JPH05283067A - Paste type cadmium negative electrode for alkaline storage battery - Google Patents

Paste type cadmium negative electrode for alkaline storage battery

Info

Publication number
JPH05283067A
JPH05283067A JP4077525A JP7752592A JPH05283067A JP H05283067 A JPH05283067 A JP H05283067A JP 4077525 A JP4077525 A JP 4077525A JP 7752592 A JP7752592 A JP 7752592A JP H05283067 A JPH05283067 A JP H05283067A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
cadmium
battery
storage battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4077525A
Other languages
Japanese (ja)
Other versions
JP2994850B2 (en
Inventor
Toshihiro Inoue
俊浩 井上
Akira Hirakawa
彰 平川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP4077525A priority Critical patent/JP2994850B2/en
Publication of JPH05283067A publication Critical patent/JPH05283067A/en
Application granted granted Critical
Publication of JP2994850B2 publication Critical patent/JP2994850B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To improve the cycle lifetime, and provide the negative electrode having high performance at a low cost by forming a layer made of the mixture of polyvinylpyrolidone and polyvinylalcohol on the surface of the negative electrode active material. CONSTITUTION:In a negative electrode 2 formed with an active material layer, which is mainly composed of cadmium oxide, on a conductive core thereof opposite to a nickel positive electrode 1 through a separator 3, a layer made of the mixture of polyvinylpyrolidone and polyvinylalcohol is formed on the surface of the negative electrode active material. The surface of the electrode is thereby coated with polyvinylpyrolidone, which has the excellent alkali resistance and the excellent oxidation resistance and the water soluble characteristic, and polyvinylpyrolidone is dried to form the hard covering film, and the migration is restricted effectively for a long period. Consequently, the cycle lifetime is improved, and a negative electrode having high performance is obtained at a low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ニッケル−カドミウム
アルカリ蓄電池用ペースト式カドミウム負極に関す。
FIELD OF THE INVENTION The present invention relates to a paste type cadmium negative electrode for a nickel-cadmium alkaline storage battery.

【0002】[0002]

【従来の技術】ニッケル−カドミウム蓄電池に用いられ
るカドミウム負極には、ニッケル粉末を焼結して形成し
た多孔質の基体に活物質を保持させる焼結式と、活物質
を合成繊維、糊料等で混練して、ペースト状とし、パン
チングメタル等の導電性芯体に塗着させるペースト式と
がある。このうち、ペースト式は、低コストで作製でき
且つ高エネルギー密度を有するといった利点を有するの
で、民生用で主流になりつつある。
2. Description of the Related Art A cadmium negative electrode used in a nickel-cadmium storage battery includes a sintering type in which a porous base material formed by sintering nickel powder holds an active material, a synthetic fiber, a paste, etc. There is a paste method in which the material is kneaded to form a paste and applied to a conductive core body such as punching metal. Among them, the paste method has the advantage that it can be manufactured at low cost and has a high energy density, and is therefore becoming the mainstream for consumer use.

【0003】ところが、このようなペースト式負極で
は、充放電サイクルを行っているうちに、活物質の粗大
化によって反応面積が小さくなったり、金属カドミウム
の表面を水酸化カドミウムが覆い金属カドミウムと電解
液との接触が妨げられることに起因する放電不可能な金
属カドミが蓄積してしまう。このため、電極の不活性化
を生じて、充放電サイクルを繰り返すと、容量が低下す
るという問題がある。特に、ハイレートで放電すると容
量低下が著しく現れる。
However, in such a paste-type negative electrode, the reaction area becomes small due to the coarsening of the active material during the charge / discharge cycle, and the surface of the metal cadmium is covered with cadmium hydroxide to cause electrolysis. Non-dischargeable metal cadmium accumulates because the contact with the liquid is disturbed. Therefore, when the electrode is inactivated and the charge / discharge cycle is repeated, there is a problem that the capacity decreases. Particularly, when discharged at a high rate, the capacity is remarkably reduced.

