JPH05283573A - Semiconductor cooling mechanism - Google Patents

Semiconductor cooling mechanism

Info

Publication number
JPH05283573A
JPH05283573A JP4083658A JP8365892A JPH05283573A JP H05283573 A JPH05283573 A JP H05283573A JP 4083658 A JP4083658 A JP 4083658A JP 8365892 A JP8365892 A JP 8365892A JP H05283573 A JPH05283573 A JP H05283573A
Authority
JP
Japan
Prior art keywords
refrigerant
cooling
radiating fin
heat
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4083658A
Other languages
Japanese (ja)
Inventor
Hiroshi Akasaki
博 赤崎
Kanji Otsuka
寛治 大塚
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi ULSI Engineering Corp
Hitachi Ltd
Original Assignee
Hitachi ULSI Engineering Corp
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi ULSI Engineering Corp, Hitachi Ltd filed Critical Hitachi ULSI Engineering Corp
Priority to JP4083658A priority Critical patent/JPH05283573A/en
Publication of JPH05283573A publication Critical patent/JPH05283573A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73251Location after the connecting process on different surfaces
    • H01L2224/73253Bump and layer connectors

Landscapes

  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

PURPOSE:To improve heat transfer efficiently in a refrigerant, by causing the refrigerant to collide against a heat radiating face and move in a circle around a forward directional axis so that abundance density of the refrigerant near the heat radiating face is enlarged. CONSTITUTION:In a semiconductor cooling unit, a radiating fin 8 is mounted on a bottom part of a heat-transfer plate 7 in a cooling apparatus body 6. A screw-shaped refrigerant guiding wall 9 is provided on the radiating fin 8. A refrigerant 11, such as water, is jetted out from a nozzle 10 at an upper part of the radiating fin 8. Then, the refrigerant 11 collides against the radiating fin 8, and thereby the flow of the refrigerant 11 is divided radially and uniformly at a central part of the radiating fin 8. Moreover, the flow of the refrigerant 11 is subjected to a rotating movement around a forward directional axis in collision. When the refrigerant 11, which collides against the radiating fin 8, is caused to rotate in its movement, an actual heat-transfer area is enlarged. Consequently, efficiency in heat transfer can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体装置の冷却技術
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor device cooling technique.

【0002】[0002]

【従来の技術】従来の衝突流体冷却(impingem
ent cooling)を用いた半導体冷却法として
は、例えば空冷では日経エレクトロニクス(1984.
3.26)pp159〜165に記載のようにIBM社
が中型プロセサ381モジュールにおいて、衝突気流冷
却方式を採用している。一方、液冷では、FUJITS
U.41.1.PP12ー19(01,1990)に記
載のように富士通がVP2000シリーズのCCM(C
onductive Cooling Module)
において、衝突噴流方式を採用している。
BACKGROUND OF THE INVENTION Conventional impinging fluid cooling (impingem)
As a semiconductor cooling method using ent cooling, for example, in air cooling, Nikkei Electronics (1984.
3.26) As described in pp. 159 to 165, IBM Corp. adopts the collision airflow cooling method in the medium processor 381 module. On the other hand, in liquid cooling, FUJITS
U. 41.1. As described in PP12-19 (01,1990), Fujitsu has a VP2000 series CCM (C
onductive Cooling Module)
In, the collision jet method is adopted.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記の衝突流
体冷却方式は、いずれも冷媒を伝熱板あるいはヒートシ
ンクに衝突させて熱伝達を促進させたものであるが、冷
媒の熱伝達をさらに効率化する配慮がされておらず、半
導体チップの発熱密度の増大に伴い、冷媒の流量を増加
させたり、冷媒の初期温度をさらに低温化する必要が生
じる等の問題があった。本発明の目的は、上記冷媒によ
る熱伝達効率を向上させることにある。本発明の前記な
らびにそのほかの目的と新規な特徴は、本明細書の記述
および添付図面からあきらかになるであろう。
However, in all of the above collision fluid cooling methods, the refrigerant is made to collide with the heat transfer plate or the heat sink to promote the heat transfer, but the heat transfer of the refrigerant is further efficient. However, there is a problem in that the flow rate of the coolant is increased and the initial temperature of the coolant needs to be further lowered as the heat generation density of the semiconductor chip increases. An object of the present invention is to improve the heat transfer efficiency of the refrigerant. The above and other objects and novel features of the present invention will be apparent from the description of the present specification and the accompanying drawings.

