JPH05284761A - Manufacture of stator of ultrasonic motor - Google Patents

Manufacture of stator of ultrasonic motor

Info

Publication number
JPH05284761A
JPH05284761A JP4074731A JP7473192A JPH05284761A JP H05284761 A JPH05284761 A JP H05284761A JP 4074731 A JP4074731 A JP 4074731A JP 7473192 A JP7473192 A JP 7473192A JP H05284761 A JPH05284761 A JP H05284761A
Authority
JP
Japan
Prior art keywords
piezoelectric element
raw material
stator
vibrating body
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4074731A
Other languages
Japanese (ja)
Other versions
JP3501292B2 (en
Inventor
Takashi Sato
隆 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Instruments Inc
Original Assignee
Seiko Instruments Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Instruments Inc filed Critical Seiko Instruments Inc
Priority to JP07473192A priority Critical patent/JP3501292B2/en
Publication of JPH05284761A publication Critical patent/JPH05284761A/en
Application granted granted Critical
Publication of JP3501292B2 publication Critical patent/JP3501292B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Abstract

PURPOSE:To improve quality of a stator of an ultrasonic motor and to obtain a method for manufacturing to improve yield. CONSTITUTION:An integral electrode pattern 13 is formed on a piezoelectric element material 11. A vibrator material 12 is adhered to the material 11 formed with the pattern. Central holes are opened at the element material and the vibrator material after adhering. Then, a shape of the element is processed in step 16. Further, dividing electrodes are formed at the element in step 17, and the element is polarized in step 18. Then, a shape of the vibrator is formed in step 19. A stator of an ultrasonic motor is completed by the above steps.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、圧電素子の伸縮運動
を利用した超音波振動により移動体を摩擦駆動させる超
音波モータのステータの製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a stator of an ultrasonic motor in which a moving body is frictionally driven by ultrasonic vibration utilizing expansion and contraction movement of a piezoelectric element.

【0002】[0002]

【従来の技術】図16は、従来の超音波モータの断面図
を示す。同図において、振動体162には、下面に圧電
素子161が接着されている。圧電素子161に超音波
帯域の周波数の電圧を印加し、圧電素子161を伸縮さ
せる。圧電素子161が接着されている振動体162を
屈曲振動させ、くし歯163で屈曲振動を増幅させる。
対面接触したロータ165とくし歯163の先端上面の
摩擦力でロータ165を回転させるものである。超音波
モータの駆動方式の代表的なものとしては、「進行波方
式」と「定在波方式」があり、これら駆動方式により、
圧電素子の電極構造が異なる。
2. Description of the Related Art FIG. 16 is a sectional view of a conventional ultrasonic motor. In the figure, a piezoelectric element 161 is bonded to the lower surface of the vibrating body 162. A voltage having a frequency in the ultrasonic band is applied to the piezoelectric element 161 to expand / contract the piezoelectric element 161. The vibrating body 162 to which the piezoelectric element 161 is bonded is flexed and vibrated, and the comb teeth 163 amplify the flexural vibration.
The rotor 165 is rotated by the frictional force between the rotor 165 and the upper surfaces of the tips of the comb teeth 163 which are in contact with each other. There are "traveling wave method" and "standing wave method" as typical driving methods of ultrasonic motors.
The electrode structure of the piezoelectric element is different.

【0003】図17は、従来の圧電素子の第一面の電極
構造の平面図である。ここで、図17は、一体電極形成
面を示す。図18は、従来の圧電素子の第二面の電極構
造の平面図である。ここで、図18は、分割電極形成面
を示す。図17、図18は従来のステータに用いられる
振動体が接着される圧電素子の一体電極形成面と分割形
成面であるが、これらの図に示す圧電素子の電極構造は
「進行波方式」に用いられる電極構造の一例である。
FIG. 17 is a plan view of an electrode structure on the first surface of a conventional piezoelectric element. Here, FIG. 17 shows an integrated electrode formation surface. FIG. 18 is a plan view of an electrode structure on the second surface of a conventional piezoelectric element. Here, FIG. 18 shows a split electrode formation surface. 17 and 18 show an integrated electrode forming surface and a split forming surface of a piezoelectric element to which a vibrating body used in a conventional stator is adhered. The electrode structure of the piezoelectric element shown in these figures is a "traveling wave type". It is an example of the electrode structure used.