【0004】加えて、ペースト式で作製した負極は、活
物質を支持する基体を有しないため、充放電時の活物質
の溶解析出反応によりカドミウムがセパレータに移動す
る現象、所謂マイグレーションが起こり、電池寿命が短
くなるといった欠点を有していた。そこで、以下に示す
ような方法が提案されている。 特開平2−90461号公報に示されるように、負
極表面に電界メッキによる多孔質のニッケル層を形成
し、更にマグネシウム化合物を添加するような方法。
In addition, since the negative electrode prepared by the paste method does not have a substrate for supporting the active material, a phenomenon in which cadmium moves to the separator due to the dissolution and precipitation reaction of the active material during charge and discharge, so-called migration occurs, and It had a defect that the life was shortened. Therefore, the following method has been proposed. As disclosed in JP-A-2-90461, a method in which a porous nickel layer is formed on the surface of a negative electrode by electroplating and a magnesium compound is further added.

【0005】このように、負極表面にニッケル層のよう
なバリヤー層を設ければ、活物質のマイグレーションを
抑制することができ、且つマグネシウムの添加により、
カドミウムの結晶の粗大化を防止することができる。 特開平3−127450号公報に示されるように、
水和極板にポリビニルピロリドンを添加する方法。
Thus, if a barrier layer such as a nickel layer is provided on the surface of the negative electrode, migration of the active material can be suppressed, and addition of magnesium causes
It is possible to prevent coarsening of cadmium crystals. As disclosed in JP-A-3-127450,
A method of adding polyvinylpyrrolidone to a hydrated electrode plate.

【0006】このような方法であれば、金属カドミウム
表面における水酸化カドミウムの生成を抑制することが
できるので、サイクルによる活物質の不活性化を抑制す
ることができる。
With such a method, generation of cadmium hydroxide on the surface of metal cadmium can be suppressed, so that inactivation of the active material due to cycles can be suppressed.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記の
ような方法では、以下に示すような課題がある。 の方法の課題 ニッケルの添加により、水素過電圧の低下が起こり、充
電時の僅かな分極によって容易に水素ガスを発生する。
この水素ガスは電池内部では消費されず蓄積するため、
安全弁が作動して、電池の密閉形を崩す恐れがある。
However, the above method has the following problems. The problem of the method is that the addition of nickel causes a decrease in hydrogen overvoltage, and hydrogen gas is easily generated due to slight polarization during charging.
This hydrogen gas is not consumed inside the battery and accumulates,
There is a risk that the safety valve will operate and break the sealed form of the battery.

【0008】加えて、上記ニッケル層の形成のためには
メッキを行う必要があるが、これには電力設備が必要で
あり、且つ水洗、乾燥等の多数の工程を要するため電極
の製造コストが高くなる。 の方法の課題 この方法では、負極の不活性化に対してはある程度効果
が見られるが、ポリビニルピロリドンの負極の不活性化
に対する抑制効果は、あまり高くないため、ハイレート
放電などの負極が不活性化しやすいサイクルでは十分な
効果が得られない。
In addition, plating is required to form the nickel layer, but this requires electric power equipment and requires many steps such as washing with water and drying, which reduces the manufacturing cost of the electrode. Get higher In this method, although some effect can be seen on the deactivation of the negative electrode, the suppression effect on the deactivation of the negative electrode of polyvinylpyrrolidone is not so high that the negative electrode such as high-rate discharge is inactive. A sufficient cycle cannot be obtained with sufficient cycles.

【0009】加えて、活物質粒子表面に非導電性の皮膜
を形成することになり酸素ガス吸収性能を悪化させてし
まう問題がある。本発明は、上記問題点に鑑み、サイク
ル中の容量低下を防ぎサイクル寿命を向上させ、高性能
且つ廉価なカドミウム負極を提供することを目的とする
ものである。
In addition, a non-conductive film is formed on the surface of the active material particles, which causes a problem of deteriorating the oxygen gas absorption performance. In view of the above problems, it is an object of the present invention to provide a high-performance and low-cost cadmium negative electrode that prevents a decrease in capacity during cycling and improves cycle life.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するため
に、導電性芯体上には、カドミウムの酸化物を主体とす
る活物質層が形成されたアルカリ蓄電池用ペースト式カ
ドミウム負極において上記活物質層の表面には、ポリビ
ニルピロリドンとポリビニルアルコールとの混合物より
なる層が形成されていることを特徴とする。
In order to achieve the above object, an active material layer mainly composed of cadmium oxide is formed on a conductive core, and the active material in the paste type cadmium negative electrode for alkaline storage battery is formed. It is characterized in that a layer made of a mixture of polyvinylpyrrolidone and polyvinyl alcohol is formed on the surface of the substance layer.

