JPH05283297A - Chip-shaped solid electrolytic capacitor - Google Patents

Chip-shaped solid electrolytic capacitor

Info

Publication number
JPH05283297A
JPH05283297A JP4078014A JP7801492A JPH05283297A JP H05283297 A JPH05283297 A JP H05283297A JP 4078014 A JP4078014 A JP 4078014A JP 7801492 A JP7801492 A JP 7801492A JP H05283297 A JPH05283297 A JP H05283297A
Authority
JP
Japan
Prior art keywords
capacitor
plate
anode
anode plate
electrolytic capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4078014A
Other languages
Japanese (ja)
Inventor
Kazuhiko Fukutani
一彦 福谷
Yuichi Taniguchi
裕一 谷口
Takashi Mochizuki
隆 望月
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Nichicon Corp
Original Assignee
Nippon Steel Corp
Nichicon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Nichicon Corp filed Critical Nippon Steel Corp
Priority to JP4078014A priority Critical patent/JPH05283297A/en
Publication of JPH05283297A publication Critical patent/JPH05283297A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

PURPOSE:To easily work and assemble a capacitor and to enhance the reliability and the yield of the capacitor by a method wherein an anode plate into which a sheetlike or fiber-reinforced member has been compounded is used for the capacitor. CONSTITUTION:An anode plate for a capacitor is manufactured in the following manner: in order to increase the rigidity of the anode plate, a sheetlike reinforcement material 2 (a stainless thin sheet, a copper sheet or the like) is put into the inside by a clad rolling operation, an explosion bonding operation, a press working operation or the like or a fiberlike reinforcement material 8 (a carbon fiber, a steel cord or the like) is mixed when an anode material is cast; and it is rolled or explosion-bonded by sandwiching a fiber between two anode plates. The anode plate 1 which has been worked in this manner is cut to a chip shape; an etching treatment and a chemical formation treatment are executed; after that, a cathode layer 3 which is composed of a solid electrolyte and a cathode conductive layer is formed; an element is formed. An anode lead 4 and a cathode lead 5 are extracted from the element; this assembly is covered with an outer-package resin 7; both leads are bent. Thereby, the operating property of the capacitor is improved in its manufacturing operation and the electrostatic capacity of the capacitor can be increased.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、チップ型固体電解コン
デンサに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a chip type solid electrolytic capacitor.

【0002】[0002]

【従来の技術】チップ型固体電解コンデンサとしてこれ
までタンタル電解コンデンサが広く実用化されており、
タンタルパウダーを焼結してリード線を取付けて内部素
子を形成している。従ってチップコンデンサの構造もそ
れに適した構造になっており、例えば、図9のようにタ
ンタル焼結体からなる素子12から取出された陽極内部
リード13と外部リード4とが接続され、陰極は外部陰
極リード5を素子12に沿ってフォーミングされ銀ペー
ストを介して接続されている。アルミニウム固体電解コ
ンデンサの場合も焼結型の固体電解コンデンサではタン
タル電解コンデンサと殆ど同一の構造となっているが、
現在焼結型のコンデンサについては殆ど実用化されてい
ない。
2. Description of the Related Art Tantalum electrolytic capacitors have been widely put into practical use as chip type solid electrolytic capacitors.
Tantalum powder is sintered and lead wires are attached to form internal elements. Therefore, the structure of the chip capacitor is also suitable for that, for example, as shown in FIG. 9, the anode inner lead 13 and the outer lead 4 taken out from the element 12 made of a tantalum sintered body are connected, and the cathode is the outside. The cathode lead 5 is formed along the element 12 and connected through a silver paste. In the case of an aluminum solid electrolytic capacitor, a sintered solid electrolytic capacitor has almost the same structure as a tantalum electrolytic capacitor.
At present, almost no sintered capacitors have been put to practical use.

【0003】アルミニウム固体電解コンデンサについて
は、平板状のアルミニウム板をエッチング処理により電
極面積を拡大した後、陽極酸化皮膜層を形成し、固体電
解質層、陰極導電層を順次形成し、偏平素子もしくは巻
回素子として内部リードをそのまま外部電極としてコン
デンサ製品を構成している。偏平素子の場合には、内部
リードを介さず陽極側では電極板をそのまま外部電極
(リードフレーム)に接合したり、陰極側は陰極導電層
をそのまま外部電極(リードフレーム)に接合させてい
る。例えば、図10に示すように1枚の平板状の陽極板
14にエッチング処理後陽極酸化皮膜層を形成させた
後、固体電解質層と陰極導電層からなる陰極層3より構
成され、陰極側は陽極板14の先端で外部陽極リード4
との接合を行い、陰極側は素子の外周面に沿った形にフ
ォーミングを行い銀ペーストを介して外部陰極リード5
と接続されている。
In the case of an aluminum solid electrolytic capacitor, a flat aluminum plate is subjected to an etching treatment to increase the electrode area, and then an anodized film layer is formed, a solid electrolyte layer and a cathode conductive layer are sequentially formed, and a flat element or a wound element is formed. A capacitor product is constructed by using the inner lead as an outer electrode as it is as a rotating element. In the case of the flat element, the electrode plate is directly joined to the external electrode (lead frame) on the anode side without interposing the internal lead, or the cathode conductive layer is directly joined to the external electrode (lead frame) on the cathode side. For example, as shown in FIG. 10, one flat plate-shaped anode plate 14 is formed with a cathode layer 3 formed of a solid electrolyte layer and a cathode conductive layer after forming an anodized film layer after etching treatment, and the cathode side is External anode lead 4 at the tip of anode plate 14
The external cathode lead 5 is bonded to the external cathode lead 5 through silver paste by forming a shape along the outer peripheral surface of the element on the cathode side.
Connected with.

【0004】[0004]

【発明が解決しようとする課題】アルミニウム固体電解
コンデンサの陽極板は均一な平板構造をもち、その厚み
が100μm程度と薄く、図10のように平板構造が用
いられていることから剛性が不足し、コンデンサ製造工
程での作業性において問題がある。例えば、チップ型構
造にするためには殆どの場合、トランスファーモールド
を行っており、樹脂の注入時に陽極板にかかるストレ
ス、特に注入圧力に耐え得るには均一な平板構造では不
十分であった。加えて、樹脂応力に対しても陽極板にか
かる応力が大きくなり、板変形が発生し、リード部との
接合部へ応力を局在化させコンデンサとしての信頼性の
乏しいものになる。さらには素子のチップ化への組立工
程が非常に煩雑である欠点がある。また、平板状の陽極
板は、従来のアルミ電解コンデンサの巻回構造のものに
比べて静電容量が低いという問題点もあった。
The anode plate of the aluminum solid electrolytic capacitor has a uniform flat plate structure and a thin thickness of about 100 μm. Since the flat plate structure is used as shown in FIG. 10, the rigidity is insufficient. However, there is a problem in workability in the capacitor manufacturing process. For example, in most cases, transfer molding is performed to obtain a chip-type structure, and a uniform flat plate structure is not sufficient to withstand the stress applied to the anode plate during resin injection, especially the injection pressure. In addition, the stress applied to the anode plate also increases with respect to the resin stress, plate deformation occurs, and the stress is localized at the joint with the lead portion, resulting in poor reliability as a capacitor. Further, there is a drawback that the assembly process for forming the device into chips is very complicated. Further, the flat anode plate has a problem that the electrostatic capacity is lower than that of the conventional aluminum electrolytic capacitor having a wound structure.

【0005】そこで、本発明は、上記に述べた平板から
なる陽極板の持つ剛性不足によるコンデンサ製造上の作
業性の問題を解決し、併せてコンデンサの実効面積を拡
大させることにより静電容量の増大を実現できる陽極板
を適用したチップ型固体電解コンデンサを供給すること
を目的とする。
Therefore, the present invention solves the problem of workability in capacitor manufacturing due to insufficient rigidity of the above-mentioned flat anode plate, and also increases the effective area of the capacitor to increase the capacitance. It is an object of the present invention to provide a chip-type solid electrolytic capacitor to which an anode plate that can realize an increase is applied.

【0006】[0006]

【課題を解決するための手段】本発明は上記目的を達成
するために、チップ型固体電解コンデンサの陽極板内部
に板状または繊維状強化部材を複合した板をコンデンサ
陽極板に用いることを特徴とする。さらに、本発明は、
チップ型固体電解コンデンサの該陽極板の厚み方向断面
が波板形状であって、該陽極板の剛性を増加させるとと
もにコンデンサとしての実効面積を拡大させた陽極板で
あることを特徴とする。本発明のコンデンサを用いれ
ば、従来の課題である陽極板が均一な平板状であること
による板の剛性の不足に起因する製造時の問題を解決で
きる。さらに、本発明は静電容量の増大を図るために、
板の断面形状を波板として剛性を増加させるとともにチ
ップ単位面積当たりの容量が増加し、チップ型固体電解
コンデンサにおける高容量化への課題が解決される。
In order to achieve the above object, the present invention is characterized in that a plate in which a plate-shaped or fibrous reinforcing member is compounded is used as a capacitor anode plate in an anode plate of a chip type solid electrolytic capacitor. And Further, the present invention is
The cross section in the thickness direction of the anode plate of the chip-type solid electrolytic capacitor is a corrugated plate shape, which is an anode plate in which the rigidity of the anode plate is increased and the effective area of the capacitor is expanded. By using the capacitor of the present invention, it is possible to solve the conventional problem in manufacturing due to the lack of rigidity of the plate due to the uniform flat plate shape of the anode plate. Furthermore, in order to increase the capacitance of the present invention,
The cross-sectional shape of the plate is changed to a corrugated plate to increase rigidity and the capacity per unit area of the chip is increased, and the problem of increasing the capacity of the chip type solid electrolytic capacitor is solved.

【0007】[0007]

【作用】一般に、板の中に補強材を入れて複合化させる
ことで複合前の板に比べて剛性を増加させることは、薄
板構造設計の分野ではよく用いられる。本発明は、そこ
での知見をコンデンサ陽極材に適用したものである。本
コンデンサの陽極板は、クラッド圧延、爆着、プレス加
工などにより陽極板の剛性を増加させるために内部に板
状の強化材2(例えば、ステンレス薄板や銅板など)を
入れたり、繊維状強化材8(例えば、炭素繊維やスチー
ルコードなど)を陽極材鋳造時に混入したり、2枚の陽
極板の間に繊維をはさみ圧延または爆着させるなどして
製造する。上記のように加工された陽極板1をチップ形
状に切断、エッチング処理、化成処理を施した後、固体
電解質と陰極導電層からなる陰極層3を形成させ素子を
作る。素子から陽極リード、陰極リードを取り、モール
ド成型により外装樹脂7を被覆し、両リードを折り曲げ
て固体電解コンデンサを完成させる。
In general, it is often used in the field of thin plate structural design to increase the rigidity as compared with a plate before compounding by compounding the plate with a reinforcing material. The present invention applies the findings there to a capacitor anode material. The anode plate of this capacitor has a plate-like reinforcing material 2 (for example, stainless thin plate or copper plate) inside or a fibrous reinforcement to increase the rigidity of the anode plate by clad rolling, explosion-bonding, pressing, etc. The material 8 (for example, carbon fiber or steel cord) is mixed during casting of the anode material, or the fibers are sandwiched between two anode plates and rolled or explosively bonded. After the anode plate 1 processed as described above is cut into a chip shape, subjected to etching treatment and chemical conversion treatment, a cathode layer 3 composed of a solid electrolyte and a cathode conductive layer is formed to produce a device. The anode lead and the cathode lead are taken from the element, the exterior resin 7 is covered by molding, and both leads are bent to complete the solid electrolytic capacitor.

【0008】なお、陽極板の補強方法は、陽極板の剛性
を増加させるように補強材の量と形状を調整し、さらに
波板加工を施して達成することができる。陽極板が必要
とされる所定の容量確保を満たすために波の形状として
は、矩形波、U字状、V字状のいずれかまたはその組み
合わせが選択され、波の繰り返し数についても1回から
複数回が選択される。波板に加工する時は、波のピッチ
を0.5〜5mmとし、波の高さを0.5〜5mmとする。
例えば、板厚が100μmで、波のピッチと高さを1.
0mm,1.0mmとすることで、チップの単位面積当たり
の容量が2倍になった。その結果、陽極板の剛性増加に
よりコンデンサ製作時の歩留が改善されるとともに、チ
ップ単位面積当たりの容量の増加が実現できる。
The reinforcing method of the anode plate can be achieved by adjusting the amount and shape of the reinforcing material so as to increase the rigidity of the anode plate, and further performing corrugated plate processing. A rectangular wave, a U-shape, a V-shape or a combination thereof is selected as the wave shape in order to satisfy the required predetermined capacity of the anode plate. Selected multiple times. When processing a corrugated plate, the wave pitch is 0.5 to 5 mm and the wave height is 0.5 to 5 mm.
For example, if the plate thickness is 100 μm and the wave pitch and height are 1.
By setting the thickness to 0 mm and 1.0 mm, the capacity per unit area of the chip doubled. As a result, the yield of the capacitor can be improved by increasing the rigidity of the anode plate, and the capacity per unit area of the chip can be increased.

【0009】[0009]

【実施例】本発明の実施例を図面を参照しながら説明す
る。本発明の代表的な厚み方向断面図の例を図1〜図8
に示す。図1において1は、全厚が110μm厚で、板
状強化部材2としてステンレス板を含むアルミニウム合
金板からなり、その板をエッチング処理、化成処理を施
した後、固体電解質に含浸し、コロイダルカーボン層、
銀ペースト層からなる陰極導電層3を順次形成させる。
4は該素子のアルミニウム板と溶接して導出したアルミ
からなる陽極リード、5は陰極リードであり、6は陽極
と固体電解質層及び陰極導電層とを絶縁するマスキング
樹脂である。そしてモールド成型により外装樹脂7を被
覆し、上記陽極リード4及び陰極リード5を側面に沿っ
て折り曲げ完成させる。
Embodiments of the present invention will be described with reference to the drawings. Examples of typical sectional views in the thickness direction of the present invention are shown in FIGS.
Shown in. In FIG. 1, reference numeral 1 denotes an aluminum alloy plate having a total thickness of 110 μm and including a stainless plate as a plate-like reinforcing member 2. The plate is subjected to etching treatment and chemical conversion treatment, and then impregnated with a solid electrolyte to form colloidal carbon. layer,
The cathode conductive layer 3 made of a silver paste layer is sequentially formed.
Reference numeral 4 is an anode lead made of aluminum drawn out by welding with an aluminum plate of the device, 5 is a cathode lead, and 6 is a masking resin for insulating the anode from the solid electrolyte layer and the cathode conductive layer. Then, the exterior resin 7 is covered by molding, and the anode lead 4 and the cathode lead 5 are completed by bending along the side surfaces.

【0010】図2において8は、全厚が105μm厚
で、繊維状強化部材9として炭素繊維を含む弁金属であ
るアルミニウムとジルコニウムの合金板からなり、その
板を上記と同じ処理を行った素子である。上記と同じ方
法によりコンデンサを完成させる。このように本発明の
図1及び図2からなる構造にすれば、素子の剛性は増
し、極めて安定した素子構造となる。
In FIG. 2, reference numeral 8 is an element having a total thickness of 105 μm and made of an alloy plate of aluminum and zirconium, which is a valve metal containing carbon fiber, as the fibrous reinforcing member 9, and the plate was subjected to the same treatment as described above. Is. The capacitor is completed by the same method as above. As described above, according to the structure of FIGS. 1 and 2 of the present invention, the rigidity of the element is increased, and the element structure becomes extremely stable.

【0011】図3は陽極板をV字波型に加工した平板状
強化部材2で補強された陽極板10を用いたコンデンサ
である。図4は陽極板をV字波型に加工した繊維状強化
部材9で補強された陽極板11を用いたコンデンサであ
る。図5は陽極板をU字波型に加工した平板状強化部材
2で補強された陽極板10を用いたコンデンサである。
図6は陽極板をU字波型に加工した繊維状強化部材9で
補強された陽極板11を用いたコンデンサである。図7
は陽極板を矩形波型に加工した平板状強化部材2で補強
された陽極板10を用いたコンデンサである。図8は陽
極板を矩形波型に加工した繊維状強化部材9で補強され
た陽極板11を用いたコンデンサである。本発明の図3
〜図8からなる構造にすれば、素子の剛性は増加すると
ともに、コンデンサの実効面積増大による容量が増加し
極めて安定した素子構造となる。
FIG. 3 shows a capacitor using an anode plate 10 reinforced by a flat plate-shaped reinforcing member 2 obtained by processing the anode plate into a V-shape. FIG. 4 shows a capacitor using an anode plate 11 reinforced with a fibrous reinforcing member 9 obtained by processing the anode plate into a V-shape. FIG. 5 shows a capacitor using an anode plate 10 reinforced with a flat plate-shaped reinforcing member 2 obtained by processing the anode plate into a U-shape.
FIG. 6 shows a capacitor using an anode plate 11 reinforced by a fibrous reinforcing member 9 obtained by processing the anode plate into a U-shape. Figure 7
Is a capacitor using the anode plate 10 reinforced by the flat plate-shaped reinforcing member 2 obtained by processing the anode plate into a rectangular wave shape. FIG. 8 shows a capacitor using an anode plate 11 reinforced by a fibrous reinforcing member 9 obtained by processing the anode plate into a rectangular wave shape. FIG. 3 of the present invention
The structure shown in FIG. 8 increases the rigidity of the element and increases the capacitance due to the increase of the effective area of the capacitor, resulting in an extremely stable element structure.

【0012】[0012]

【発明の効果】本発明によれば、コンデンサを製造する
にあたり板状または繊維状強化部材を複合した陽極板を
用いたことにより、剛性が増加しコンデンサの加工、組
立が容易に可能となり、製造上のストレスに対しても安
定した。その結果、コンデンサとしての信頼性や歩留が
向上した。またさらに陽極板を波板状にすることで実効
表面積が増え、静電容量が増加することは言うまでもな
い。それにより生産性が向上し小型化が図られ、その工
業的且つ実用的価値は大なるものがある。
According to the present invention, when a capacitor is manufactured by using an anode plate which is a composite of plate-like or fibrous reinforcing members, the rigidity is increased and the capacitor can be easily processed and assembled. Stable against upper stress. As a result, the reliability and yield of the capacitor were improved. Needless to say, the corrugated plate of the anode plate increases the effective surface area and thus the capacitance. As a result, productivity is improved and miniaturization is achieved, and its industrial and practical value is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のチップ型固体電解コンデンサの一実施
例の断面図である。
FIG. 1 is a cross-sectional view of an embodiment of a chip type solid electrolytic capacitor of the present invention.

【図2】本発明のチップ型固体電解コンデンサの他の実
施例の断面図である。
FIG. 2 is a cross-sectional view of another embodiment of the chip type solid electrolytic capacitor of the present invention.

【図3】本発明のチップ型固体電解コンデンサの他の実
施例の断面図である。
FIG. 3 is a sectional view of another embodiment of the chip type solid electrolytic capacitor of the present invention.

【図4】本発明のチップ型固体電解コンデンサの他の実
施例の断面図である。
FIG. 4 is a sectional view of another embodiment of the chip-type solid electrolytic capacitor of the present invention.

【図5】本発明のチップ型固体電解コンデンサの他の実
施例の断面図である。
FIG. 5 is a sectional view of another embodiment of the chip type solid electrolytic capacitor of the present invention.

【図6】本発明のチップ型固体電解コンデンサの他の実
施例の断面図である。
FIG. 6 is a sectional view of another embodiment of the chip type solid electrolytic capacitor of the present invention.

【図7】本発明のチップ型固体電解コンデンサの他の実
施例の断面図である。
FIG. 7 is a sectional view of another embodiment of the chip type solid electrolytic capacitor of the present invention.

【図8】本発明のチップ型固体電解コンデンサの他の実
施例の断面図である。
FIG. 8 is a sectional view of another embodiment of the chip type solid electrolytic capacitor of the present invention.

【図9】従来のチップ型タンタル電解コンデンサの断面
図である。
FIG. 9 is a cross-sectional view of a conventional chip type tantalum electrolytic capacitor.

【図10】従来の素子を用いたチップ型固体電解コンデ
ンサの断面図である。
FIG. 10 is a cross-sectional view of a chip type solid electrolytic capacitor using a conventional element.

【符号の説明】[Explanation of symbols]

1 板状強化部材により補強された陽極板 2 板状強化部材 3 固体電解質と陰極導電層からなる陰極層 4 陽極リード(外部リード) 5 陰極リード(外部リード) 6 マスキング部 7 モールド外装絶縁樹脂 8 繊維状強化部材により補強された陽極板 9 繊維状強化部材 10 板状強化部材により補強され波板加工された陽極
板 11 繊維状強化部材により補強され波板加工された陽
極板 12 タンタル焼結体からなるコンデンサ素子 13 内部リード 14 平板形状の陽極板
1 Anode plate reinforced by a plate-like reinforcing member 2 Plate-like reinforcing member 3 Cathode layer composed of a solid electrolyte and a cathode conductive layer 4 Anode lead (external lead) 5 Cathode lead (external lead) 6 Masking part 7 Mold exterior insulating resin 8 Anode plate reinforced with fibrous reinforcing member 9 Fibrous reinforcing member 10 Anode plate reinforced with corrugated plate reinforced with plate-shaped reinforcing member 11 Anode plate reinforced with corrugated plate reinforced with fibrous reinforcing member 12 Tantalum sintered body Capacitor element composed of 13 Internal lead 14 Flat plate-shaped anode plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷口 裕一 千葉県富津市新富20−1 新日本製鐵株式 会社技術開発本部内 (72)発明者 望月 隆 京都府京都市中京区御池通烏丸東入一筋目 仲保利町191番地の4 上原ビル3階 ニ チコン株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Yuichi Taniguchi 20-1 Shintomi, Futtsu City, Chiba Shin Nippon Steel Co., Ltd.Technology Development Division Nichicon Co., Ltd., 3rd floor, Uehara Building, 4th, 191 Nakabori

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 弁金属またはそれらの合金からなる陽極
板をエッチング処理、化成処理して誘電体皮膜を形成し
た後、固体電解質層、陰極導電層を順次形成してなるチ
ップ型固体電解コンデンサにおいて、陽極板の内部に板
状または繊維状強化部材を複合した板をコンデンサ陽極
板に用いることを特徴とするチップ型固体電解コンデン
サ。
1. A chip-type solid electrolytic capacitor in which an anode plate made of a valve metal or an alloy thereof is subjected to an etching treatment and a chemical conversion treatment to form a dielectric film, and then a solid electrolyte layer and a cathode conductive layer are sequentially formed. A chip-type solid electrolytic capacitor, characterized in that a plate in which a plate-shaped or fibrous reinforcing member is combined is used as a capacitor anode plate.
【請求項2】 陽極板の厚み方向断面が波板形状であっ
て、該陽極板の剛性を増加させるとともにコンデンサと
しての実効面積を拡大させた陽極板であることを特徴と
する請求項1記載のチップ型固体電解コンデンサ。
2. The anode plate, which has a corrugated plate-shaped cross section in the thickness direction, and which has an increased effective area as a capacitor while increasing the rigidity of the anode plate. Chip type solid electrolytic capacitor.
JP4078014A 1992-03-31 1992-03-31 Chip-shaped solid electrolytic capacitor Withdrawn JPH05283297A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4078014A JPH05283297A (en) 1992-03-31 1992-03-31 Chip-shaped solid electrolytic capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4078014A JPH05283297A (en) 1992-03-31 1992-03-31 Chip-shaped solid electrolytic capacitor

Publications (1)

Publication Number Publication Date
JPH05283297A true JPH05283297A (en) 1993-10-29

Family

ID=13649941

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4078014A Withdrawn JPH05283297A (en) 1992-03-31 1992-03-31 Chip-shaped solid electrolytic capacitor

Country Status (1)

Country Link
JP (1) JPH05283297A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7177141B1 (en) * 2005-07-28 2007-02-13 Sanyo Electric Co., Ltd. Solid electrolytic capacitor element, manufacturing method therefor, and solid electrolytic capacitor
JP2009158579A (en) * 2007-12-25 2009-07-16 Nichicon Corp Solid-state electrolytic capacitor element and manufacturing method thereof
US8477479B2 (en) * 2011-01-12 2013-07-02 Avx Corporation Leadwire configuration for a planar anode of a wet electrolytic capacitor
CN104200993A (en) * 2014-08-29 2014-12-10 安徽普和电子有限公司 Capacitor
JP2020199528A (en) * 2019-06-10 2020-12-17 マツダ株式会社 Bonding method and composite material bonded by the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7177141B1 (en) * 2005-07-28 2007-02-13 Sanyo Electric Co., Ltd. Solid electrolytic capacitor element, manufacturing method therefor, and solid electrolytic capacitor
JP2009158579A (en) * 2007-12-25 2009-07-16 Nichicon Corp Solid-state electrolytic capacitor element and manufacturing method thereof
US8477479B2 (en) * 2011-01-12 2013-07-02 Avx Corporation Leadwire configuration for a planar anode of a wet electrolytic capacitor
CN104200993A (en) * 2014-08-29 2014-12-10 安徽普和电子有限公司 Capacitor
JP2020199528A (en) * 2019-06-10 2020-12-17 マツダ株式会社 Bonding method and composite material bonded by the same

Similar Documents

Publication Publication Date Title
KR100712780B1 (en) Solid electrolytic capacitor
JPH07507421A (en) Extruded capacitor electrode and its manufacturing method
JPH05283297A (en) Chip-shaped solid electrolytic capacitor
JPH11135367A (en) Multilayered solid electrolytic capacitor
JPH05283298A (en) Chip-shaped solid electrolytic capacitor
JPH05299309A (en) Manufacture of electrode for chip type solid electrolytic capacitor
JPS6412087B2 (en)
US5841216A (en) Composite piezoelectric multilayer element and method of manufacturing such an element
JPS6328197Y2 (en)
JP3070374B2 (en) Chip type solid electrolytic capacitor
JP2944162B2 (en) Manufacturing method of multilayer solid electrolytic capacitor
JPH05283295A (en) Chips-shaped solid electrolytic capacitor
JPH11204381A (en) Electric double-layered capacitor
JPH06816Y2 (en) Chip tantalum solid electrolytic capacitor
JP3152465B2 (en) Chip type solid electrolytic capacitor
JP2655629B2 (en) Chip type solid electrolytic capacitor
JP2872740B2 (en) Manufacturing method of multilayer solid electrolytic capacitor
JPH05267108A (en) Chip-type laminated solid electrolyte capacitor
JPH04236415A (en) Manufacture of stacked type solid electrolytic capacitor
JPH05326339A (en) Electrolytic capacitor and its manufacture
JPS6038808A (en) Form of inner surface etching case of cathode aluminum of small-sized aluminum electrolytic condenser and method of producing same
JPH0576034U (en) Electrode material for capacitors
JPH0133930B2 (en)
JPS6256112B2 (en)
JPH0822933A (en) Chip solid electrolytic capacitor and manufacture threof

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608