JPH05283277A - Manufacture of laminated ceramic electronic component - Google Patents

Manufacture of laminated ceramic electronic component

Info

Publication number
JPH05283277A
JPH05283277A JP10605692A JP10605692A JPH05283277A JP H05283277 A JPH05283277 A JP H05283277A JP 10605692 A JP10605692 A JP 10605692A JP 10605692 A JP10605692 A JP 10605692A JP H05283277 A JPH05283277 A JP H05283277A
Authority
JP
Japan
Prior art keywords
laminated
green body
laminated green
plate
carrier plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10605692A
Other languages
Japanese (ja)
Inventor
Hisashi Yamaguchi
尚志 山口
Seiji Saito
征士 斉藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Materials Corp
Original Assignee
Mitsubishi Materials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Materials Corp filed Critical Mitsubishi Materials Corp
Priority to JP10605692A priority Critical patent/JPH05283277A/en
Publication of JPH05283277A publication Critical patent/JPH05283277A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To enhance the substrate mounting property of the title electronic component by a method wherein a pressure strain is reduced in a compression molding operation and the difference in a thickness between the lamination central part of an electrode layer and the lamination end part of the electrode layer is reduced even when the number of laminated layers is large. CONSTITUTION:A laminated green body 12 composed of a plurality of ceramic green sheets in which electrode layers have been formed on the individual sheets is laminated and bonded temporarily on the surface of a rigid carrier plate 10 and the laminated green body which has been bonded temporarily is put into a flexible bag 18 together with the carrier plate and vacuum-packed. Regarding the manufacturing method, of a laminated ceramic electronic component, wherein the packed laminated green body provided with the carrier plate is hydrostatically pressed, a process wherein a rigid plate 16 having an area covering at least the electrode lamination part of the laminated green body is placed on the top surface of the laminated green body 12 is provided between a temporary bonding process and a vacuum-packing process, and the rigid plate 16 is vacuum-packed in a state that it has been placed on the surface of the laminated green body 12.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、積層セラミックコンデ
ンサ、多層印刷配線基板、積層バリスタ、積層圧電素
子、積層チップインダクタ等の積層セラミック電子部品
の製造方法に関する。更に詳しくはそれぞれに電極が印
刷形成された複数のセラミックグリーンシートを積層圧
着した後、焼成して積層セラミック電子部品を製造する
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a laminated ceramic electronic component such as a laminated ceramic capacitor, a multilayer printed wiring board, a laminated varistor, a laminated piezoelectric element and a laminated chip inductor. More specifically, the present invention relates to a method for manufacturing a laminated ceramic electronic component by laminating and pressing a plurality of ceramic green sheets each having electrodes printed thereon and then firing the laminated ceramic green sheets.

【0002】[0002]

【従来の技術】従来、この種の複数のセラミックグリー
ンシートを積層した積層グリーン体を一体化する方法と
して、内部に電極層が形成された積層グリーン体を金型
の下型内に入れ、上型を加圧することにより積層グリー
ン体を構成する各グリーンシートと内部電極層を隙間な
く圧着する機械プレス法が知られている。一般に、セラ
ミックグリーンシートの電極形成部分のシート厚は電極
非形成部分のシート厚より大きいけれども、この機械プ
レス法でプレスすると電極形成部分の積層箇所に主とし
て圧力が加わるため、電極形成部分の積層箇所と電極非
形成部分の積層箇所との厚みの差が矯正される利点があ
る。しかしこの機械プレス法は、作業が煩雑で効率が悪
い上、この方法で加圧すると積層グリーン体に均一に圧
力が加わらず、積層グリーン体に圧力歪みが生じ易い。
その結果、この積層グリーン体を焼成した時には内部に
デラミネーション(層はがれ)やクラックの原因となり
易い。また機械プレスでは上型、下型の平行度や位置を
精度良く保持することが難しく、グリーンシートが薄く
なると圧力歪みに起因してデラミネーション等がより一
層生じ易い欠点があった。上記の圧力歪みをなくする方
法として、セラミックグリーンシートを可撓性袋で真空
包装した後、真空包装した積層グリーンシートを静水圧
プレスをかけて圧着する方法が提案されている(特公平
3−58524)。
2. Description of the Related Art Conventionally, as a method of integrating a laminated green body obtained by laminating a plurality of ceramic green sheets of this type, a laminated green body having an electrode layer formed therein is put in a lower mold of a mold and then the There is known a mechanical pressing method in which each green sheet forming a laminated green body and an internal electrode layer are pressure-bonded to each other by pressing a mold without a gap. Generally, the sheet thickness of the electrode forming portion of the ceramic green sheet is larger than the sheet thickness of the electrode non-forming portion, but when pressed by this mechanical pressing method, pressure is mainly applied to the laminating portion of the electrode forming portion. There is an advantage that the difference in thickness between the electrode and the portion where the electrode is not formed is laminated. However, in this mechanical pressing method, the work is complicated and inefficient, and when pressure is applied by this method, pressure is not uniformly applied to the laminated green body, and pressure strain easily occurs in the laminated green body.
As a result, when this laminated green body is fired, it tends to cause delamination (layer peeling) and cracks inside. Further, in the mechanical press, it is difficult to accurately maintain the parallelism and the position of the upper mold and the lower mold, and when the green sheet becomes thin, delamination and the like are more likely to occur due to pressure distortion. As a method for eliminating the above-mentioned pressure distortion, there has been proposed a method in which a ceramic green sheet is vacuum-packaged in a flexible bag and then the vacuum-packaged laminated green sheet is subjected to hydrostatic pressing to be pressure bonded (Japanese Patent Publication No. 58524).

【0003】[0003]

【発明が解決しようとする課題】しかし、静水圧プレス
法では、積層グリーン体の電極形成部分の積層箇所と電
極非形成部分の積層箇所に均一に圧力が加わるため、図
7に示すように、例えばチップ型積層セラミックコンデ
ンサ1の場合、電極層11の積層中央部Aと電極層11
の積層端部Bとの間では厚み差dを生じる。その厚み差
dは積層数が増大するほど顕著になる。この厚み差が外
部電極2の層厚より大きいと電極層11の積層端部Bに
外部電極2を設けても、電極層11の積層中央部Aは外
部電極2より積層方向で外側に突き出るようになる。こ
のようなコンデンサ1をプリント基板3上に搭載した場
合、外部電極2が基板3に接触しないため、コンデンサ
1は安定性が悪く位置ずれ等が生じ易い不具合があっ
た。特に自動はんだ付け装置を用いてコンデンサ1の外
部電極2を基板3にはんだ付けする場合、クリームはん
だ4と外部電極2との接触が悪くなったり、実装不良が
生じ易い問題点があった。
However, in the hydrostatic pressing method, pressure is uniformly applied to the laminated portions of the electrode forming portion and the electrode non-forming portion of the laminated green body, so that as shown in FIG. For example, in the case of the chip type monolithic ceramic capacitor 1, the laminated central portion A of the electrode layer 11 and the electrode layer 11
There is a thickness difference d between the laminated end portion B and the laminated end portion B. The thickness difference d becomes more remarkable as the number of stacked layers increases. If this thickness difference is larger than the layer thickness of the external electrode 2, even if the external electrode 2 is provided at the laminated end portion B of the electrode layer 11, the laminated central portion A of the electrode layer 11 protrudes outward from the external electrode 2 in the laminating direction. become. When such a capacitor 1 is mounted on the printed circuit board 3, the external electrode 2 does not come into contact with the substrate 3, so that the capacitor 1 has poor stability and is likely to be displaced. In particular, when the external electrode 2 of the capacitor 1 is soldered to the substrate 3 by using an automatic soldering device, there are problems that the contact between the cream solder 4 and the external electrode 2 becomes poor and that mounting failure easily occurs.

【0004】本発明の目的は、圧力歪みが少なく、かつ
積層数が多くても電極層の積層中央部と電極層の積層端
部の厚み差が小さく、基板実装性に優れた積層セラミッ
ク電子部品の製造方法を提供することにある。
An object of the present invention is to provide a monolithic ceramic electronic component which has a small pressure strain, and has a small thickness difference between the central portion of the electrode layer and the laminated end portion of the electrode layer even when the number of laminated layers is large, and which is excellent in board mountability. It is to provide a manufacturing method of.

【0005】[0005]

【課題を解決するための手段】本発明は、図1〜図5に
示すように、各シートに電極層11が形成された複数の
セラミックグリーンシートからなる積層グリーン体12
を剛体キャリヤ板10の表面に積層して仮接着する工程
と、このキャリヤ板10に仮接着された積層グリーン体
12をキャリヤ板10とともに可撓性袋18に入れ真空
包装する工程と、この真空包装されたキャリヤ板付き積
層グリーン体12を静水圧プレスする工程とを備えた積
層セラミック電子部品の製造方法の改良である。その特
徴ある構成は、仮接着工程と真空包装工程との間に積層
グリーン体12の上面に少なくとも積層グリーン体12
の電極積層部を覆う面積を有する剛性板16を載せる工
程を備え、真空包装工程で剛性板16を積層グリーン体
12の上面に載せた状態で真空包装することにある。な
お、剛性板16は、加熱された流体中で圧力を受ける場
合があるため、金属板又は耐熱性のあるプラスチック板
であることが好ましい。
According to the present invention, as shown in FIGS. 1 to 5, a laminated green body 12 comprising a plurality of ceramic green sheets each having an electrode layer 11 formed on each sheet.
Is laminated on the surface of the rigid carrier plate 10 and temporarily adhered thereto, and the laminated green body 12 temporarily adhered to the carrier plate 10 is put in a flexible bag 18 together with the carrier plate 10 and vacuum-packaged. And a step of isostatically pressing the packaged laminated green body 12 with a carrier plate, which is an improvement of the method for producing a laminated ceramic electronic component. The characteristic configuration is that at least the laminated green body 12 is provided on the upper surface of the laminated green body 12 between the temporary bonding step and the vacuum packaging step.
The step of placing the rigid plate 16 having an area that covers the electrode laminated portion is to vacuum-pack the rigid plate 16 on the upper surface of the laminated green body 12 in the vacuum packaging step. The rigid plate 16 is preferably a metal plate or a heat-resistant plastic plate because it may be subjected to pressure in a heated fluid.

【0006】[0006]

【作用】剛性板16を積層グリーン体12の上面に載せ
た状態で真空包装することにより積層グリーン体12が
剛体キャリヤ板10と剛性板16とにより挟まれ、この
状態で静水圧プレスすると、積層グリーン体12が剛体
キャリヤ板10と剛性板16とにより圧縮される。図6
に示すように、剛性板16は静水圧によって電極層11
の積層端部Bが電極層11の積層中央部Aと比べて極端
に厚さが小さくなることを抑制するので、外部電極2を
形成した後の両者間の厚みの差Dは図7に示した厚みの
差dより小さくなり、かつ圧力歪みが減少する。
The laminated green body 12 is sandwiched between the rigid carrier plate 10 and the rigid plate 16 by vacuum packaging with the rigid plate 16 placed on the upper surface of the laminated green body 12. When the hydrostatic pressing is performed in this state, the laminated green body 12 is laminated. The green body 12 is compressed by the rigid carrier plate 10 and the rigid plate 16. Figure 6
As shown in FIG.
Since the laminated end B of the electrode layer 11 is prevented from being extremely smaller in thickness than the laminated central portion A of the electrode layer 11, the thickness difference D between the both after forming the external electrode 2 is shown in FIG. And the pressure strain is reduced.

【0007】[0007]

【実施例】次に、本発明の実施例を図面に基づいて詳し
く説明する。この例では、積層セラミックコンデンサを
代表して説明する。 <仮接着工程>図1に示すように、剛体キャリヤ板10
の表面に内部に電極層11を有する積層グリーン体12
が仮接着される。具体的には片面に接着剤の塗布された
厚さ約250μmのポリエチレンテレフタレート製のベ
ースフィルム14をこの接着剤(図示せず)によりキャ
リヤ板10の表面に貼付ける。ベースフィルム14はそ
の他のプラスチックシートでもよい。接着剤はベースフ
ィルム14を手で軽く引上げたときにキャリヤ板から剥
離できる程度の接着力を有するものが選ばれる。このフ
ィルム14の表面にはエチルセルロースが塗布されて薄
い樹脂層(図示せず)が形成される。この樹脂層は積層
グリーン体12を構成するセラミックグリーンシートを
熱プレスすると接着力を発揮する。樹脂層はエチルセル
ロースに限らず、同等の接着効果を有するものであれば
よい。この例では、キャリヤ板10は表面をアルマイト
処理した厚み約1mmのアルミニウム板である。高温高
圧で変形、収縮等を生じない材質であれば、アルミニウ
ム板に限らず、例えばステンレススチール板でもよい。
Embodiments of the present invention will now be described in detail with reference to the drawings. In this example, a monolithic ceramic capacitor will be described as a representative. <Temporary Adhesion Step> As shown in FIG.
Laminated green body 12 having electrode layer 11 inside thereof on the surface of
Is temporarily bonded. Specifically, a base film 14 made of polyethylene terephthalate and having a thickness of about 250 μm, which is coated with an adhesive on one side, is attached to the surface of the carrier plate 10 with this adhesive (not shown). The base film 14 may be another plastic sheet. The adhesive is selected to have such an adhesive force that the base film 14 can be peeled off from the carrier plate when the base film 14 is lightly pulled up by hand. Ethyl cellulose is applied to the surface of the film 14 to form a thin resin layer (not shown). This resin layer exhibits an adhesive force when a ceramic green sheet forming the laminated green body 12 is hot pressed. The resin layer is not limited to ethyl cellulose and may be any resin having an equivalent adhesive effect. In this example, the carrier plate 10 is an aluminum plate having a thickness of about 1 mm, the surface of which is anodized. The material is not limited to the aluminum plate and may be, for example, a stainless steel plate as long as the material does not deform or shrink at high temperature and high pressure.

【0008】積層グリーン体12は剛体キャリヤ板10
の表面のフィルム14上に複数のセラミックグリーンシ
ートを一枚ずつ熱プレスにより固定することにより作ら
れる。この例では、グリーンシートはポリビニルブチラ
ール又はアクリル系のバインダと可塑剤を含むチタン酸
バリウム系のJIS−R特性を有する誘電体スラリーを
ドクターブレード法により成膜乾燥して作られる。内部
電極層11は所定枚数のグリーンシートを積層した後、
その上面に電極層用の導電性ペーストを印刷して乾燥す
ることにより形成される。その後、電極層を形成しない
所定枚数のグリーンシートの積層と電極層形成が繰返さ
れる。この例では導電性ペーストはPd粉末をエチルセ
ルロースを主成分とするビヒクルに混合して調製され
る。Pdの代わりにAg/Pd,Ni,Cu等を用いて
もよい。
The laminated green body 12 is a rigid carrier plate 10.
It is made by fixing a plurality of ceramic green sheets one by one on the film 14 on the surface of the sheet by hot pressing. In this example, the green sheet is formed by film-forming and drying a barium titanate-based dielectric slurry having JIS-R characteristics containing a polyvinyl butyral or acrylic binder and a plasticizer by a doctor blade method. After stacking a predetermined number of green sheets, the internal electrode layer 11 is
It is formed by printing a conductive paste for an electrode layer on the upper surface and drying it. After that, stacking of a predetermined number of green sheets without forming the electrode layer and formation of the electrode layer are repeated. In this example, the conductive paste is prepared by mixing Pd powder with a vehicle based on ethyl cellulose. Ag / Pd, Ni, Cu or the like may be used instead of Pd.

【0009】<剛性板を載せる工程>本実施例の特徴あ
る点は、所定数の電極層11を形成した後、最上のグリ
ーンシートの表面、即ち積層グリーン体12の上面に剛
性板16を載せることにある。この例では、剛性板16
は厚み約1mmのステンレススチール板である。高温高
圧で変形、収縮等を生じない材質であれば、ステンレス
スチール板に限らず、例えばアルミニウム板又は耐熱性
のあるプラスチック板でもよい。この剛性板16は図2
に詳しく示すように、積層グリーン体12の外周より僅
かに小さく、少なくとも24個の電極層11の積層箇所
を覆う面積を有する。図示しないが、剛性板16は積層
グリーン体2の上面の面積と同一でもよい。
<Step of Mounting Rigid Plate> A characteristic point of this embodiment is that after the predetermined number of electrode layers 11 are formed, the rigid plate 16 is mounted on the surface of the uppermost green sheet, that is, the upper surface of the laminated green body 12. Especially. In this example, the rigid plate 16
Is a stainless steel plate having a thickness of about 1 mm. The material is not limited to the stainless steel plate, and may be, for example, an aluminum plate or a heat-resistant plastic plate as long as the material does not deform or shrink at high temperature and high pressure. This rigid plate 16 is shown in FIG.
As will be described in detail below, the area is slightly smaller than the outer circumference of the laminated green body 12 and has an area that covers the laminated portion of at least 24 electrode layers 11. Although not shown, the rigid plate 16 may have the same area as the upper surface of the laminated green body 2.

【0010】<包装工程>図3に示すように、仮接着工
程で仮接着された積層グリーン体12はキャリヤ板10
と剛性板16とにより挟んだ状態で可撓性袋18により
真空包装される。この例では、袋18はナイロン製であ
る。真空減圧して封止できる材質であれば、ナイロンに
限らず、ゴム、その他のプラスチック等の可撓性材料で
もよい。積層グリーン体中の残存溶剤のガスを除去する
ため真空中で封止することが好ましい。
<Packaging Process> As shown in FIG. 3, the laminated green body 12 temporarily bonded in the temporary bonding process is the carrier plate 10.
It is vacuum-packaged with a flexible bag 18 in a state of being sandwiched between the rigid plate 16 and the rigid plate 16. In this example, the bag 18 is made of nylon. The material is not limited to nylon as long as it can be vacuum-depressurized and sealed, and a flexible material such as rubber or other plastic may be used. It is preferable to seal in a vacuum in order to remove the residual solvent gas in the laminated green body.

【0011】<プレス工程>図4に示すように、キャリ
ヤ板12と剛性板16で挟んで真空包装された複数の積
層グリーン体12をトレー21に収容した状態でプレス
機20の作動流体22の中に入れる。ここで300kg
/cm2の圧力を加えることにより積層グリーン体12
が静水圧プレスされる。これにより複数個の積層グリー
ン体12が一括して加圧処理される。作動流体22とし
てシリコーン油又は水が用いられる。圧着効果を高める
ため、作動流体は65℃程度に昇温しておくことが好ま
しい。作動流体の昇温は図示しない加熱タンクに貯えら
れた作動流体を加熱タンクから間欠的に注入することに
より行われる。
<Pressing Step> As shown in FIG. 4, the working fluid 22 of the pressing machine 20 is stored in a tray 21 in a state where a plurality of laminated green bodies 12 sandwiched between a carrier plate 12 and a rigid plate 16 and vacuum-packaged are accommodated in a tray 21. insert. 300 kg here
Laminated green body 12 by applying a pressure of / cm 2
Is hydrostatically pressed. As a result, the plurality of laminated green bodies 12 are collectively pressure-treated. Silicone oil or water is used as the working fluid 22. In order to enhance the pressure-bonding effect, it is preferable to raise the temperature of the working fluid to about 65 ° C. The temperature of the working fluid is raised by intermittently injecting the working fluid stored in a heating tank (not shown) from the heating tank.

【0012】<切断工程>図5に示すように、静水圧プ
レスされた積層グリーン体12は可撓性袋18を開封し
て取出される。剛性板16を外した後、キャリヤ板付き
積層グリーン体12を図示しない切断機の台にセットす
る。ここでキャリヤ板10の縦方向及び横方向をそれぞ
れx方向及びy方向(図2参照)とするとき、積層グリ
ーン体12をキャリヤ板10を残してx方向及びy方向
に切断する。具体的には切断機のブレード(図示せず)
を図5の破線Cに示すようにベースフィルム14の内部
に到達したところで止める。
<Cutting Step> As shown in FIG. 5, the isostatically pressed laminated green body 12 is taken out by opening the flexible bag 18. After removing the rigid plate 16, the laminated green body 12 with a carrier plate is set on the base of a cutting machine (not shown). Here, when the vertical direction and the horizontal direction of the carrier plate 10 are respectively defined as the x direction and the y direction (see FIG. 2), the laminated green body 12 is cut in the x direction and the y direction while leaving the carrier plate 10. Specifically, a blade of a cutting machine (not shown)
Is stopped when it reaches the inside of the base film 14 as shown by the broken line C in FIG.

【0013】<剥離工程>積層グリーン体12を切断し
た後、ベースフィルム14をキャリヤ板10から剥離す
ると、フィルム14が湾曲し、同時に切断した積層グリ
ーン体12がチップ状になってフィルム14からも容易
に剥離する。残されたキャリヤ板10は次の積層グリー
ン体の仮接着のために繰返し使用される。
<Peeling Step> When the base film 14 is peeled from the carrier plate 10 after the laminated green body 12 is cut, the film 14 is curved, and at the same time, the laminated green body 12 cut into chips is formed. Easy to peel off. The remaining carrier plate 10 is repeatedly used for the temporary adhesion of the next laminated green body.

【0014】<焼成工程>チップ状になった積層グリー
ン体は脱バインダ処理をした後、大気圧下で1300℃
で2時間保持してチップ型積層セラミックコンデンサ素
体とする。このチップ型積層セラミックコンデンサ素体
20個についてそれぞれ外観検査及び内部解析を行った
ところ、デラミネーション、クラック等の欠陥を発生し
ているものは全くなかった。図6に示すように、このコ
ンデンサ素体の両端部、即ち電極層11の積層端部Bの
電極層11の積層中央部Aとの厚みの差Dは剛性板を載
せない従来のものと比べて小さくなり、電極層11の積
層端部Bに外部電極2を形成し、基板3に実装したとこ
ろ、外部電極2の表面と電極層11の積層中央部Aの表
面はほぼ同一になり、積層セラミックコンデンサ1は基
板3の表面に安定して置くことができた。
<Firing Step> The chip-shaped laminated green body is subjected to binder removal processing, and then at 1300 ° C. under atmospheric pressure.
And hold for 2 hours to obtain a chip type monolithic ceramic capacitor element body. The appearance inspection and internal analysis were carried out on each of the 20 chip-type monolithic ceramic capacitor bodies, and no defects such as delamination and cracks were found. As shown in FIG. 6, the difference D in thickness between the both ends of the capacitor body, that is, the laminated end B of the electrode layer 11 and the laminated central portion A of the electrode layer 11 is larger than that of the conventional one in which no rigid plate is mounted. When the external electrode 2 is formed on the laminated end portion B of the electrode layer 11 and mounted on the substrate 3, the surface of the external electrode 2 and the surface of the laminated central portion A of the electrode layer 11 become almost the same, and The ceramic capacitor 1 could be stably placed on the surface of the substrate 3.

【0015】なお、実施例では誘電体スラリーとして、
チタン酸バリウム系のJIS−R特性を有するものを説
明したが、鉛系等の他の誘電体スラリーを用いてもよ
い。また、積層セラミックコンデンサについて説明した
が、本発明はこれに限らず多層印刷配線基板、積層バリ
スタ、積層圧電素子、積層チップインダクタ等の積層セ
ラミック電子部品の製造に適用できる。
In the examples, as the dielectric slurry,
Although the barium titanate-based material having JIS-R characteristics has been described, other dielectric slurry such as lead-based material may be used. Further, although the multilayer ceramic capacitor has been described, the present invention is not limited to this, and can be applied to the production of multilayer ceramic electronic components such as a multilayer printed wiring board, a multilayer varistor, a multilayer piezoelectric element, and a multilayer chip inductor.

【0016】[0016]

【発明の効果】以上述べたように、本発明は静水圧プレ
ス法によるため、積層グリーン体に均一に圧力が加わり
圧力歪みが減少して、従来の機械プレス法で発生してい
た焼成後のデラミネーション、クラック等の欠陥がなく
なる。また従来の静水圧プレス法と比べて、圧縮成形時
に積層グリーン体が剛体キャリヤ板と剛性板に挟まれて
保持され、剛性板が静水圧による電極層の積層端部の厚
みの減少を抑制するので、電極層の積層中央部と電極層
の積層端部の間の厚みの差を小さくすることができる。
その結果、チップ状にしたセラミック素体の両端部、即
ち電極層の積層端部に外部電極を形成すれば、電極層の
積層中央部は外部電極と同一の平面になり、基板への実
装性が高まる。更に剛性板は積層グリーン体の横方向の
収縮を抑制する作用もあるため、積層グリーン体のプレ
ス後の横方向の寸法の変動を減少させ、電極層を形成し
たときの最初の位置精度をそのまま維持して、積層セラ
ミック電子部品の製品歩留りを向上することができる。
As described above, since the present invention is based on the hydrostatic pressing method, pressure is evenly applied to the laminated green body to reduce the pressure strain, and after the firing, which occurs in the conventional mechanical pressing method. Defects such as delamination and cracks are eliminated. Further, compared to the conventional hydrostatic pressing method, the laminated green body is held between the rigid carrier plate and the rigid plate during compression molding, and the rigid plate suppresses the reduction in the thickness of the laminated end portion of the electrode layer due to the hydrostatic pressure. Therefore, it is possible to reduce the difference in thickness between the laminated center portion of the electrode layer and the laminated end portion of the electrode layer.
As a result, if external electrodes are formed on both ends of the chip-shaped ceramic body, that is, on the laminated ends of the electrode layers, the central portion of the laminated layers of the electrode layers will be flush with the external electrodes, and the mountability on the substrate will be improved. Will increase. Furthermore, since the rigid plate also has an effect of suppressing the lateral contraction of the laminated green body, the variation in the lateral dimension of the laminated green body after pressing is reduced, and the initial positional accuracy when the electrode layer is formed remains unchanged. It is possible to maintain and improve the product yield of the monolithic ceramic electronic component.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明実施例の積層グリーン体を剛体キャリヤ
板の表面に仮接着後剛性板を載せた状態を示す図2のE
−E線断面図。
FIG. 1E of FIG. 2 showing a state in which a laminated green body according to an embodiment of the present invention is temporarily attached to the surface of a rigid carrier plate and then a rigid plate is placed thereon.
-E line sectional drawing.

【図2】図1の平面図。FIG. 2 is a plan view of FIG.

【図3】キャリヤ板と剛性板とにより挟んだ状態で積層
グリーン体が可撓性袋で真空包装された状態を示す断面
図。
FIG. 3 is a cross-sectional view showing a state in which a laminated green body is vacuum-packaged in a flexible bag while being sandwiched between a carrier plate and a rigid plate.

【図4】その積層グリーン体の静水圧プレス機の要部断
面図。
FIG. 4 is a cross-sectional view of a main part of the hydrostatic pressing machine for the laminated green body.

【図5】静水圧プレスされたキャリヤ板付き積層グリー
ン体の断面図。
FIG. 5 is a cross-sectional view of a laminated green body with a carrier plate that is hydrostatically pressed.

【図6】実施例の積層セラミックコンデンサを基板に実
装した状態を示す断面図。
FIG. 6 is a cross-sectional view showing a state in which the monolithic ceramic capacitor of the example is mounted on a substrate.

【図7】従来例の積層セラミックコンデンサを基板に実
装した状態を示す断面図。
FIG. 7 is a sectional view showing a state in which a conventional laminated ceramic capacitor is mounted on a substrate.

【符号の説明】[Explanation of symbols]

10 剛体キャリヤ板 11 電極層 12 積層グリーン体 16 剛性板 18 可撓性袋 10 Rigid carrier plate 11 Electrode layer 12 Laminated green body 16 Rigid plate 18 Flexible bag

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H01G 4/30 Z 8019−5E ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification code Office reference number FI technical display location H01G 4/30 Z 8019-5E

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 各シートに電極層(11)が形成された複数
のセラミックグリーンシートからなる積層グリーン体(1
2)を剛体キャリヤ板(10)の表面に積層して仮接着する工
程と、 前記キャリヤ板(10)に仮接着された積層グリーン体(12)
を前記キャリヤ板(10)とともに可撓性袋(18)に入れ真空
包装する工程と、 前記真空包装されたキャリヤ板付き積層グリーン体(12)
を静水圧プレスする工程とを備えた積層セラミック電子
部品の製造方法において、 前記仮接着工程と前記真空包装工程との間に前記積層グ
リーン体(12)の上面に少なくとも前記積層グリーン体(1
2)の電極積層部を覆う面積を有する剛性板(16)を載せる
工程を備え、 前記真空包装工程で前記剛性板(16)を前記積層グリーン
体(12)の上面に載せた状態で真空包装することを特徴と
する積層セラミック電子部品の製造方法。
1. A laminated green body (1) comprising a plurality of ceramic green sheets each having an electrode layer (11) formed on each sheet.
2) is laminated on the surface of the rigid carrier plate (10) and is temporarily bonded, and the laminated green body (12) is temporarily bonded to the carrier plate (10).
And packaged in a flexible bag (18) together with the carrier plate (10) and vacuum-packed, and the vacuum-packaged laminated green body (12) with carrier plate
In the method for producing a laminated ceramic electronic component comprising a step of isostatic pressing, at least the laminated green body (1) on the upper surface of the laminated green body (12) between the temporary bonding step and the vacuum packaging step.
2) a step of placing a rigid plate (16) having an area covering the electrode laminated portion, and vacuum packaging with the rigid plate (16) placed on the upper surface of the laminated green body (12) in the vacuum packaging step. A method of manufacturing a monolithic ceramic electronic component, comprising:
【請求項2】 剛性板(16)が金属板である請求項1記載
の積層セラミック電子部品の製造方法。
2. The method for manufacturing a monolithic ceramic electronic component according to claim 1, wherein the rigid plate (16) is a metal plate.
【請求項3】 剛性板(16)が耐熱性のあるプラスチック
板である請求項1記載の積層セラミック電子部品の製造
方法。
3. The method for producing a laminated ceramic electronic component according to claim 1, wherein the rigid plate (16) is a heat-resistant plastic plate.
JP10605692A 1992-03-31 1992-03-31 Manufacture of laminated ceramic electronic component Pending JPH05283277A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10605692A JPH05283277A (en) 1992-03-31 1992-03-31 Manufacture of laminated ceramic electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10605692A JPH05283277A (en) 1992-03-31 1992-03-31 Manufacture of laminated ceramic electronic component

Publications (1)

Publication Number Publication Date
JPH05283277A true JPH05283277A (en) 1993-10-29

Family

ID=14423965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10605692A Pending JPH05283277A (en) 1992-03-31 1992-03-31 Manufacture of laminated ceramic electronic component

Country Status (1)

Country Link
JP (1) JPH05283277A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017514309A (en) * 2014-04-23 2017-06-01 ビュルト エレクトロニク アイソス ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Induction component manufacturing method and induction component
JP2017514308A (en) * 2014-04-23 2017-06-01 ビュルト エレクトロニク アイソス ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Method for forming an inductor component

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017514309A (en) * 2014-04-23 2017-06-01 ビュルト エレクトロニク アイソス ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Induction component manufacturing method and induction component
JP2017514308A (en) * 2014-04-23 2017-06-01 ビュルト エレクトロニク アイソス ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディトゲゼルシャフト Method for forming an inductor component
US10319519B2 (en) 2014-04-23 2019-06-11 Würth Elektronik eiSos Gmbh & Co. KG Method for producing an induction component

Similar Documents

Publication Publication Date Title
JPH0670941B2 (en) Manufacturing method of multilayer capacitor
JPH0358524B2 (en)
JPH0611018B2 (en) How to stack ceramic green sheets
EP0530052B1 (en) Method of manufacturing multilayer electronic component
JPH065656B2 (en) Method for manufacturing ceramic laminate
JP2998503B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH05159966A (en) Laminating method for ceramic green sheets
JP3781037B2 (en) Manufacturing method and manufacturing apparatus for ceramic electronic components
JPH05283277A (en) Manufacture of laminated ceramic electronic component
JP2950008B2 (en) Manufacturing method of multilayer ceramic electronic component
JP3602368B2 (en) Manufacturing method of multilayer ceramic electronic component
JP3506086B2 (en) Manufacturing method of multilayer ceramic electronic component
JPH0536568A (en) Manufacture of laminated ceramic electronic component
JP2001267744A (en) Laminated ceramic electronic part and its manufacturing method, green laminate for obtaining laminated ceramic electronic part, and electronic device
JP2575339Y2 (en) Laminating device for multilayer ceramic electronic components
JPH06283375A (en) Manufacture of layered electronic components
JPH05315184A (en) Manufacture of laminated ceramic electronic component
JP2002100527A (en) Method of manufacturing laminated ceramic electronic component
JP2512407B2 (en) Manufacturing method for laminated porcelain capacitors
JP2946844B2 (en) Manufacturing method of multilayer ceramic capacitor
JPH047576B2 (en)
JPH04206808A (en) Manufacture of ceramic laminate
JPH0787158B2 (en) Method for manufacturing laminated ceramic element
JP3625401B2 (en) Manufacturing method of multilayer inductor element
JPH0640535B2 (en) Method for manufacturing monolithic ceramic capacitor