【0011】また、請求項1記載のポリビニルピロリド
ンとポリビニルアルコールとの組成比が95:5から5
0:50までの間に規定されることを特徴とする。
The composition ratio of polyvinylpyrrolidone to polyvinyl alcohol according to claim 1 is 95: 5 to 5
It is characterized by being defined by 0:50.

【0012】[0012]

【作用】本発明では、負極の活物質層表面にビニルピロ
リドンとポリビニルアルコールとの混合物によりなる層
を形成した。これにより、以下のような作用が得られ
る。 の方法の課題の解消 ポリビニルピロリドンは、耐アルカリ性および耐酸化性
に優れ、且つ水溶性で、電極表面に塗着乾燥すると硬質
な皮膜を形成する。この皮膜は、乾燥時はもとよりアル
カリ電解液中においても、膨潤することなく強度を維持
し、硬質な皮膜は、マイグレーションを長期にわたって
効果的に抑制する。このような性質を有するバインダー
は、水溶性ではポリビニルピロリドン以外にはなく、こ
のようなポリビニルピロリドンの性質は、ある程度のポ
リビニルアルコールと混合しても変わらない。
In the present invention, a layer made of a mixture of vinylpyrrolidone and polyvinyl alcohol is formed on the surface of the active material layer of the negative electrode. As a result, the following effects are obtained. Solving the problem of the method of 1. Polyvinylpyrrolidone has excellent alkali resistance and oxidation resistance, is water-soluble, and forms a hard film when applied and dried on the electrode surface. This film maintains its strength without swelling not only when it is dried but also in an alkaline electrolyte, and the hard film effectively suppresses migration over a long period of time. There is no water-soluble binder other than polyvinylpyrrolidone having such properties, and the properties of such polyvinylpyrrolidone do not change even when mixed with polyvinyl alcohol to some extent.

【0013】従って、ニッケルを用いることなく負極の
活物質層表面にマイグレーション抑制のためのバリヤー
層を形成できるので、ニッケル添加に伴う水素発生によ
る電池の密閉形の崩れ防止できる。またポリビニルピロ
リドンとポリビニルアルコールは極めて容易に混合し、
取扱いも簡単であり、コストメリットは極めて大きい。 の方法の課題の解消 ポリビニルアルコールは、従来、粗大化抑制のために用
いられていたポリビニルピロリドンよりも、負極表面に
析出するカドミウムの析出核を多数つくり、活物質の粗
大化を防ぐことのできる、負極の不活性化を抑制する効
果が高い化合物である。これにより、ハイレート放電サ
イクルあるいは低温放電サイクルといった負極が不活性
化しやすい条件での負極の不活性化に対する抑制効果が
向上する。
Therefore, since a barrier layer for suppressing migration can be formed on the surface of the active material layer of the negative electrode without using nickel, it is possible to prevent collapse of the sealed type of the battery due to hydrogen generation accompanying addition of nickel. Also, polyvinylpyrrolidone and polyvinyl alcohol are extremely easily mixed,
It is easy to handle and the cost merit is extremely large. Polyvinyl alcohol can prevent the coarsening of the active material by forming a large number of cadmium precipitation nuclei to be deposited on the negative electrode surface, compared with polyvinylpyrrolidone that has been conventionally used for suppressing coarsening. The compound is highly effective in suppressing the inactivation of the negative electrode. As a result, the effect of suppressing the inactivation of the negative electrode is improved under conditions such as the high rate discharge cycle or the low temperature discharge cycle in which the negative electrode is easily inactivated.