【0004】図15は、従来の圧電素子原料の加工工程
を示す説明図である。図16に示すようなステータ16
4を実現するためには、図15(a)に示す圧電素子素
材の円柱ブロックを形成する。次に、図15(b)に示
すように、圧電素子素材の円柱ブロック150の中心に
中心孔151を機械的方法で形成する。そして、中心孔
151が形成された円柱ブロック150を、図15
(c)のようにチップ状の振動体原料152に切断す
る。さらに、ラッピングマシンにより所定の厚さにラッ
ピングして図17に示す円板状圧電素子171を形成す
る。
FIG. 15 is an explanatory view showing a conventional process for processing a piezoelectric element material. A stator 16 as shown in FIG.
In order to realize No. 4, the cylindrical block of the piezoelectric element material shown in FIG. Next, as shown in FIG. 15B, a central hole 151 is formed in the center of the cylindrical block 150 of the piezoelectric element material by a mechanical method. Then, the cylindrical block 150 having the central hole 151 is formed as shown in FIG.
As shown in (c), the vibrator material 152 in a chip shape is cut. Further, the disk-shaped piezoelectric element 171 shown in FIG. 17 is formed by lapping to a predetermined thickness with a lapping machine.

【0005】そして、圧電素子171の第一面に図17
に示すような電極173を形成する。また、圧電素子1
71の第二面に図18に示すような分割電極183、1
84を形成する。さらに、図18の図中に(+)、
(ー)で示したような分極処理をほどこし、一体電極形
成面を振動体162に接着するというステータの製造方
法がとられていた。
The first surface of the piezoelectric element 171 is shown in FIG.
The electrode 173 as shown in FIG. In addition, the piezoelectric element 1
On the second surface of 71, split electrodes 183, 1 as shown in FIG.
84 is formed. Further, in the figure of FIG. 18, (+),
A method of manufacturing a stator has been employed in which the polarization treatment as shown in (-) is applied and the surface on which the integrated electrode is formed is bonded to the vibrating body 162.

【0006】[0006]

【発明が解決しようとする課題】上記のようなステータ
の製造方法では、圧電素子を円柱ブロックから切断、ラ
ッピングして、円板状の圧電素子を作成する。ラッピン
グ工程において圧電素子にクラックが生じ、製造歩留ま
りが悪いという課題を有していた。さらに、電極形成工
程、分極処理工程、振動体と圧電素子の接着工程におい
て、圧電素子にクラックが生じてしまう課題を有してい
た。
In the method of manufacturing a stator as described above, a piezoelectric element having a disc shape is produced by cutting and lapping the piezoelectric element from a cylindrical block. There is a problem that cracks are generated in the piezoelectric element in the lapping process and the manufacturing yield is low. Further, there is a problem that cracks occur in the piezoelectric element in the electrode forming step, the polarization treatment step, and the step of bonding the vibrating body and the piezoelectric element.

【0007】そこで本発明の目的は、上記の様な課題を
解決し、ステータの品質向上と歩留まりが向上するよう
な製造方法を得ることにある。
Therefore, an object of the present invention is to solve the above problems and to obtain a manufacturing method which improves the quality of the stator and improves the yield.

【0008】[0008]

【課題を解決するための手段】上記課題を解決するため
に本発明は、圧電素子原料の状態で片面に一体電極形成
をして振動体に接着し、圧電素子原料を振動体に接着
後、圧電素子原料をラッピングし、その後圧電素子の接
着面と反対面に分割電極形成と、プラス(+)、マイナ
ス(ー)の分極をほどこし、超音波モータのステータに
するものである。
In order to solve the above-mentioned problems, the present invention is to form an integrated electrode on one surface of a piezoelectric element raw material and adhere it to a vibrating body, and after adhering the piezoelectric element raw material to the vibrating body, The piezoelectric element raw material is lapped, and then divided electrodes are formed on the surface opposite to the bonding surface of the piezoelectric element and positive (+) and negative (-) polarization is applied to form a stator of an ultrasonic motor.

【0009】[0009]

【作用】上記のような製造方法にすることにより、接着
時に圧電素子が割れるのを防止することが出来る。さら
に、圧電素子原料が振動体原料に接着されていることに
より、振動体原料で補強されているため、ラッピング時
の割れを防止すること、圧電素子の接着面と反対面に電
極形成と分極処理を行なう工程においても、圧電素子の
割れを防止することができ、超音波モータの小形、径
小、薄形化における生産性の向上ならびに高効率化にと
っても大変有利となる。
With the above manufacturing method, the piezoelectric element can be prevented from cracking during bonding. Furthermore, since the piezoelectric element material is adhered to the vibrating element material, it is reinforced by the vibrating element material, so cracking during lapping is prevented, and electrode formation and polarization treatment are performed on the surface opposite to the piezoelectric element adhering surface. Even in the step of performing the step, it is possible to prevent the piezoelectric element from cracking, which is very advantageous for improving the productivity and increasing the efficiency in making the ultrasonic motor small, small in diameter, and thin.

【0010】[0010]

【実施例】(1) 第一実施例 以下に本発明の実施例を図面に基づいて説明する。図1
は、本発明のステータの製造方法の第一実施例を示す工
程図である。圧電素子原料11に一体電極パターンを形
成する(工程13)。振動体原料12を、一体電極パタ
ーンが形成された圧電素子原料に接着する(工程1
4)。接着後の圧電素子原料と振動体原料に中心孔を明
ける(工程15)。
Embodiments (1) First Embodiment An embodiment of the present invention will be described below with reference to the drawings. Figure 1
[Fig. 4] is a process drawing showing a first embodiment of the stator manufacturing method of the present invention. An integrated electrode pattern is formed on the piezoelectric element material 11 (step 13). The vibrating element raw material 12 is bonded to the piezoelectric element raw material on which the integrated electrode pattern is formed (step 1).
4). A central hole is opened in the piezoelectric element raw material and the vibrating raw material after the bonding (step 15).

【0011】圧電素子の形状を加工する(工程16)。
圧電素子に分割電極を形成する(工程17)。圧電素子
を分極する(工程18)。振動体の形状を加工する(工
程19)。以上の工程により超音波モータのステータ1
10が完成する。図2は、本発明の第一実施例に適用す
る圧電素子原料の斜視図である。まず圧電素子原料21
を形成する。T1は、圧電素子原料21の厚みを示して
いる。圧電素子完成時の厚みを図16に示すようにT0
とした時、T1はT0に対して厚くなっている。
The shape of the piezoelectric element is processed (step 16).
Split electrodes are formed on the piezoelectric element (step 17). The piezoelectric element is polarized (step 18). The shape of the vibrator is processed (step 19). Through the above steps, the stator 1 of the ultrasonic motor
10 is completed. FIG. 2 is a perspective view of a piezoelectric element raw material applied to the first embodiment of the present invention. First, the piezoelectric element raw material 21
To form. T1 indicates the thickness of the piezoelectric element raw material 21. As shown in FIG. 16, the thickness of the completed piezoelectric element is T0.
Then, T1 is thicker than T0.

【0012】図3は、本発明の第一実施例に適用する振
動体原料の斜視図である。図3において、U1は振動体
原料31の厚みを示す。振動体完成時には、図16に示
すU0の厚みとすると、U1はU0に対し等しいか、U
0より大きな値にする。振動体原料の材質は、超音波モ
ータの設計パラメータの一つであり、一般的にはSUS
材、銅合金、アルミ合金等が使用される。本実施例では
アルミ合金を使用したが、他の材質でも差し支えない。
FIG. 3 is a perspective view of a vibrating element raw material applied to the first embodiment of the present invention. In FIG. 3, U1 indicates the thickness of the vibrating element raw material 31. When the vibrating body is completed, assuming that the thickness of U0 shown in FIG. 16 is, U1 is equal to U0 or U
Set to a value greater than 0. The material of the vibrator material is one of the design parameters of the ultrasonic motor, and is generally SUS.
Material, copper alloy, aluminum alloy, etc. are used. Although an aluminum alloy is used in this embodiment, other materials may be used.

【0013】図4は、本発明の第一実施例に適用する一
体電極パターンを形成した圧電素子原料の斜視図であ
る。圧電素子原料21の片面に一体電極パターン42を
形成する。図5は、本発明の第一実施例に適用する振動
体原料と圧電素子原料を接着した状態を示す斜視図であ
る。
FIG. 4 is a perspective view of a piezoelectric element raw material having an integrated electrode pattern applied to the first embodiment of the present invention. An integrated electrode pattern 42 is formed on one surface of the piezoelectric element raw material 21. FIG. 5 is a perspective view showing a state in which the vibrating element raw material and the piezoelectric element raw material applied to the first embodiment of the present invention are bonded.

【0014】振動体原料31と一体電極パターン42を
形成した圧電素子原料21を接着剤51で接着する。こ
の時、接着剤は、接着層をなるべく少なくするために、
非導電性のエポキシ接着剤を使用する。図17、図18
に示す圧電素子の電極構造では、振動体自体が電気的に
第一面に加える電位と第二面に加える電位の中間の値の
GND電位になる。そして、振動体と一体電極パターン
は電気的に導通がとれている必要がある。そのため、振
動体原料31と圧電素子原料21の電極パターン42の
接着に際しては、高い圧力をかける。そして、接着剤5
1をできるだけ薄くして、振動体原料21と一体電極パ
ターン42の導通をとるようにしている。接着剤を導電
接着剤にすると、導電接着剤に含まれる導電材により接
着層が厚くなり、接着層で振動が吸収されるため、超音
波モータの性能がでない。
The piezoelectric element material 21 on which the vibrating element material 31 and the integrated electrode pattern 42 are formed is bonded with the adhesive 51. At this time, the adhesive is used to reduce the adhesive layer as much as possible.
Use a non-conductive epoxy adhesive. 17 and 18
In the electrode structure of the piezoelectric element shown in (1), the vibrating body itself has a GND potential which is an intermediate value between the potential electrically applied to the first surface and the potential electrically applied to the second surface. The vibrating body and the integrated electrode pattern need to be electrically connected. Therefore, when the vibrating body material 31 and the electrode pattern 42 of the piezoelectric element material 21 are bonded, a high pressure is applied. And the adhesive 5
1 is made as thin as possible so that the vibrating body material 21 and the integrated electrode pattern 42 are electrically connected. When the adhesive is a conductive adhesive, the adhesive layer becomes thick due to the conductive material contained in the conductive adhesive, and the vibration is absorbed by the adhesive layer.

【0015】図6は、本発明の第一実施例を適用した振
動体原料と圧電素子原料に穴明けをした状態を示す断面
図である。圧電素子21を接着した振動体31に、中心
孔64、中心孔63をあける。穴明けの方法としては、
段付きドリル等で機械的に行なう方法、あるいは、超音
波振動加工法、レーザー穴明け等のいずれでも可能であ
る。この際、圧電素子原料は脆いので、穴明けは圧電素
子原料の側から行ない、振動体原料62の側に抜けるよ
うに行なうと、圧電素子原料61の割れが完全に防げ
る。
FIG. 6 is a cross-sectional view showing a state in which a vibrator material and a piezoelectric element material to which the first embodiment of the present invention is applied are punched. A center hole 64 and a center hole 63 are formed in the vibrating body 31 to which the piezoelectric element 21 is bonded. As a method of drilling,
Any of a mechanical method using a stepped drill, an ultrasonic vibration machining method, laser drilling, or the like is possible. At this time, since the piezoelectric element raw material is fragile, if the punching is performed from the side of the piezoelectric element raw material so that the piezoelectric element raw material 62 is released, the piezoelectric element raw material 61 can be completely prevented from cracking.

【0016】図7は、本発明の第一実施例に適用する圧
電素子の加工工程の説明図である。圧電素子21を、ラ
ッピング等によりT1の厚さからT0の最終厚さに加工
する。以上の工程まで加工した圧電素子71の下面73
に、図18に示す分割電極形成をほどこし分極を行な
う。
FIG. 7 is an explanatory view of the processing steps of the piezoelectric element applied to the first embodiment of the present invention. The piezoelectric element 21 is processed from the thickness T1 to the final thickness T0 by lapping or the like. The lower surface 73 of the piezoelectric element 71 processed up to the above steps
Then, polarization is performed by forming the divided electrodes shown in FIG.

【0017】図8は、本発明の第一実施例に適用する振
動体の形状加工工程の説明図である。図8に示すよう
に、U1の厚さの振動体原料31にくし歯83を加工し
てU0の厚さの振動体82を形成する。以上の形状加工
工程を経て、ステータ84を完成させる。
FIG. 8 is an explanatory view of a vibrating body shape processing step applied to the first embodiment of the present invention. As shown in FIG. 8, the comb teeth 83 are processed in the vibrator raw material 31 having a thickness of U1 to form a vibrator 82 having a thickness of U0. The stator 84 is completed through the above-described shape processing steps.

【0018】本発明の第一実施例において、振動体原料
31にあらかじめくし歯を形成しておいても良い。この
場合は、以降の振動体原料の加工にかかわる工程は不要
である。 (2) 第二実施例 図9は、本発明の第二実施例を適用する圧電素子シート
材の斜視図である。
In the first embodiment of the present invention, the comb teeth may be formed in advance on the vibrating material 31. In this case, the subsequent process relating to the processing of the vibrating body material is unnecessary. (2) Second Embodiment FIG. 9 is a perspective view of a piezoelectric element sheet material to which the second embodiment of the present invention is applied.

【0019】図10は、本発明の第二実施例を適用する
振動体原料の斜視図である。図9において、圧電素子シ
ート材91は、圧電素子が完成品として2個以上取れる
大きさである。圧電素子シート材91の片面に一体電極
パターン92を形成する。振動体原料101は、圧電素
子シート材91と、ほぼ等しい大きさの形状である。
FIG. 10 is a perspective view of a vibrator material to which the second embodiment of the present invention is applied. In FIG. 9, the piezoelectric element sheet material 91 has a size such that two or more piezoelectric elements can be obtained as a finished product. The integrated electrode pattern 92 is formed on one surface of the piezoelectric element sheet material 91. The vibrating element raw material 101 has substantially the same size as the piezoelectric element sheet material 91.

【0020】図11は、本発明の第二実施例を適用した
圧電素子シート材と振動体原料を接着した状態を示す断
面図である。電極パターン92を形成した圧電素子シー
ト材91と振動体原料101を接着剤112で接着す
る。図12は、本発明の第二実施例を適用した振動体原
料と圧電素子シート材に穴明けをした状態を示す断面図
である。
FIG. 11 is a sectional view showing a state in which a piezoelectric element sheet material and a vibrating element raw material to which the second embodiment of the present invention is applied are bonded. The piezoelectric element sheet material 91 on which the electrode pattern 92 is formed and the vibrating element raw material 101 are adhered with an adhesive 112. FIG. 12 is a cross-sectional view showing a state in which holes are made in the vibrator material and the piezoelectric element sheet material to which the second embodiment of the present invention is applied.

【0021】圧電素子シート材91と振動体原料101
に中心孔F1,G1,F2,G2,F3,G3等を明け
る。図13は、本発明の第二実施例を適用した圧電素子
の加工工程の説明図である。ラッピング等により、圧電
素子91をT2の厚さから圧電素子131の最終厚さT
0に加工する。
Piezoelectric element sheet material 91 and vibrator material 101
The central holes F1, G1, F2, G2, F3, G3, etc. are opened. FIG. 13 is an explanatory diagram of a piezoelectric element processing step to which the second embodiment of the present invention is applied. The piezoelectric element 91 is changed from the thickness T2 to the final thickness T of the piezoelectric element 131 by lapping or the like.
Process to 0.

【0022】以上の工程まで加工した圧電素子下面13
3に、図18に示す分割電極パターンを取り個数分だけ
形成し分極処理を行なう。次にレーザー加工等により、
図7に示す状態の個々の単体に切り落とす。そして、図
1に示す振動体形状加工工程19を経てステータ84を
完成させる。 (3) 第三実施例 図14は、本発明の第三実施例を適用した振動体ブロッ
ク加工工程の説明図である。
The piezoelectric element lower surface 13 processed through the above steps
In FIG. 3, the divided electrode patterns shown in FIG. Then, by laser processing,
The individual pieces in the state shown in FIG. 7 are cut off. Then, the stator 84 is completed through the vibrator shape processing step 19 shown in FIG. (3) Third Embodiment FIG. 14 is an explanatory diagram of a vibrating body block processing step to which the third embodiment of the present invention is applied.

【0023】振動体原料142にくし歯144をN/C
マシン等で加工して振動体ブロック143を形成する。
この振動体ブロック143をレーザー加工等により個々
の単体に切り落とす。第三実施例は、さらに工数削減に
つながる。
Comb teeth 144 are attached to the vibrating material 142 in N / C.
The vibrator block 143 is formed by processing with a machine or the like.
The vibrating body block 143 is cut into individual pieces by laser processing or the like. The third embodiment further reduces man-hours.

【0024】[0024]

【発明の効果】本発明は、以上説明したように圧電素子
原料を振動体原料に接着する接着工程を経て、圧電素子
原料を所定の厚さにラッピング加工することにより、圧
電素子の接着時の割れ、ラッピング時の割れを防止する
ことが出来る。また、圧電素子シート原料を用いる場
合、接着前に所定の厚さに加工してしまうとラッピング
時の割れや取り扱い時の割れ、接着時の割れで歩留まり
が悪くなるのに対し、ラッピング前に接着することによ
り、歩留まりがはるかに向上する。さらに、分極工程で
は、多数個同時分極が可能になり、製造効率があがると
いう効果を有する。
As described above, according to the present invention, the piezoelectric element raw material is lapped to a predetermined thickness through the bonding step of adhering the piezoelectric element raw material to the vibrating body raw material, and the piezoelectric element raw material is bonded to the vibrating body raw material at a predetermined thickness. It is possible to prevent cracking and cracking during lapping. When using a piezoelectric element sheet material, if it is processed to a predetermined thickness before bonding, the yield will deteriorate due to cracking during lapping, cracking during handling, and cracking during bonding, whereas bonding before lapping By doing so, the yield is much improved. Further, in the polarization step, a large number of pieces can be simultaneously polarized, which has the effect of increasing manufacturing efficiency.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のステータ加工工程の第一実施例を示す
工程図である。
FIG. 1 is a process drawing showing a first embodiment of a stator machining process of the present invention.

【図2】本発明の第一実施例に適用する圧電素子原料の
斜視図である。
FIG. 2 is a perspective view of a piezoelectric element raw material applied to the first embodiment of the present invention.

【図3】本発明の第一実施例に適用する振動体原料の斜
視図である。
FIG. 3 is a perspective view of a vibrating element raw material applied to the first embodiment of the present invention.

【図4】本発明の第一実施例に適用する一体電極パター
ンを形成した圧電素子原料の斜視図である。
FIG. 4 is a perspective view of a piezoelectric element raw material having an integrated electrode pattern applied to the first embodiment of the present invention.

【図5】本発明の第一実施例に適用する振動体原料と圧
電素子原料を接着した状態を示す斜視図である。
FIG. 5 is a perspective view showing a state in which a vibrating element raw material and a piezoelectric element raw material applied to the first embodiment of the present invention are bonded.

【図6】本発明の第一実施例に適用する振動体原料と圧
電素子原料に穴明けをした状態を示す断面図である。
FIG. 6 is a cross-sectional view showing a state in which a vibrator material and a piezoelectric element material applied to the first embodiment of the present invention are perforated.

【図7】本発明の第一実施例に適用する圧電素子の加工
工程の説明図である。
FIG. 7 is an explanatory diagram of a piezoelectric element processing step applied to the first embodiment of the present invention.

【図8】本発明の第一実施例に適用する振動体の形状加
工工程の説明図である。
FIG. 8 is an explanatory view of a vibrating body shape processing step applied to the first embodiment of the present invention.

【図9】本発明の第二実施例を適用する圧電素子シート
材の斜視図である。
FIG. 9 is a perspective view of a piezoelectric element sheet material to which a second embodiment of the present invention is applied.

【図10】本発明の第二実施例を適用する振動体原料の
斜視図である。
FIG. 10 is a perspective view of a vibrator material to which the second embodiment of the present invention is applied.

【図11】本発明の第二実施例を適用した圧電素子シー
ト材と振動体原料を接着した状態を示す断面図である。
FIG. 11 is a cross-sectional view showing a state in which a piezoelectric element sheet material and a vibrating element raw material to which the second embodiment of the present invention is applied are bonded.

【図12】本発明の第二実施例を適用した振動体原料と
圧電素子シート材に穴明けをした状態を示す断面図であ
る。
FIG. 12 is a cross-sectional view showing a state in which a vibrator material and a piezoelectric element sheet material to which a second embodiment of the present invention is applied are perforated.

【図13】本発明の第二実施例を適用した圧電素子の加
工工程の説明図である。
FIG. 13 is an explanatory diagram of a piezoelectric element processing step to which the second embodiment of the present invention is applied.

【図14】本発明の第三実施例を適用した振動体ブロッ
ク加工工程の説明図である。
FIG. 14 is an explanatory diagram of a vibrating body block processing step to which the third embodiment of the present invention is applied.

【図15】従来の圧電素子原料の加工工程を示す説明図
である。
FIG. 15 is an explanatory diagram showing a conventional process for processing a piezoelectric element material.

【図16】従来の超音波モータの断面図である。FIG. 16 is a sectional view of a conventional ultrasonic motor.

【図17】従来の圧電素子の第一面の電極構造の平面図
である。
FIG. 17 is a plan view of an electrode structure on the first surface of a conventional piezoelectric element.

【図18】従来の圧電素子の第二面の電極構造の平面図
である。
FIG. 18 is a plan view of an electrode structure on a second surface of a conventional piezoelectric element.

【符号の説明】[Explanation of symbols]

11 圧電素子原料 12 振動体原料 13 一体電極パターン形成工程 14 接着工程 15 中心孔加工工程 16 圧電素子形状加工工程 17 圧電素子分割電極形成工程 18 分極工程 19 振動体形状加工工程 110 ステータ完成 11 Piezoelectric element raw material 12 Vibrating body raw material 13 Integrated electrode pattern forming step 14 Bonding step 15 Center hole processing step 16 Piezoelectric element shape processing step 17 Piezoelectric element divided electrode forming step 18 Polarizing step 19 Vibrating body shape processing step 110 Stator completed

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 振動体下面に圧電素子を接合したステー
タと、前記振動体の他方の面に圧接され、前記圧電素子
の伸縮運動による振動体のたわみ振動により摩擦駆動す
るロータとを有する超音波モータのステータの製造方法
において、圧電素子を振動体に接着する工程と、前記圧
電素子、および前記振動体を所定の形状に加工する工程
とを有することを特徴とする超音波モータのステータの
製造方法。
1. An ultrasonic wave, comprising: a stator having a piezoelectric element bonded to a lower surface of a vibrating body; and a rotor which is pressed against the other surface of the vibrating body and frictionally driven by flexural vibration of the vibrating body due to expansion and contraction of the piezoelectric element. A method of manufacturing a stator of a motor, comprising: a step of bonding a piezoelectric element to a vibrating body; and a step of processing the piezoelectric element and the vibrating body into a predetermined shape. Method.
JP07473192A 1992-03-30 1992-03-30 Method for manufacturing stator of ultrasonic motor Expired - Fee Related JP3501292B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP07473192A JP3501292B2 (en) 1992-03-30 1992-03-30 Method for manufacturing stator of ultrasonic motor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP07473192A JP3501292B2 (en) 1992-03-30 1992-03-30 Method for manufacturing stator of ultrasonic motor

Publications (2)

Publication Number Publication Date
JPH05284761A true JPH05284761A (en) 1993-10-29
JP3501292B2 JP3501292B2 (en) 2004-03-02

Family

ID=13555670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP07473192A Expired - Fee Related JP3501292B2 (en) 1992-03-30 1992-03-30 Method for manufacturing stator of ultrasonic motor

Country Status (1)

Country Link
JP (1) JP3501292B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8141216B2 (en) * 2006-08-08 2012-03-27 Konica Minolta Medical & Graphic, Inc. Method of manufacturing ultrasound probe
US8156620B2 (en) * 2006-08-02 2012-04-17 Konica Minolta Medical & Graphic, Inc. Process of making an ultrasonic probe

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8156620B2 (en) * 2006-08-02 2012-04-17 Konica Minolta Medical & Graphic, Inc. Process of making an ultrasonic probe
US8141216B2 (en) * 2006-08-08 2012-03-27 Konica Minolta Medical & Graphic, Inc. Method of manufacturing ultrasound probe

Also Published As

Publication number Publication date
JP3501292B2 (en) 2004-03-02

Similar Documents

Publication Publication Date Title
JP4334864B2 (en) Thin plate crystal wafer and method for manufacturing crystal resonator
JPS5920240B2 (en) Ultrasonic probe and method for manufacturing the ultrasonic probe
JP3501292B2 (en) Method for manufacturing stator of ultrasonic motor
JP2000228547A (en) Manufacture of piezoelectric board
JPS6031435B2 (en) Manufacturing method of ultrasonic probe
JPS58120397A (en) Production of ultrasonic probe
JP3361608B2 (en) Vibrator for piezoelectric actuator
JP3290756B2 (en) Sticking type piezoelectric vibrator and manufacturing method thereof
JPH05284760A (en) Vibrator for piezoelectric actuator and manufacture thereof
JP2651277B2 (en) Manufacturing method of piezoelectric sounding body
JPS63194581A (en) Manufacture of piezoelectric actuator
JPH05300765A (en) Manufacture of vibrator for piezoelectric motor
JP2915714B2 (en) Manufacturing method of piezoelectric ceramic
JPH05343759A (en) Manufacture of piezoelectric element for piezoelectric motor
JPH02139071A (en) Ultrasonic torsional oscillator
JPH0575000B2 (en)
JP2000138555A (en) Piezoelectric element and its manufacture
JP3444193B2 (en) Manufacturing method of piezoelectric resonator
JPS62167941A (en) Manufacture of leaf spring
JPH03251000A (en) Ultrasonic wave vibrator
JPS63290175A (en) Manufacture of stator for supersonic motor
JPH074575B2 (en) Piezoelectric ceramic element for torsion type vibrator
JP2002299977A (en) Method for manufacturing piezoelectric vibrator
JPS58111021A (en) Ultrasonic optical deflector
JPS62256508A (en) Manufacture of piezoelectric vibrator

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20031127

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081212

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091212

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees