2 mg / l, folic acid 0.02 mg / l, biotin 0.02 mg / l, yeast extract 100 mg / l, malto extract 100 mg / l (pH 5.0 ) Composition was used. 400 ml of a medium of this composition was put into a 1 L volume of a stirring culture tank as shown in FIG. 1 to carry out main culture.

【0019】種母培養としては、500ml容のバッフ
ル付きフラスコに100ml上記培地を張り込み、アセ
トバクター・パスツリアヌスFERM P−12884
を接種した後200rpmで3日間30℃で培養をおこ
なったものを用いた。これを一旦ブレンダーで破砕後、
主培養に接種した。接種濃度は10%とした。
As seed culture, 100 ml of the above medium was placed in a 500-ml baffled flask, and Acetobacter pasturianus FERM P-12884 was added.
After culturing at 30 ° C. for 3 days at 200 rpm after inoculation, After crushing this with a blender once,
The main culture was inoculated. The inoculation concentration was 10%.

【0020】主培養の培養温度は30℃、培養開始時の
攪拌速度は400rpm、通気量は0.3VVMとし
た。培養中に培養液をサンプリングしフラクトース濃度
を計測し、フラクトース濃度が1%を下回ったところ
で、フラクトースを50g/lとなるように追添加し
た。また、フラクトース以外の培地成分については、培
養48時間目と96時間目に培養の開始時と同じ濃度と
なるように添加した。
The culture temperature of the main culture was 30 ° C., the stirring speed at the start of the culture was 400 rpm, and the aeration rate was 0.3 VVM. The culture solution was sampled during the culturing, the fructose concentration was measured, and when the fructose concentration fell below 1%, fructose was additionally added so as to be 50 g / l. In addition, medium components other than fructose were added at the 48th and 96th hours of culturing so as to have the same concentration as at the start of the culturing.

【0021】溶存酸素分圧については、培養時間が経過
するにしたがい減少してきた。溶存酸素分圧0.01a
tmとなった時点から、通気量を段階的に上げて溶存酸
素分圧を0.01〜0.02atmとなるように制御し
た。通気量が1VVMに達した時点から、攪拌速度を段
階的に上げることで溶存酸素分圧の制御をおこなった。
通気量1VVM,攪拌速度1400rpmとなった時点
から、通気ガス中に酸素を積極的に付加することで、通
気ガス中の溶存酸素分圧を段階的に上げ溶存酸素分圧の
制御を行った。この条件下で120時間目で培養を行っ
た。この培養における微生物セルロース蓄積濃度は1
5.7g/lであった。
The dissolved oxygen partial pressure decreased as the culture time passed. Dissolved oxygen partial pressure 0.01a
From the point of time when tm was reached, the aeration rate was increased stepwise to control the dissolved oxygen partial pressure to be 0.01 to 0.02 atm. From the time when the aeration amount reached 1 VVM, the dissolved oxygen partial pressure was controlled by gradually increasing the stirring speed.
From the time when the aeration amount was 1 VVM and the stirring speed was 1400 rpm, oxygen was positively added to the aeration gas to gradually increase the dissolved oxygen partial pressure in the aeration gas to control the dissolved oxygen partial pressure. Culturing was performed at 120 hours under these conditions. The microbial cellulose accumulation concentration in this culture is 1
It was 5.7 g / l.

【0022】[0022]

【実施例2】臨界溶存酸素分圧の測定をした。実施例1
に述べた培養と同様の培養において、培養20時間目に
通気を一旦停止し、攪拌だけを行いながら溶存酸素電極
による溶存酸素分圧を経時変化を測定した。溶存酸素分
圧は、時間の経過に伴い最初直線的に減少した。しか
し、溶存酸素分圧換算で0.005atmないし0.0
02atm付近から減少スピードが鈍り、直線性が失わ
れた。この結果から、臨界溶存酸素分圧は0.002a
tm付近であると判断された。この測定チャートの一例
を図2に示す。
Example 2 The critical dissolved oxygen partial pressure was measured. Example 1
In the same culture as described above, the aeration was temporarily stopped at 20 hours of culture, and the temporal change in the dissolved oxygen partial pressure by the dissolved oxygen electrode was measured while only stirring was performed. The partial pressure of dissolved oxygen decreased linearly with time. However, 0.005 atm to 0.0 in terms of dissolved oxygen partial pressure
From around 02 atm, the decreasing speed slowed down and the linearity was lost. From this result, the critical dissolved oxygen partial pressure is 0.002a.
It was determined to be around tm. An example of this measurement chart is shown in FIG.