【0014】更に、ポリビニルピロリドンとポリビニル
アルコールとからなる層に、導電性を有する粉末を添加
することにより、活物質層表面の導電性を向上させるこ
とができ、酸素ガス吸収が速やかに行われる。
Furthermore, by adding a conductive powder to the layer composed of polyvinylpyrrolidone and polyvinyl alcohol, the conductivity of the surface of the active material layer can be improved, and oxygen gas absorption can be carried out quickly.

【0015】[0015]

【実施例】【Example】

〔実施例1〕図1は、本発明の一例に係る円筒密閉型ニ
ッケル−カドミウム蓄電池の断面図であり、ニッケル正
極1とカドミウム負極2とこれら正負両極1・2間に介
挿されたセパレータ3とから成る電極群4は渦巻状に捲
回されている。この電極群4は負極端子兼用の外装缶6
内に配置されており、この外装缶6と上記負極2とは負
極用導電タブ5により接続されている。上記外装缶6の
上部開口にはパッキング7を介して封口体8が装着され
ており、この封口体8の内部にはコイルスプリング9が
設けられている。このコイルスプリング9は電池内部の
内圧が異常上昇したときに矢印A方向に押圧されて内部
のガスが大気中に放出されるように構成されている。ま
た、上記封口体8と前記正極1は正極用導電タブ10に
て接続されている。
[Example 1] FIG. 1 is a cross-sectional view of a cylindrical sealed nickel-cadmium storage battery according to an example of the present invention, in which a nickel positive electrode 1, a cadmium negative electrode 2, and a separator 3 interposed between these positive and negative electrodes 1.2. The electrode group 4 composed of and is spirally wound. This electrode group 4 is an outer can 6 that also serves as a negative electrode terminal.
The outer can 6 and the negative electrode 2 are connected by a negative electrode conductive tab 5. A sealing body 8 is attached to the upper opening of the outer can 6 through a packing 7, and a coil spring 9 is provided inside the sealing body 8. The coil spring 9 is configured to be pressed in the direction of arrow A when the internal pressure inside the battery is abnormally increased, and the gas inside is released into the atmosphere. The sealing body 8 and the positive electrode 1 are connected by a positive electrode conductive tab 10.

【0016】ここで上記構成の円筒密閉型ニッケル−カ
ドミウム蓄電池は以下のようにして作製した。先ず初め
に、活物質として、酸化カドミウムを80重量部、金属
カドミウムを20重量部にナイロン繊維、および水和防
止剤としてリン酸水素ナトリムを含む5%ヒドロキシプ
ロピルセルロース水溶液20重量部を加えて混練し、ペ
ースト状の活物質を得た。このペーストを厚さ0.08
mmの導電性芯体に塗着してカドミウム極板を作製し
た。
Here, the cylindrical sealed nickel-cadmium storage battery having the above-mentioned structure was manufactured as follows. First, 80 parts by weight of cadmium oxide, 20 parts by weight of metallic cadmium as an active material, nylon fibers, and 20 parts by weight of a 5% aqueous solution of hydroxypropylcellulose containing sodium hydrogen phosphate as a hydration inhibitor are added and kneaded. Then, a paste-like active material was obtained. This paste has a thickness of 0.08
A cadmium electrode plate was prepared by applying the composition to a conductive core of mm.