【0004】[0004]

【課題を解決するための手段】本願において開示される
発明のうち代表的なものの概要を簡単に説明すれば、下
記のとおりである。上記目的を達成するため、放熱面に
衝突する冷媒に進行方向を軸とする回転運動を加えたも
のである。
The outline of a typical one of the inventions disclosed in the present application will be briefly described as follows. In order to achieve the above-mentioned object, the refrigerant that impinges on the heat dissipation surface is subjected to rotational movement about the traveling direction.

【0005】[0005]

【作用】上記手段によれば、放熱面に対する衝突運動に
加えられた回転運動は、放熱面近傍において熱伝達に寄
与する冷媒の存在密度(滞在密度)を増大させるように
作用し、それによって冷媒の熱伝達効率の向上を図るこ
とができる。
According to the above-mentioned means, the rotational motion added to the collision motion with respect to the heat dissipation surface acts to increase the existing density (residence density) of the refrigerant that contributes to heat transfer in the vicinity of the heat dissipation surface, and thereby the refrigerant. The heat transfer efficiency can be improved.

【0006】[0006]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。 実施例1.本発明の一実施例を図1及び図2により説明
するに、この実施例では、例えばセラミック配線基板よ
りなる配線基板1上にハンダバンプ2を介して搭載され
た図示しない半導体チップを内蔵したチップキャリア3
に例えばグリースなどのサーマルコンパウンドよりなる
充填層4を介して半導体冷却装置5を取り付けてなる。
半導体冷却装置5の冷却装置本体6の伝熱板7底部に
は、放熱フイン8を取り付けてなる。この放熱フイン8
は、図2に示すように、上方向から見ると図示のような
スクリュー状の冷媒誘導壁9を有しており、中央部が突
出し、斜め下方向に当該冷媒誘導壁9が複数配設された
形態となっている。放熱フイン8の上部に位置するノズ
ル10から噴射された水等の冷媒11は、当該放熱フイ
ン8に衝突し、放熱フイン4中央部で放射状かつ均等に
分流された後、冷媒誘導壁9により衝突方向を軸とする
回転方向の運動が加えられる。また、半導体冷却装置5
の冷却装置本体6の上端部にはベローズ12が取り付け
られ、応力が吸収される構造となっている。本実施例に
よれば、放熱フイン8により衝突運動をする冷媒11に
回転運動が加わるので、実効的な熱伝達面積を拡大する
ことが可能となり、それによって熱伝達効率が向上でき
る効果がある。
Embodiments of the present invention will be described below with reference to the drawings. Example 1. One embodiment of the present invention will be described with reference to FIGS. 1 and 2. In this embodiment, a chip carrier incorporating a semiconductor chip (not shown) mounted via a solder bump 2 on a wiring substrate 1 made of, for example, a ceramic wiring substrate. Three
The semiconductor cooling device 5 is attached to the above via a filling layer 4 made of a thermal compound such as grease.
A heat radiation fin 8 is attached to the bottom of the heat transfer plate 7 of the cooling device body 6 of the semiconductor cooling device 5. This heat radiation fin 8
2, has a screw-shaped refrigerant guiding wall 9 as shown in the drawing when viewed from above, the central portion projects, and a plurality of the refrigerant guiding walls 9 are arranged obliquely downward. It has become a form. The coolant 11 such as water sprayed from the nozzle 10 located above the radiating fins 8 collides with the radiating fins 8 and is radially and evenly divided in the central portion of the radiating fins 4, and then collides with the refrigerant guiding wall 9. A rotational movement about the direction is applied. In addition, the semiconductor cooling device 5
A bellows 12 is attached to the upper end of the cooling device body 6 to absorb stress. According to the present embodiment, since the refrigerant 11 that makes the collision movement by the heat radiation fins 8 is subjected to the rotational movement, it is possible to increase the effective heat transfer area, and thereby the heat transfer efficiency can be improved.

【0007】実施例2.本発明の他の実施例を図3によ
り説明する。図3に示す実施例は、ノズル10の管内壁
面にらせん壁部13を設け、冷媒11をチップキャリア
3に噴射する前に、冷媒11に予め回転運動が加わるよ
うにしたものである。 実施例3.本発明のさらに他の実施例を図4(a)、
(b)により説明する。図4に示す実施例は、異なった
複数方向より冷媒を噴出することのできる噴射口を有す
るノズルより冷媒を噴射させるようにしたものである。
即ち、ノズル10の下部に衝突流噴射口および回転流噴
射口よりなる噴射口14を設け、ノズル10から冷媒が
噴射されるときに回転運動が加わるようにしたものであ
る。
Example 2. Another embodiment of the present invention will be described with reference to FIG. In the embodiment shown in FIG. 3, a spiral wall portion 13 is provided on the inner wall surface of the tube of the nozzle 10 so that the refrigerant 11 is preliminarily subjected to rotational motion before the refrigerant 11 is jetted to the chip carrier 3. Example 3. Another embodiment of the present invention is shown in FIG.
This will be described with reference to (b). In the embodiment shown in FIG. 4, the refrigerant is ejected from a nozzle having an ejection port capable of ejecting the refrigerant from different directions.
That is, an injection port 14 composed of a collision flow injection port and a rotary flow injection port is provided in the lower part of the nozzle 10 so that rotary motion is applied when the refrigerant is injected from the nozzle 10.

【0008】実施例4.図5に示す実施例は、ノズル1
0内に、その先端部近傍にプロペラ15を有する撹拌機
16を設け、冷媒11に強制的に回転運動が加わるよう
にしたものである。以上本発明者によってなされた発明
を実施例にもとずき具体的に説明したが、本発明は上記
実施例に限定されるものではなく、その要旨を逸脱しな
い範囲で種々変更可能であることはいうまでもない。例
えば、実施例4などにおいて、放熱フインを付け加えて
もよい。また、図1〜5の例の冷却装置本体を開放系の
ものにしてもよいし、また、液体冷却系に代えて気体冷
却系としてもよい。その他、上記において、上記冷却装
置本体側面の断面形状を円形にして局所的な渦の発生を
防止することによって熱伝達ロスを低減するとより効果
的である。以上の説明では主として本発明者によってな
された発明をその背景となった利用分野であるチップキ
ャリヤ型半導体装置に適用した場合について説明した
が、それに限定されるものではなく、他の半導体装置に
などにも適用できる。
Example 4. The embodiment shown in FIG.
An agitator 16 having a propeller 15 is provided in the vicinity of 0 in the vicinity of the end portion thereof so that the refrigerant 11 is forcibly subjected to rotational motion. Although the invention made by the present inventor has been specifically described based on the embodiments, the invention is not limited to the above embodiments, and various modifications can be made without departing from the scope of the invention. Needless to say. For example, in Example 4 or the like, a heat dissipation fin may be added. Further, the cooling device main body in the example of FIGS. 1 to 5 may be an open system, or a gas cooling system may be used instead of the liquid cooling system. In addition, in the above description, it is more effective to reduce the heat transfer loss by making the cross-sectional shape of the side surface of the cooling device main body circular to prevent the generation of local vortices. In the above description, the case where the invention made by the present inventor is mainly applied to the chip carrier type semiconductor device which is the field of application which is the background has been described, but the present invention is not limited to this, and to other semiconductor devices, etc. Can also be applied to.

【0009】[0009]

【発明の効果】本願において開示される発明のうち代表
的なものによって得られる効果を簡単に説明すれば、下
記のとおりである。本願によれば、冷媒が進行方向を軸
とする回転運動を伴いながら伝熱面に衝突するので、熱
伝達効率を向上できる効果ある。
The effects obtained by the representative ones of the inventions disclosed in this application will be briefly described as follows. According to the present application, the refrigerant collides with the heat transfer surface while being accompanied by the rotational movement around the traveling direction, which is an effect that the heat transfer efficiency can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例を示す要部略断面図である。FIG. 1 is a schematic sectional view of an essential part showing an embodiment of the present invention.

【図2】本発明の実施例を示す上面図である。FIG. 2 is a top view showing an embodiment of the present invention.

【図3】本発明の実施例を示す要部略断面図である。FIG. 3 is a schematic sectional view of an essential part showing an embodiment of the present invention.

【図4】本発明の実施例を示す要部略断面図である。FIG. 4 is a schematic sectional view of an essential part showing an embodiment of the present invention.

【図5】本発明の実施例を示す要部略断面図である。FIG. 5 is a schematic sectional view of an essential part showing an embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1・・・配線基板 2・・・ハンダバンプ 3・・・チップキャリア 4・・・充填層 5・・・半導体冷却装置 6・・・半導体冷却装置本体 7・・・伝熱板 8・・・放熱フイン 9・・・冷媒誘導壁 10・・・ノズル 11・・・冷媒 12・・・ベローズ 13・・・らせん壁部 14・・・噴射口 15・・・プロペラ 16・・・撹拌機 1 ... Wiring board 2 ... Solder bump 3 ... Chip carrier 4 ... Filling layer 5 ... Semiconductor cooling device 6 ... Semiconductor cooling device main body 7 ... Heat transfer plate 8 ... Heat dissipation Fin 9 ... Refrigerant guide wall 10 ... Nozzle 11 ... Refrigerant 12 ... Bellows 13 ... Helical wall 14 ... Injection port 15 ... Propeller 16 ... Stirrer

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大塚 寛治 東京都青梅市今井2326番地 株式会社日立 製作所デバイス開発センタ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Kanji Otsuka 2326 Imai, Ome-shi, Tokyo Hitachi, Ltd. Device Development Center

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】半導体装置の放熱を必要とする面(以下放
熱面という)側に冷媒を衝突させて当該装置の冷却を行
う際に、該冷媒にその衝突方向を軸とする回転運動を加
えることを特徴とする半導体装置の冷却方法。
1. When cooling a device by colliding a surface of the semiconductor device requiring heat dissipation (hereinafter referred to as a heat dissipation surface) with a cooling medium, the cooling motion is applied to the cooling medium around the collision direction. A method for cooling a semiconductor device, comprising:
【請求項2】スクリュー状の冷媒誘導壁を有する冷却装
置を放熱面に対峙させ、当該冷却装置により冷媒に回転
運動を加える、請求項1に記載の半導体装置の冷却方
法。
2. The method for cooling a semiconductor device according to claim 1, wherein a cooling device having a screw-shaped coolant guiding wall is opposed to the heat dissipation surface, and the cooling device applies a rotational motion to the coolant.
【請求項3】複数のらせん壁部を内壁面に有するノズル
より冷媒を噴射して、ノズル内部で冷媒に回転運動を加
え、半導体装置の放熱面に衝突させる、請求項1に記載
の半導体装置の冷却方法。
3. The semiconductor device according to claim 1, wherein the refrigerant is jetted from a nozzle having a plurality of spiral wall portions on the inner wall surface, and the refrigerant is rotationally moved inside the nozzle to collide with a heat dissipation surface of the semiconductor device. Cooling method.
【請求項4】異なった複数方向より、冷媒を噴出するこ
とのできる噴射口を有するノズルより冷媒を噴射させ
る、請求項1に記載の半導体装置の冷却方法。
4. The method of cooling a semiconductor device according to claim 1, wherein the cooling medium is jetted from a nozzle having an injection port capable of jetting the cooling medium from a plurality of different directions.
JP4083658A 1992-04-06 1992-04-06 Semiconductor cooling mechanism Withdrawn JPH05283573A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4083658A JPH05283573A (en) 1992-04-06 1992-04-06 Semiconductor cooling mechanism

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4083658A JPH05283573A (en) 1992-04-06 1992-04-06 Semiconductor cooling mechanism

Publications (1)

Publication Number Publication Date
JPH05283573A true JPH05283573A (en) 1993-10-29

Family

ID=13808558

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4083658A Withdrawn JPH05283573A (en) 1992-04-06 1992-04-06 Semiconductor cooling mechanism

Country Status (1)

Country Link
JP (1) JPH05283573A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07115156A (en) * 1993-10-19 1995-05-02 Nec Corp Structure for cooling integrated circuit
JPH0837261A (en) * 1994-07-25 1996-02-06 Nec Corp Semiconductor cooler
US6005182A (en) * 1997-05-22 1999-12-21 Ngk Insulators, Ltd. Thermoelectric conversion module and method of manufacturing the same
EP2151863A1 (en) 2008-07-31 2010-02-10 Lucent Technologies Inc. A jet impingement cooling system
WO2021019786A1 (en) * 2019-08-01 2021-02-04 日本電信電話株式会社 Cooling device
CN113871359A (en) * 2021-08-31 2021-12-31 苏州浪潮智能科技有限公司 Centrifugal micro-channel structure for CPU heat dissipation and use method thereof
CN115143672A (en) * 2022-07-11 2022-10-04 湖北华中长江光电科技有限公司 Vaporization heat exchange device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07115156A (en) * 1993-10-19 1995-05-02 Nec Corp Structure for cooling integrated circuit
JPH0837261A (en) * 1994-07-25 1996-02-06 Nec Corp Semiconductor cooler
US6005182A (en) * 1997-05-22 1999-12-21 Ngk Insulators, Ltd. Thermoelectric conversion module and method of manufacturing the same
EP2151863A1 (en) 2008-07-31 2010-02-10 Lucent Technologies Inc. A jet impingement cooling system
WO2021019786A1 (en) * 2019-08-01 2021-02-04 日本電信電話株式会社 Cooling device
CN113871359A (en) * 2021-08-31 2021-12-31 苏州浪潮智能科技有限公司 Centrifugal micro-channel structure for CPU heat dissipation and use method thereof
CN113871359B (en) * 2021-08-31 2023-11-03 苏州浪潮智能科技有限公司 Centrifugal micro-channel structure for CPU heat dissipation and use method thereof
CN115143672A (en) * 2022-07-11 2022-10-04 湖北华中长江光电科技有限公司 Vaporization heat exchange device

Similar Documents

Publication Publication Date Title
US5239443A (en) Blind hole cold plate cooling system
CA1140681A (en) Slotted heat sinks for high powered air cooled modules
US5491363A (en) Low boiling point liquid coolant cooling structure for electronic circuit package
JP2853481B2 (en) Semiconductor element cooling structure
JP3097144B2 (en) Convection cooling system
US5316075A (en) Liquid jet cold plate for impingement cooling
CN109755199A (en) A kind of minim channel jet stream radiator
US20100263838A1 (en) Synthetic Jet Ejector for Augmentation of Pumped Liquid Loop Cooling and Enhancement of Pool and Flow Boiling
CN109637987A (en) A kind of micro- spray direct liquid cooling radiator of immersion jet stream
JPH0745762A (en) Semiconductor device cooling device
JPH05283573A (en) Semiconductor cooling mechanism
JPH05109954A (en) Cooling structure for integrated circuit package
JPH10200278A (en) Cooler
CN108551750A (en) A kind of enhancing jet stream radiator heat-dissipation efficient appliances, radiating subassembly and production method
CN103153023A (en) Pulse jet flow finned cooling device
CN105258540A (en) Heat sink for high heating flux device
JP3030526B2 (en) Semiconductor cooling structure
JPH0273697A (en) Heat radiating fin
JP2550770B2 (en) Electronic component cooling mechanism
JPH07120866B2 (en) Semiconductor element cooling device
CN202841823U (en) Pulsed jet fin cooling device
JP2658309B2 (en) Jet cooling semiconductor device
JP2658882B2 (en) Semiconductor cooling device
JPH0837260A (en) Semiconductor cooler
JP2727957B2 (en) Heat sink for semiconductor device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608