【0023】[0023]

【比較例1】実施例1の比較例として、初発の条件のま
ま、つまり、攪拌速度400rpm、空気を通気した
(通気0.3VVM)状態のままで培養を120時間目
まで行った。この培養における微生物セルロース蓄積濃
度を測定した。実施例1の場合と比較すると溶存酸素分
圧がほとんど0atmとなった培養20時間目付近から
ほとんどセルロース生産が行われなくなり、微生物セル
ロース蓄積濃度は6.2g/lであった。
Comparative Example 1 As a comparative example of Example 1, the culture was carried out for 120 hours under the initial conditions, that is, in the state where the stirring speed was 400 rpm and the air was aerated (aeration 0.3 VVM). The microbial cellulose accumulation concentration in this culture was measured. Compared with the case of Example 1, almost no cellulose was produced from around 20 hours of culture when the dissolved oxygen partial pressure became almost 0 atm, and the microbial cellulose accumulated concentration was 6.2 g / l.

【0024】[0024]

【実施例3】実施例1の培養条件と同様の条件で培養を
行った。但しフラクトースの濃度の制御に関してのみ実
施例1とはちがって以下のように行った。培養途中に培
養液をサンプリングし、このフラクトース濃度を液体ク
ロマトグラフィーを用いて計測しながら、フラクトース
濃度が15g/lとなるように100%(w/v)フラ
クトース水溶液を連続的に追加した。培養を120時間
目まで行い微生物セルロース蓄積濃度を測定した。微生
物セルロースの蓄積濃度は21.0g/lであった。
Example 3 Culture was performed under the same conditions as in Example 1. However, only the control of the fructose concentration was carried out as follows, unlike in Example 1. The culture solution was sampled during the culture, and while measuring the fructose concentration using liquid chromatography, 100% (w / v) fructose aqueous solution was continuously added so that the fructose concentration became 15 g / l. The culture was carried out for 120 hours and the microbial cellulose accumulation concentration was measured. The accumulated concentration of microbial cellulose was 21.0 g / l.

【0025】[0025]

【実施例4】実施例3の方法と同様に培養を行った。但
し、溶存酸素分圧を0.2〜1%に制御した。培養を1
20時間目まで行った。微生物セルロースの蓄積濃度は
14.1g/lであった。
Example 4 Culture was carried out in the same manner as in the method of Example 3. However, the dissolved oxygen partial pressure was controlled to 0.2 to 1%. Culture 1
It went to the 20th hour. The accumulated concentration of microbial cellulose was 14.1 g / l.

【0026】[0026]

【比較例2】実施例3の方法に従いフラクトースの濃度
を0.2g/l以下に制御したものについて培養を行っ
た。微生物セルロースの蓄積濃度は7.8g/lであっ
た。
Comparative Example 2 According to the method of Example 3, the fructose concentration was controlled to 0.2 g / l or less, and the cells were cultured. The accumulated concentration of microbial cellulose was 7.8 g / l.

【0027】[0027]

【実施例5】実施例3の方法と同様に培養を行った。但
し、フラクトース濃度を1g/lとなるように制御し培
養を行った。微生物セルロースの蓄積濃度は18.0g
/lであった。この結果を実施例1、3、4と比較例
1、2の結果と併せて表1に示す。
Example 5 Culture was performed in the same manner as in the method of Example 3. However, the fructose concentration was controlled so as to be 1 g / l, and the culture was performed. Accumulation concentration of microbial cellulose is 18.0g
/ L. The results are shown in Table 1 together with the results of Examples 1, 3, 4 and Comparative Examples 1, 2.

【0028】[0028]

【表1】 [Table 1]

【0029】[0029]

【実施例6】実施例5の方法と同様に培養を行った。但
し、シュクロース、グルコース、マンニトールをそれぞ
れ用いた。結果を表2に示す。
Example 6 Culture was carried out in the same manner as in the method of Example 5. However, sucrose, glucose and mannitol were used respectively. The results are shown in Table 2.

【0030】[0030]

【表2】 いずれも溶存酸素濃度を1〜2%に、糖濃度を1g/l
に制御した。
[Table 2] In both cases, the dissolved oxygen concentration was 1-2%, and the sugar concentration was 1 g / l.
Controlled.

【0031】[0031]

【発明の効果】本発明により、特に攪拌培養において微
生物セルロースの生産がより効率的に行うことができ
る。
EFFECTS OF THE INVENTION According to the present invention, microbial cellulose can be produced more efficiently, especially in stirring culture.

【図面の簡単な説明】[Brief description of drawings]

【図1】攪拌培養槽(剪断速度係数は19.5)を示
す。
FIG. 1 shows a stirred culture tank (shear rate coefficient is 19.5).

【図2】臨界溶存酸素濃度の測定チャートを示す。FIG. 2 shows a measurement chart of critical dissolved oxygen concentration.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 溶存酸素分圧を臨界溶存酸素分圧以上乃
至0.063atm未満に制御しつつ攪拌培養を行うこ
とを特徴とする微生物セルロースの生産方法。
1. A method for producing microbial cellulose, which comprises stirring culture while controlling the dissolved oxygen partial pressure to be not less than the critical dissolved oxygen partial pressure to less than 0.063 atm.
【請求項2】 培地中の糖濃度を0.5〜20g/lに
制御しながら培養を行う請求項1記載の生産方法。
2. The production method according to claim 1, wherein the culture is performed while controlling the sugar concentration in the medium to 0.5 to 20 g / l.
【請求項3】 培地中の糖濃度を0.5〜20g/lに
制御しながら攪拌培養を行う微生物セルロースの生産方
法。
3. A method for producing microbial cellulose, which comprises stirring culture while controlling the sugar concentration in the medium to 0.5 to 20 g / l.
JP9420092A 1992-04-14 1992-04-14 Production of bacterium cellulose Pending JPH05284989A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9420092A JPH05284989A (en) 1992-04-14 1992-04-14 Production of bacterium cellulose

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9420092A JPH05284989A (en) 1992-04-14 1992-04-14 Production of bacterium cellulose

Publications (1)

Publication Number Publication Date
JPH05284989A true JPH05284989A (en) 1993-11-02

Family

ID=14103660

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9420092A Pending JPH05284989A (en) 1992-04-14 1992-04-14 Production of bacterium cellulose

Country Status (1)

Country Link
JP (1) JPH05284989A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0792935A1 (en) * 1995-09-29 1997-09-03 Bio-Polymer Research Co., Ltd. Process for procucing bacterial cellulose
WO1997044477A1 (en) * 1996-05-21 1997-11-27 Bio-Polymer Research Co., Ltd. Process for continuously preparing bacterial cellulose

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0792935A1 (en) * 1995-09-29 1997-09-03 Bio-Polymer Research Co., Ltd. Process for procucing bacterial cellulose
EP0792935A4 (en) * 1995-09-29 1999-11-24 Bio Polymer Res Co Ltd Process for procucing bacterial cellulose
WO1997044477A1 (en) * 1996-05-21 1997-11-27 Bio-Polymer Research Co., Ltd. Process for continuously preparing bacterial cellulose

Similar Documents

Publication Publication Date Title
JP3192487B2 (en) Fermentation method
CA2054329C (en) Process for preparing trehalulose and isomaltulose
WO2001090395A1 (en) A method for manufacturing highly-concentrated polyglutamic acid with additional supply of saccharides
US5466588A (en) Production of high optical purity D-lactic acid
JPH05284989A (en) Production of bacterium cellulose
US2443919A (en) Fermentation process for production of alpha-ketoglutaric acid
US4316960A (en) Preparation of 2,5-diketogluconic acid
US4301247A (en) Method for improving xanthan yield
JP3644695B2 (en) Fermentation feedstock
JPH05292984A (en) Production of microbial cellulose
JPS60110298A (en) Production of polyol by fermentation of sugars in industrialscale
JPS63283588A (en) Production of carboxylic acid by microbiological fermentation of alcohol
JPH0833495A (en) Production of bacterial cellulose
WO1992018637A1 (en) Method for the production of d-gluconic acid
JP2006521801A (en) Fermentation method using low concentration carbon-containing nutrients and nitrogen-containing nutrients
JPS635080B2 (en)
JPH0994094A (en) Production of bacterial cellulose by high concentration bacterial culture
JP2696092B2 (en) Method for producing erythritol using a novel microorganism
JPH078284A (en) Production of oligosaccharide containing panose
JP2776479B2 (en) Method for producing erythritol
JPS6359678B2 (en)
JPS62265990A (en) Production of cellulosic substance by microorganism
US2694670A (en) Buffering of dextran fermentations
JPH05308986A (en) Production of microbial cellulose
JPH0823989A (en) Production of oligosaccharide having high panose content