【0017】次に、このカドミウム極板の表面にポリビ
ニルピロリドン8重量部、ポリビニルアルコール2重量
部、水100重量部よりなる溶液を塗着、乾燥し、所定
の寸法に切断し、カドミウム負極2を得た。このように
して作製したカドミウム負極2と公知のニッケル正極1
とをセパレータ3とともに捲回して、渦巻状の電極群4
を作製した後、この電極群4を外装缶6に挿入した。こ
の後、外装缶6内に電解液を注入し、更に外装缶6を封
口体8で封口して、公称容量1Ahの円筒密閉型ニッケ
ル−カドミウム蓄電池を作製した。
Next, a solution of 8 parts by weight of polyvinylpyrrolidone, 2 parts by weight of polyvinyl alcohol, and 100 parts by weight of water was applied to the surface of the cadmium electrode plate, dried, cut into a predetermined size, and the cadmium negative electrode 2 was formed. Obtained. Cadmium negative electrode 2 thus produced and known nickel positive electrode 1
And the separator 3 are wound together to form a spiral electrode group 4
After producing, the electrode group 4 was inserted into the outer can 6. Then, the electrolytic solution was injected into the outer can 6, and the outer can 6 was further sealed with a sealing body 8 to produce a cylindrical sealed nickel-cadmium storage battery having a nominal capacity of 1 Ah.

【0018】このように作製した電池を、以下(a)電
池と称する。 〔比較例1〕上記実施例1で作製したカドミウム極板
に、ポリビニルアルコール10重量部、水100重量部
よりなる溶液を塗着、乾燥してカドミウム負極を得た以
外は、上記実施例1と同様に電池を作製した。
The battery thus produced is hereinafter referred to as (a) battery. [Comparative Example 1] The same as Example 1 except that the cadmium negative electrode prepared in Example 1 was coated with a solution of 10 parts by weight of polyvinyl alcohol and 100 parts by weight of water and dried to obtain a cadmium negative electrode. A battery was similarly prepared.

【0019】このように作製した電池を、以下(x1
電池と称する。 〔比較例2〕上記実施例1で作製したカドミウム極板
に、ポリビニルピロリドン10重量部、水100重量部
よりなる溶液を塗着、乾燥して負極を作製した以外は上
記実施例1と同様にして電池を作製した。
The battery produced in this manner is represented by the following (x 1 )
It is called a battery. [Comparative Example 2] The same procedure as in Example 1 was carried out except that a negative electrode was prepared by applying a solution of polyvinylpyrrolidone (10 parts by weight) and water (100 parts by weight) to the cadmium electrode plate prepared in Example 1 and drying it. To produce a battery.

【0020】このように作製した電池を、以下(x2
電池と称する。 〔実験1〕本発明の(a)電池、および比較例の
(x1 )電池、(x2 )電池を用いて、サイクル寿命を
調べたのでその結果を図2に示す。尚、実験条件は、
0.1Cの電流で16時間充電し1時間休止した後、4
Cの電流で0.8Vまで放電するという条件である。
The battery thus produced is represented by the following (x 2 )
It is called a battery. [Experiment 1] The cycle life was examined using the battery (a) of the present invention and the batteries (x 1 ) and (x 2 ) of Comparative Examples. The results are shown in FIG. 2. The experimental conditions are
After charging for 16 hours with a current of 0.1C and resting for 1 hour, 4
The condition is that the C current is discharged to 0.8V.

【0021】図2に示されるように、本発明の(a)電
池は、500サイクル目においてもなお十分な電池容量
を維持しているのに対し、比較例の(x1 )電池は40
0サイクル目にして寿命となり、比較例の(x2 )電池
は徐々に容量の低下を示した。ここで、比較例の
(x1 )電池、および(x2 )電池の容量低下の原因を
調べるため、それぞれの電池を解体して調査したとこ
ろ、比較例の(x1 )電池は、マイグレーションの進行
による内部短絡が原因であり、比較例の(x2 )電池
は、活物質の粗大化により放電性が低下し、電池容量が
低下したことがわかった。
As shown in FIG. 2, the battery (a) of the present invention still maintains a sufficient battery capacity even after the 500th cycle, while the battery (x 1 ) of the comparative example has a capacity of 40.
At the 0th cycle, it reached the end of its life, and the (x 2 ) battery of the comparative example showed a gradual decrease in capacity. Here, in order to examine the (x 1) battery, and (x 2) causes deterioration capacity of the battery of Comparative Example, was investigated by disassembling each cell, (x 1) batteries of the comparative example, the migration It was found that due to the internal short circuit due to the progress, the discharge capacity of the (x 2 ) battery of the comparative example decreased due to the coarsening of the active material, and the battery capacity decreased.

【0022】一方、比較例の(x1 )電池では、活物質
の粗大化が生じず、また、比較例の(x2 )電池では、
マイグレーションの進行は抑制されていた。従って、放
電性の低下を解消し、高性能な負極を提供するために
は、マイグレーションを抑制するポリビニルピロリドン
と、活物質の粗大化による負極の不活性化を抑制するポ
リビニルアルコールとをともに用いることが必須である
ことがわかる。 〔実験2〕ポリビニルピロリドンとポリビニルアルコー
ルの組成比を表1に示すように99:1〜30:70ま
で変化させ、実施例1と同様にカドミウム極板に塗着
し、負極を作製し、この負極を用いて、電池を作製し
た。
On the other hand, in the (x 1 ) battery of the comparative example, coarsening of the active material did not occur, and in the (x 2 ) battery of the comparative example,
The progress of migration was suppressed. Therefore, in order to solve the deterioration of dischargeability and provide a high-performance negative electrode, polyvinyl pyrrolidone that suppresses migration and polyvinyl alcohol that suppresses inactivation of the negative electrode due to coarsening of the active material are used together. It turns out that is required. [Experiment 2] The composition ratio of polyvinylpyrrolidone and polyvinyl alcohol was changed from 99: 1 to 30:70 as shown in Table 1, and the negative electrode was prepared by coating the same on a cadmium electrode plate as in Example 1. A battery was produced using the negative electrode.

【0023】[0023]

【表1】 [Table 1]

【0024】それぞれの電池について、充放電サイクル
を300サイクルおこなった後の電池容量とセパレータ
内部に移動したカドミウムの量とを測定したので、図
3、4にその結果を示す。なお、実験条件としては、電
池容量についは、上記実験1と同様のサイクルを300
サイクル行った後、電池の容量を測定した。
For each battery, the battery capacity after 300 charge / discharge cycles and the amount of cadmium transferred to the inside of the separator were measured. The results are shown in FIGS. Regarding the battery capacity, the same cycle as in Experiment 1 was used as the experimental condition.
After cycling, the capacity of the battery was measured.

【0025】また、セパレータ内部に移動したカドミウ
ムの量については、300サイクル後の容量測定が終わ
った電池を解体し、セパレータ内部に移動したカドミウ
ムを塩酸で抽出し、原子吸光法にてその量を調べた。図
3から分かるように、カドミウムの量はポリビニルアル
コールの組成比が50以上になると急激に増加してい
る。これはポリビニルアルコールが増加したことにより
ポリビニルピロリドンの膜の性質が失われ、強度が低下
したことに起因する。
Regarding the amount of cadmium transferred to the inside of the separator, the battery whose capacity was measured after 300 cycles was disassembled, the cadmium transferred to the inside of the separator was extracted with hydrochloric acid, and the amount was measured by an atomic absorption method. Examined. As can be seen from FIG. 3, the amount of cadmium sharply increases when the composition ratio of polyvinyl alcohol is 50 or more. This is because the properties of the polyvinylpyrrolidone film were lost due to the increase in polyvinyl alcohol, and the strength was reduced.

【0026】一方、電池の容量は図4から明らかなよう
に、ポリビニルアルコールの組成比5以下になると急激
に減少しているこれは活物質の粗大化を抑制するポリビ
ニルアルコールが不足していることに起因する。上記の
カドミウム量、および電池容量を考慮した結果、ポリビ
ニルピロリドンとポリビニルアルコールとの組成比は、
95:5から50:50の間であることが望ましい。 〔その他の事項〕極板表面に塗着する溶液に導電性を有
する粉末を混合すると、極板表面の導電性がよくなり酸
素ガスの吸収が向上することを実験により確認した。
On the other hand, as is apparent from FIG. 4, the capacity of the battery sharply decreases when the composition ratio of polyvinyl alcohol is 5 or less. This is because polyvinyl alcohol that suppresses the coarsening of the active material is insufficient. caused by. As a result of considering the amount of cadmium and the battery capacity, the composition ratio of polyvinylpyrrolidone and polyvinyl alcohol is:
It is preferably between 95: 5 and 50:50. [Other Matters] It was confirmed by experiments that when a powder having conductivity is mixed with the solution applied to the surface of the electrode plate, the conductivity of the electrode plate is improved and the absorption of oxygen gas is improved.

【0027】[0027]

【発明の効果】以上、説明したように本発明では、ニッ
ケルを用いることなく負極の活物質層表面にマイグレー
ション抑制のためのバリヤー層を形成できるので、ニッ
ケル添加に伴う水素発生による電池の密閉形の崩れを抑
えることができる。また、ポリビニルアルコールは、負
極の不活性化を抑制する効果が高い化合物であるため、
ハイレート放電サイクルあるいは低温放電サイクルとい
った負極が不活性化しやすい条件での負極の不活性化を
抑制する効果が向上する。
As described above, according to the present invention, a barrier layer for suppressing migration can be formed on the surface of the active material layer of the negative electrode without using nickel. It is possible to suppress the collapse of the. Further, since polyvinyl alcohol is a compound having a high effect of suppressing the inactivation of the negative electrode,
The effect of suppressing the inactivation of the negative electrode under conditions such as the high rate discharge cycle or the low temperature discharge cycle in which the negative electrode is easily inactivated is improved.

【0028】また、ポリビニルピロリドンとポリビニル
アルコールの混合物を塗着する方法は、廉価で且つ容易
な方法である。以上のようなことから、負極作製の低コ
スト化を図りつつ、電池の充放電サイクル寿命を著しく
向上させることができる高性能な負極を提供することが
できるという効果を奏する。
The method of applying a mixture of polyvinylpyrrolidone and polyvinyl alcohol is inexpensive and easy. From the above, there is an effect that it is possible to provide a high-performance negative electrode capable of significantly improving the charge / discharge cycle life of a battery while reducing the cost of manufacturing the negative electrode.

【0029】更に、ポリビニルピロリドンとポリビニル
アルコールとからなる層に、導電性を有する粉末を添加
することにより、活物質層表面の導電性を向上させるこ
とができ、酸素ガス吸収が速やかに行われるという効果
もある。
Furthermore, by adding a conductive powder to the layer composed of polyvinylpyrrolidone and polyvinyl alcohol, the conductivity of the surface of the active material layer can be improved and oxygen gas absorption can be carried out quickly. There is also an effect.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る円筒密閉型ニッケル−カ
ドミウム蓄電池の断面図である。
FIG. 1 is a sectional view of a cylindrical sealed nickel-cadmium storage battery according to an embodiment of the present invention.

【図2】充放電サイクル特性を示す図である。FIG. 2 is a diagram showing charge / discharge cycle characteristics.

【図3】ポリビニルピロリドンとポリビニルアルコール
との組成比と、セパレータに移動したカドミウム量との
関係を示すグラフである。
FIG. 3 is a graph showing the relationship between the composition ratio of polyvinylpyrrolidone and polyvinyl alcohol and the amount of cadmium transferred to the separator.

【図4】ポリビニルピロリドンとポリビニルアルコール
との組成比と、電池容量との関係を示すグラフである。
FIG. 4 is a graph showing the relationship between the composition ratio of polyvinylpyrrolidone and polyvinyl alcohol and the battery capacity.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 1 positive electrode 2 negative electrode

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 導電性芯体上には、カドミウムの酸化物
を主体とする活物質層が形成されたアルカリ蓄電池用ペ
ースト式カドミウム負極において上記活物質層の表面に
は、ポリビニルピロリドンとポリビニルアルコールとの
混合物よりなる層が形成されていることを特徴とするア
ルカリ蓄電池用ペースト式カドミウム負極。
1. A paste-type cadmium negative electrode for an alkaline storage battery in which an active material layer mainly composed of cadmium oxide is formed on a conductive core, and polyvinylpyrrolidone and polyvinyl alcohol are provided on the surface of the active material layer. A paste-type cadmium negative electrode for an alkaline storage battery, characterized in that a layer made of a mixture thereof with is formed.
【請求項2】 前記ポリビニルピロリドンとポリビニル
アルコールとの組成比が、95:5から50:50まで
の間に規定されることを特徴とする請求項1記載のアル
カリ蓄電池用ペースト式カドミウム負極。
2. The paste type cadmium negative electrode for an alkaline storage battery according to claim 1, wherein the composition ratio of the polyvinylpyrrolidone and the polyvinyl alcohol is defined to be 95: 5 to 50:50.
JP4077525A 1992-03-31 1992-03-31 Paste cadmium negative electrode for alkaline storage batteries Expired - Fee Related JP2994850B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4077525A JP2994850B2 (en) 1992-03-31 1992-03-31 Paste cadmium negative electrode for alkaline storage batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4077525A JP2994850B2 (en) 1992-03-31 1992-03-31 Paste cadmium negative electrode for alkaline storage batteries

Publications (2)

Publication Number Publication Date
JPH05283067A true JPH05283067A (en) 1993-10-29
JP2994850B2 JP2994850B2 (en) 1999-12-27

Family

ID=13636393

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4077525A Expired - Fee Related JP2994850B2 (en) 1992-03-31 1992-03-31 Paste cadmium negative electrode for alkaline storage batteries

Country Status (1)

Country Link
JP (1) JP2994850B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179564B2 (en) 2001-11-21 2007-02-20 Matsushita Electric Industrial Co., Ltd. Cadmium negative electrode and nickel cadmium storage battery including the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7179564B2 (en) 2001-11-21 2007-02-20 Matsushita Electric Industrial Co., Ltd. Cadmium negative electrode and nickel cadmium storage battery including the same

Also Published As

Publication number Publication date
JP2994850B2 (en) 1999-12-27

Similar Documents

Publication Publication Date Title
JPH07122271A (en) Manufacture of nickel hydroxide for nickel pole, manufacture of nickel pole using the nickel hydroxide and alkaline secondary battery incorporating the nickel pole
JP2994850B2 (en) Paste cadmium negative electrode for alkaline storage batteries
JPH11307116A (en) Cadmium negative electrode for alkaline storage battery
US6946222B2 (en) Sintered nickel electrode for alkaline storage battery, method of forming the same, and alkaline storage battery
JP2000340221A (en) Nickel electrode, nickel hydrogen storage battery using same as positive electrode
JPS5983347A (en) Sealed nickel-cadmium storage battery
JP2995893B2 (en) Nickel / metal hydride storage battery
JP3744677B2 (en) Method for producing sintered cadmium negative electrode
JP4215407B2 (en) Hydrogen storage alloy electrode, manufacturing method thereof, and alkaline storage battery
JPH06196161A (en) Alkaline storage battery
JPH097591A (en) Hydrogen absorbing alloy, its manufacture and hydrogen absorbing alloy electrode using this hydrogen absorbing alloy
JP3625655B2 (en) Hydrogen storage alloy electrode and nickel metal hydride storage battery
JP2689598B2 (en) Cylindrical sealed nickel-cadmium storage battery and its manufacturing method
JPH10275619A (en) Paste type cadmium electrode
JPH0251874A (en) Alkaline zinc lead-acid battery
JP2589750B2 (en) Nickel cadmium storage battery
JPH10149824A (en) Manufacture of hydrogen storage alloy electrode
JP3481072B2 (en) Hydrogen storage alloy electrode and method for producing the same
JP3177311B2 (en) Manufacturing method of alkaline storage battery
JP3054431B2 (en) Metal-hydrogen alkaline storage battery
JP2638055B2 (en) Manufacturing method of paste-type cadmium negative electrode for alkaline storage battery
JPH06223823A (en) Negative electrode plate for sealed type alkaline storage battery
JP2004055494A (en) Nickel-hydrogen storage battery
JPH06150922A (en) Paste type cadmium negative electrode for alkaline storage battery
JP2002260644A (en) Hydrogen storage alloy electrode and alkaline storage battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071022

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081022

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees