JPH05282705A - Optical disk - Google Patents

Optical disk

Info

Publication number
JPH05282705A
JPH05282705A JP4079483A JP7948392A JPH05282705A JP H05282705 A JPH05282705 A JP H05282705A JP 4079483 A JP4079483 A JP 4079483A JP 7948392 A JP7948392 A JP 7948392A JP H05282705 A JPH05282705 A JP H05282705A
Authority
JP
Japan
Prior art keywords
recording
guide groove
optical
guide grooves
address
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4079483A
Other languages
Japanese (ja)
Inventor
Naoyasu Miyagawa
直康 宮川
Yasuhiro Goto
泰宏 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4079483A priority Critical patent/JPH05282705A/en
Publication of JPH05282705A publication Critical patent/JPH05282705A/en
Pending legal-status Critical Current

Links

Landscapes

  • Optical Record Carriers And Manufacture Thereof (AREA)
  • Optical Recording Or Reproduction (AREA)

Abstract

PURPOSE:To provide the optical disk on which an information signal can be recorded and reproduced with high density without providing any special optical system nor signal processing circuit. CONSTITUTION:User recording pits are formed both at land parts 2, 3, and 4 and in guide grooves 5 and 6. The groove depth of the guide grooves is set to >=1/7+n/2 and <=5/14+n/2. Even when the signal is recorded both in the guide grooves and at the land parts, diffraction by adjacent user recording pits 8 and 9 is reduced and reproduction crosstalk is small. The recording density can, therefore, be doubled and the signal which is recorded as the recording pits can excellently be reproduced. Further, address pits 12, 13, and 14 and address pits 15 and 16 are mutually shifted not to adjoin to each other, so the crosstalk between address signals is reduced and address signals can excellently be reproduced.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は光ディスクに関し、その
中でも特に、案内溝内と案内溝相互間の両方に信号を記
録するようにした光ディスクに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical disk, and more particularly to an optical disk in which signals are recorded both in a guide groove and between guide grooves.

【0002】[0002]

【従来の技術】近年、映像もしくは音声信号などの情報
信号を記録再生できる光ディスク装置の開発が盛んであ
る。記録が可能な光ディスクでは、予め案内溝がディス
ク基板に刻まれトラックが形成されている。案内溝相互
間もしくは案内溝内にレーザ光が集光されることによっ
て、情報信号の記録もしくは再生が行われる。現在市販
されている一般的な光ディスクにおいては、通常案内溝
相互間もしくは案内溝内のどちらか一方にのみ情報信号
が記録され、他方は隣合うトラックを分離する、ガード
バンドとなっている。
2. Description of the Related Art In recent years, an optical disk device capable of recording and reproducing information signals such as video or audio signals has been actively developed. In a recordable optical disc, a guide groove is previously formed on a disc substrate to form a track. Information signals are recorded or reproduced by focusing the laser light between the guide grooves or in the guide grooves. In a general optical disk currently on the market, an information signal is usually recorded only in one of the guide grooves or in the guide groove, and the other is a guard band for separating adjacent tracks.

【0003】図4はそのような従来の光ディスクの拡大
斜視図である。同図において、101は記録層であり、
例えば相変化材料で形成されている。102は記録ピッ
ト、103はレーザ光の集光スポットである。104は
案内溝、105は案内溝相互間の領域で以後ランド部と
呼ぶ。ランド部105は案内溝104に比べて幅広にな
っている。同図に示すように、レーザ光の入射側からみ
てランド部105は凸状に、案内溝104は凹状になっ
ている。また、同図では入射光が透過する透明ディスク
基板は省略してある。
FIG. 4 is an enlarged perspective view of such a conventional optical disc. In the figure, 101 is a recording layer,
For example, it is formed of a phase change material. Reference numeral 102 is a recording pit, and 103 is a focused spot of laser light. Reference numeral 104 is a guide groove, and 105 is an area between the guide grooves, which is hereinafter referred to as a land portion. The land portion 105 is wider than the guide groove 104. As shown in the figure, the land portion 105 has a convex shape and the guide groove 104 has a concave shape when viewed from the laser light incident side. Further, in the figure, a transparent disk substrate through which incident light is transmitted is omitted.

【0004】そのような従来の光ディスクの記録/再生
動作について以下説明する。記録時においては、光ヘッ
ドからのレーザ光が対物レンズによりランド部105の
記録層101上に集光され、記録層101が加熱され
る。加熱された部分が冷却される過程で相変化し、記録
ピット102が形成される。記録ピット102は同図に
示すようにランド部105のみに形成され、案内溝10
4の幅だけ相互に間隔を取っている。
The recording / reproducing operation of such a conventional optical disc will be described below. At the time of recording, the laser light from the optical head is focused on the recording layer 101 of the land portion 105 by the objective lens, and the recording layer 101 is heated. A phase change occurs in the process of cooling the heated portion, and the recording pit 102 is formed. The recording pit 102 is formed only on the land portion 105 as shown in FIG.
They are spaced apart from each other by a width of 4.

【0005】再生時においては、集光スポット103が
トラック方向にそれぞれのピット列を照射したとき、記
録ピット102によって反射回折される。反射光の強度
変化を光ヘッドが検出することにより、情報信号の再生
が行われる。トラックピッチ即ち案内溝104の周期
は、集光スポット103の大きさと同程度、ここでは
1.6μmに取られている。また、案内溝104の深さ
1は光学長換算で再生光の波長の8分の1程度であ
る。これは、溝付のディスクによる反射光からのプッシ
ュプル信号が最大となる深さであって、プッシュプル法
によるトラッキング制御を安定にするためである。
During reproduction, when the focused spot 103 irradiates each pit row in the track direction, it is reflected and diffracted by the recording pit 102. The information signal is reproduced by the optical head detecting the change in the intensity of the reflected light. The track pitch, that is, the period of the guide groove 104 is set to about the same as the size of the focused spot 103, here, 1.6 μm. The depth d 1 of the guide groove 104 is about ⅛ of the wavelength of the reproduction light in terms of optical length. This is for stabilizing the tracking control by the push-pull method, which is the depth at which the push-pull signal from the light reflected by the grooved disk becomes maximum.

【0006】このような光ディスクの記録容量を増加さ
せるために、従来は案内溝104の幅を狭くしてトラッ
ク間隔を詰めていた。ところが、トラック間隔を詰める
と案内溝104による反射光の回折角が大きくなるた
め、トラックに集光スポット103を精度良く追従させ
るためのトラッキング誤差信号が低下するという問題点
がある。また、案内溝104の幅だけでトラック間隔を
詰めても限界があるため、ランド部105の幅も狭めな
ければならない。これは、記録ピット幅も狭くなるの
で、再生信号の振幅低下という問題が生じる。
In order to increase the recording capacity of such an optical disk, conventionally, the width of the guide groove 104 is narrowed to close the track interval. However, if the track interval is narrowed, the diffraction angle of the reflected light by the guide groove 104 becomes large, so that there is a problem that the tracking error signal for accurately causing the focused spot 103 to follow the track is lowered. In addition, the width of the land portion 105 must be narrowed because there is a limit in narrowing the track interval only by the width of the guide groove 104. This causes a problem that the amplitude of the reproduction signal is lowered because the recording pit width is also narrowed.

【0007】一方、特公昭63−57859号公報にあ
るように、案内溝相互間と案内溝内の両方に情報信号を
記録して、トラック密度を大きくするという技術があ
る。
On the other hand, as disclosed in Japanese Patent Publication No. Sho 63-57859, there is a technique of recording an information signal both between the guide grooves and in the guide grooves to increase the track density.

【0008】図5はそのような光ディスクの拡大斜視図
である。同図において、111は記録層であり、例えば
相変化材料で形成されている。112は記録ピット、1
13はレーザ光の集光スポットである。114は案内
溝、115はランド部である。同図に示すように、案内
溝114とランド部115の幅は略等しくなっている。
また、案内溝114の周期は図4の光ディスクと同じく
1.6μm程度であり、案内溝114の深さd2も同じ
く光学長換算で再生光の波長の8分の1程度である。
FIG. 5 is an enlarged perspective view of such an optical disc. In the figure, 111 is a recording layer, which is made of, for example, a phase change material. 112 is a recording pit, 1
Reference numeral 13 is a focused spot of laser light. Reference numeral 114 is a guide groove, and 115 is a land portion. As shown in the figure, the widths of the guide groove 114 and the land portion 115 are substantially equal.
Further, the period of the guide groove 114 is about 1.6 μm as in the optical disc of FIG. 4, and the depth d 2 of the guide groove 114 is also about ⅛ of the wavelength of the reproduction light in terms of optical length.

【0009】この光ディスクにおいては、記録ピット1
12は同図に示すように案内溝114及びランド部11
5の両方に形成され、案内溝114の周期は図4の光デ
ィスクの案内溝104と等しいが、ピット列の間隔は図
4の光ディスクの2分の1になっている。記録/再生時
の動作については、基本的には図4に示した光ディスク
と同様に行われる。
In this optical disc, recording pit 1
12 is a guide groove 114 and a land portion 11 as shown in FIG.
5, the period of the guide groove 114 is equal to that of the guide groove 104 of the optical disk of FIG. 4, but the interval of the pit row is one half of that of the optical disk of FIG. The recording / reproducing operation is basically performed in the same manner as the optical disc shown in FIG.

【0010】[0010]

【発明が解決しようとする課題】しかしながら、以上の
ような技術では、ピット列同士の間隔が集光スポット径
の半分になるため、再生したいピット列の隣のピット列
まで集光スポットが重なる。このため、再生時のクロス
トークが大きくなり、再生S/Nが劣化するという問題
がある。このクロストークを低減させるため、例えば、
「”High track density magn
eto−optical recording usi
ng a crosstalk canceler”S
PIE Vol.1316 Optical Data
Storage(1990)P.35」にあるよう
に、光ディスク再生装置に特別の光学系とクロストーク
キャンセル回路を設けているが、装置の光学系および信
号処理系が複雑になるという問題がある。
However, in the technique described above, the distance between the pit rows is half the diameter of the focused spot, so that the focused spot overlaps the pit row next to the pit row to be reproduced. Therefore, there is a problem that crosstalk during reproduction becomes large and reproduction S / N deteriorates. To reduce this crosstalk, for example,
"" High track density magn
eto-optical recording usi
ng a crosscanceller "S
PIE Vol. 1316 Optical Data
Storage (1990) P.I. 35 ”, the optical disk reproducing apparatus is provided with a special optical system and a crosstalk cancel circuit, but there is a problem that the optical system and the signal processing system of the apparatus become complicated.

【0011】本発明は上記課題を解決するもので、特別
な光学系や信号処理回路を設けること無しに再生クロス
トークを低減することが可能な光ディスクを提供するこ
とを目的としている。
The present invention is intended to solve the above problems, and an object thereof is to provide an optical disk capable of reducing reproduction crosstalk without providing a special optical system or a signal processing circuit.

【0012】[0012]

【課題を解決するための手段】上記目的を達成するため
本発明の光ディスクは、ディスク上に設けられたトラッ
クの案内溝の幅と案内溝相互間の幅を略等しくし、案内
溝内と案内溝相互間の両方に、光束の照射による局所的
光学定数もしくは物理的形状の変化を利用して信号を記
録する光ディスクであって、案内溝の深さが記録及び/
または再生光の波長の1/7+n/2以上5/14+n
/2以下(nは0または正整数)の光路長をなすことを
特徴とする。
In order to achieve the above object, the optical disc of the present invention is arranged such that the widths of the guide grooves of the tracks provided on the disc and the widths between the guide grooves are substantially equal to each other, and the guide groove is inside the guide groove. An optical disc in which a signal is recorded on both sides of a groove by utilizing a change in a local optical constant or a physical shape due to irradiation of a light beam, and the depth of a guide groove is recorded and / or recorded.
Or 1/7 + n / 2 or more of the wavelength of reproduction light and 5/14 + n
The optical path length is equal to or less than / 2 (n is 0 or a positive integer).

【0013】[0013]

【作用】上記した構成により本発明の光ディスクでは、
案内溝が再生光の波長の1/7+n/2以上5/14+
n/2以下(nは0もしくは正整数)の深さに形成され
ている。よって、目的のピット列からの反射光と隣接す
るピット列からの反射光の光学的位相がほぼ反転する。
これにより両者が相殺され、隣接するピット列による再
生信号への影響が小さくなる。
With the above structure, the optical disc of the present invention has
The guide groove is 1/7 + n / 2 or more of the reproduction light wavelength and 5/14 +
It is formed to a depth of n / 2 or less (n is 0 or a positive integer). Therefore, the optical phases of the reflected light from the target pit row and the reflected light from the adjacent pit row are substantially inverted.
As a result, the two are offset, and the influence of the adjacent pit train on the reproduction signal is reduced.

【0014】[0014]

【実施例】以下、図に従って本発明の実施例における光
ディスクについて説明する。なお、本実施例において
は、記録再生可能な光ディスクとして、実反射率の変化
によって記録を行う、相変化型(PC)の記録材料を用
いた場合について説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An optical disk according to an embodiment of the present invention will be described below with reference to the drawings. In the present embodiment, a case where a phase-change (PC) recording material that records by changing the actual reflectance is used as a recordable / reproducible optical disk will be described.

【0015】図1は本実施例の光ディスクの構成を説明
するための拡大斜視図である。同図において、1は記録
層であり、例えば相変化材料で形成されており、結晶状
態とアモルファス状態とで表面の実反射率が異なる性質
を利用して、信号の記録が行われる。2,3及び4はデ
ィスク上に形成されたランド部、5及び6は案内溝であ
り、両者の幅は略等しくなっている。ここでは、図中上
方から光が入射するものとする。7,8,9,10及び
11はランド部2,3,4及び案内溝5,6に書かれた
ユーザ記録ピットである。なお、ユーザ記録ピットと
は、ここではレーザ光によって記録層1がアモルファス
化され、情報が記録された領域のこととする。12,1
3及び14はランド部2,3及び4にディスク製造時に
予め形成された、ディスク上の位置情報を示すアドレス
ピットで、いくつかの適当な深さの窪みからなる。15
と16は案内溝5と6に同じく形成されたアドレスピッ
トである。また、トラック方向でみると、ランド部2,
3及び4はそれぞれユーザデータ部17と第1アドレス
部18にわけられており、案内溝5及び6もユーザデー
タ部17と第2アドレス部19にわけられている。しか
も、第1アドレス部18のアドレスピットと第2アドレ
ス部19のアドレスピットは、ディスク半径方向におい
て隣合わないようにトラック方向にずれた状態で配置さ
れている。20は集光スポットである。本実施例におい
て最も特徴的な点は、案内溝5及び6の深さdは光学長
換算で再生光の波長の1/7+n/2以上5/14+n
/2以下(nは0もしくは正整数)となっていることで
ある。
FIG. 1 is an enlarged perspective view for explaining the structure of the optical disc of this embodiment. In the figure, reference numeral 1 denotes a recording layer, which is formed of, for example, a phase change material, and a signal is recorded by utilizing the property that the actual reflectance of the surface is different between the crystalline state and the amorphous state. 2, 3 and 4 are land portions formed on the disk, 5 and 6 are guide grooves, and the widths of both are substantially equal. Here, it is assumed that light is incident from above in the drawing. Reference numerals 7, 8, 9, 10 and 11 are user recording pits written in the lands 2, 3, 4 and the guide grooves 5, 6. It should be noted that the user recording pit is a region where the recording layer 1 is made amorphous by the laser light and information is recorded. 12, 1
Reference numerals 3 and 14 are address pits, which are formed in advance in the land portions 2, 3 and 4 at the time of manufacturing the disk and indicate the positional information on the disk, and are composed of recesses having some appropriate depths. 15
Address pits 16 and 16 are also formed in the guide grooves 5 and 6. Also, when viewed in the track direction, the land portion 2,
Reference numerals 3 and 4 are divided into a user data portion 17 and a first address portion 18, respectively, and guide grooves 5 and 6 are also divided into a user data portion 17 and a second address portion 19. Moreover, the address pits of the first address portion 18 and the address pits of the second address portion 19 are arranged in the track direction so as not to be adjacent to each other in the disk radial direction. Reference numeral 20 is a focused spot. The most characteristic point of this embodiment is that the depth d of the guide grooves 5 and 6 is 1/7 + n / 2 or more of the wavelength of the reproduction light in terms of optical length and 5/14 + n.
/ 2 or less (n is 0 or a positive integer).

【0016】以上のような構成で、再生信号中のクロス
トーク成分が除去できる理由について、原理的な説明を
以下行う。なお、説明の簡略化のため、対物レンズによ
って絞りこまれる前のレーザ光の強度分布は瞳内で一様
とする。また、ディスクの半径方向についてのみの1次
元モデルによって説明する。
The principle of the reason why the crosstalk component in the reproduced signal can be removed by the above structure will be described below. For simplification of explanation, the intensity distribution of the laser light before being narrowed down by the objective lens is uniform in the pupil. Also, description will be given by using a one-dimensional model only in the radial direction of the disk.

【0017】図2は本発明の原理を説明する図で、
(a)は図1における区間A−A’の断面図と、記録面
上に対物レンズによって絞り込まれた集光スポットの強
度分布で、(b)はディスク面からの回折光が対物レン
ズに戻り、出射瞳を通過した直後の回折光の分布図であ
る。同図(a)において、21は記録面上に対物レンズ
によって絞り込まれた集光スポットの強度分布、2,3
及び4はランド部、5及び6は案内溝で、トラックピッ
チをp、ランド幅をw=p/2、溝深さをdとする。ま
た、通常の光ディスク装置において設定されているよう
に、集光スポットのビーム径はpにほぼ等しいとする。
ここでビーム径とは、集光スポットの中心強度の1/e
2となる直径とする。また、集光スポットをランド部3
に沿って照射し情報の再生を行う場合について、クロス
トークを考察するために以下のように仮定する。即ち、
ユーザ記録ピットによって実反射率が変化するとして、
案内溝5,6内の実反射率をそれぞれr1,r3とし、ラ
ンド部2,3及び4の実反射率をr2とする。そして、
1及びr2を一定としてr3が変化したときの、検出面
での光量の総和に対する影響を計算する。このため、断
面形状の周期は2pとなり、前述した通りビーム径がp
だとすると、この周期構造による回折光のうち0次から
3次光までが対物レンズの出射瞳を通過する。図2
(b)はその様子を描いており、7個の円は−3次〜+
3次の反射回折光を表しており、太い実線の円は対物レ
ンズの出射瞳も兼ねている。出射瞳の円内に入射する全
回折光の干渉の総和(強度)が、再生信号となる。ラン
ド部2,3及び4の反射率を等しいとしたのは、ランド
部2と4の反射率変化による再生信号への影響は実用上
小さいことと、モデルに周期性をもたせるためである。
FIG. 2 is a diagram for explaining the principle of the present invention.
(A) is a cross-sectional view of the section AA 'in FIG. 1 and the intensity distribution of the focused spot focused on the recording surface by the objective lens, and (b) shows the diffracted light from the disc surface returned to the objective lens. FIG. 6 is a distribution diagram of diffracted light immediately after passing through an exit pupil. In the figure (a), 21 is the intensity distribution of the focused spot narrowed down by the objective lens on the recording surface, 2, 3
Numerals 4 and 4 are land portions, and numerals 5 and 6 are guide grooves, where the track pitch is p, the land width is w = p / 2, and the groove depth is d. The beam diameter of the focused spot is assumed to be substantially equal to p, as set in a normal optical disk device.
Here, the beam diameter is 1 / e of the central intensity of the focused spot.
The diameter is 2 . In addition, the condensing spot is the land part 3
The following assumptions are made in order to consider crosstalk in the case where information is reproduced by irradiating along the line. That is,
Assuming that the actual reflectance changes depending on the user recording pit,
The actual reflectances in the guide grooves 5 and 6 are r 1 and r 3 , respectively, and the actual reflectances of the land portions 2, 3 and 4 are r 2 . And
The effect on the total amount of light on the detection surface when r 3 changes with r 1 and r 2 kept constant is calculated. Therefore, the period of the sectional shape is 2p, and the beam diameter is p as described above.
If so, out of the diffracted light due to the periodic structure, 0th to 3rd order light passes through the exit pupil of the objective lens. Figure 2
(B) depicts the situation, and the seven circles are -3rd order to +
It represents the third-order reflected diffracted light, and the thick solid circle also serves as the exit pupil of the objective lens. The total sum (intensity) of interference of all diffracted light that enters the circle of the exit pupil becomes the reproduction signal. The reflectivities of the lands 2, 3 and 4 are set to be equal to each other because the influence of the change in the reflectivity of the lands 2 and 4 on the reproduced signal is practically small and the model has periodicity.

【0018】対物レンズの出射瞳上の座標をx、いま考
えているトラック即ちランド部3の中心と集光スポット
の中心のずれ量をuで表し、対物レンズの瞳関数をf
(x)、mとm’を反射回折光の次数とすると、対物レ
ンズの出射瞳面上での光強度分布I(x)は、
The coordinate on the exit pupil of the objective lens is represented by x, the amount of deviation between the center of the track, that is, the land portion 3 and the center of the focused spot is represented by u, and the pupil function of the objective lens is represented by f.
(X), where m and m ′ are orders of reflected diffracted light, the light intensity distribution I (x) on the exit pupil plane of the objective lens is

【0019】[0019]

【数1】 [Equation 1]

【0020】となる。ただし、R(m)は複素フーリエ
反射係数で、ディスク上の位置ξでの反射率をR(ξ)
とすると、
[0020] However, R (m) is a complex Fourier reflection coefficient, and the reflectance at the position ξ on the disk is R (ξ)
Then,

【0021】[0021]

【数2】 [Equation 2]

【0022】で計算される。また、*は複素共役を表
す。図2(a)のモデルより、R(ξ)は、
Is calculated by Also, * represents a complex conjugate. From the model of FIG. 2 (a), R (ξ) is

【0023】[0023]

【数3】 [Equation 3]

【0024】である。φは溝深さdによる位相差で、レ
ーザ波長をλ、ディスク基板の屈折率をnとすると、
It is φ is the phase difference due to the groove depth d, where λ is the laser wavelength and n is the refractive index of the disk substrate.

【0025】[0025]

【数4】 [Equation 4]

【0026】で求まる。全再生光量Iは、(数1)にu
=0を代入して(オフトラック無しに対応する)、さら
に対物レンズの出射瞳に対応する範囲で積分して得られ
るから、
It can be obtained by The total reproducing light amount I is u
Since it is obtained by substituting = 0 (corresponding to no off-track) and further integrating in the range corresponding to the exit pupil of the objective lens,

【0027】[0027]

【数5】 [Equation 5]

【0028】となる。ただし、sは積分範囲の出射瞳を
表す。
[0028] However, s represents the exit pupil of the integration range.

【0029】ここで、f(x)を入射光のピーク値で規
格化し、さらに出射瞳半径でxを規格化すると、(数
5)の積分項、
Here, if f (x) is standardized by the peak value of the incident light and x is further standardized by the exit pupil radius, the integral term of (Equation 5),

【0030】[0030]

【数6】 [Equation 6]

【0031】は、出射瞳と、中心がm/2pで半径1の
円と、中心がm’/2pで半径1の円の重なった領域の
面積に等しく、これは図2(b)より簡単に求まる。こ
れらの式の導出は、例えば、「”Diffractio
n theory of laser read−ou
t systems for optical vid
eo discs”J.Opt.Soc.Am.,Vo
l.69.No.1,January 1979」に詳
しい。
Is equal to the area of the exit pupil, the circle having the center of m / 2p and the radius of 1 and the circle of the center of m ′ / 2p and the radius of 1, which is simpler than that of FIG. 2 (b). Be asked for. The derivation of these equations is done, for example, by "" Diffratio
n theory of laser read-ou
t systems for optical vid
eo discs "J. Opt. Soc. Am., Vo
l. 69. No. 1, January 1979 ”.

【0032】3次までの複素フーリエ反射係数は(数
2),(数3),(数4)より、
The complex Fourier reflection coefficients up to the third order are given by (Equation 2), (Equation 3) and (Equation 4)

【0033】[0033]

【数7】 [Equation 7]

【0034】[0034]

【数8】 [Equation 8]

【0035】[0035]

【数9】 [Equation 9]

【0036】[0036]

【数10】 [Equation 10]

【0037】である。(数7)から(数10)を(数
5)に代入し、各反射率r1,r2,r3の項ごとにまと
めると、
It is Substituting (Equation 7) to (Equation 10) into (Equation 5), and summarizing for each term of the reflectances r 1 , r 2 , and r 3 ,

【0038】[0038]

【数11】 [Equation 11]

【0039】となる。(数11)において、第1項は信
号成分、第2,3項はクロストーク成分のうち溝深さに
依存しない項、第4項はφに依存する項である。この式
から、φすなわち溝深さを最適化することによって、ク
ロストーク量が低減されることがわかる。また余弦項よ
り、クロストーク量はφ=2πすなわちd=λ/2の周
期で変化することがわかる。
It becomes In (Equation 11), the first term is a signal component, the second and third terms are crosstalk components that do not depend on the groove depth, and the fourth term is a term that depends on φ. From this equation, it can be seen that the amount of crosstalk is reduced by optimizing φ, that is, the groove depth. Also, from the cosine term, it can be seen that the amount of crosstalk changes in a cycle of φ = 2π, that is, d = λ / 2.

【0040】以上は図2のように簡略化したモデルにお
ける計算結果であるが、より実際の光ディスクに近いモ
デルでシミュレーション計算した結果について説明す
る。即ち、ディスク記録面は2次元の広がりを考え、ユ
ーザ記録ピットの形状も実際に近い小判型とし、光源か
ら対物レンズへの入射光もガウス分布を仮定する。λ=
780nm,NA=0.45,n=1.585,p=
1.6μm,ピット長=3.3μm,ピットの実反射率
をピット外の反射率の1/2とする。図3は、上記の条
件で計算した、クロストーク量と溝深さの関係を表すグ
ラフである。ただし、案内溝6に形成されたユーザ記録
ピットによるクロストーク信号成分と、ランド部3に形
成されたユーザ記録ピットによるメイン再生信号との強
度比を、クロストーク量と定義して縦軸にデシベル表示
した。また、横軸の溝深さは基板屈折率nにおける光路
長に換算してある。よって、以降は溝深さdはすべて光
路長で表す。通常、再生信号に対して許容できるクロス
トーク量は−20dB程度なので、同図によると溝深さ
を、0.11μm(λ/7)〜0.29μm(5λ/1
4)の範囲に設定することが望ましい。さらにのぞまし
くは、溝深さを0.16μm(即ちλ/5)もしくは
0.24μm(即ち3λ/10)付近に設定することに
より、クロストーク量を極小にすることができる。
The above is the calculation result in the simplified model as shown in FIG. 2, but the simulation calculation result in the model closer to the actual optical disk will be described. That is, considering the two-dimensional expansion of the disk recording surface, the shape of the user recording pit is assumed to be an oval shape that is close to the actual size, and the incident light from the light source to the objective lens is assumed to be Gaussian distribution. λ =
780 nm, NA = 0.45, n = 1.585, p =
1.6 μm, pit length = 3.3 μm, and the actual reflectance of the pit is ½ of the reflectance outside the pit. FIG. 3 is a graph showing the relationship between the amount of crosstalk and the groove depth calculated under the above conditions. However, the intensity ratio between the crosstalk signal component due to the user recording pits formed in the guide groove 6 and the main reproduction signal due to the user recording pits formed in the land portion 3 is defined as the crosstalk amount, and the vertical axis indicates decibels. displayed. The groove depth on the horizontal axis is converted into the optical path length at the substrate refractive index n. Therefore, hereinafter, the groove depth d is all represented by the optical path length. Normally, the allowable crosstalk amount for a reproduced signal is about -20 dB, so that according to the figure, the groove depth is 0.11 μm (λ / 7) to 0.29 μm (5λ / 1
It is desirable to set within the range of 4). More preferably, the amount of crosstalk can be minimized by setting the groove depth to around 0.16 μm (that is, λ / 5) or 0.24 μm (that is, 3λ / 10).

【0041】以上の原理をもとに、本実施例の光ディス
クの記録/再生動作について、以下説明する。記録動作
においては、従来の光ディスクの説明において述べた動
作と同じであるので説明は省略し、再生動作について述
べる。
Based on the above principle, the recording / reproducing operation of the optical disk of this embodiment will be described below. Since the recording operation is the same as the operation described in the description of the conventional optical disk, the description thereof will be omitted and the reproducing operation will be described.

【0042】まず、ユーザデータ部17を再生する場合
について述べる。光ヘッドの発光素子から出射したレー
ザ光は、対物レンズによってディスク上のランド部3に
集光され、ユーザ記録ピット9によって反射回折され
る。反射光は再び対物レンズを通じて検出素子上に導か
れ、電気信号に変換される。このとき、案内溝5及び6
の溝深さはλ/7+nλ/2以上5λ/14+nλ/2
以下に設定されているので、隣接するユーザ記録ピット
8及び10の回折反射光に対する影響は前述したように
小さい。また、集光スポット20が案内溝5上をトレー
スした場合も同様に、ユーザ記録ピット8によって反射
回折される。このときも、両隣のユーザ記録ピット7お
よび9が反射光に与える影響は小さい。
First, the case of reproducing the user data section 17 will be described. The laser light emitted from the light emitting element of the optical head is condensed on the land portion 3 on the disk by the objective lens and reflected and diffracted by the user recording pit 9. The reflected light is again guided to the detection element through the objective lens and converted into an electric signal. At this time, the guide grooves 5 and 6
Groove depth is λ / 7 + nλ / 2 or more 5λ / 14 + nλ / 2
Since it is set as follows, the influence of the adjacent user recording pits 8 and 10 on the diffracted and reflected light is small as described above. Also, when the focused spot 20 traces on the guide groove 5, the user recording pit 8 similarly reflects and diffracts the light. Also at this time, the influence of the user recording pits 7 and 9 on both sides on the reflected light is small.

【0043】一方、アドレスピット12,13,14,
15及び16は窪みによる虚反射率、即ち位相の変化を
利用しているので、ユーザ記録ピットよりも隣接トラッ
ク再生に対する影響が大きい。本実施例の光ディスクで
は、アドレスピット13の両側の案内溝内には他のアド
レスピットは配置されていないので、最も近距離のアド
レスピットは、その次のランド部2及び4のアドレスピ
ット12及び14である。よって、レーザ光がアドレス
ピット13を照射する場合に、両側のアドレスピット1
2及び14からの影響は小さい。しかも、通常アドレス
領域のディスク全体の面積に対する割合は小さいので、
本実施例のようにアドレスピットが刻まれている領域の
隣に空白領域を設けても、記録容量の減少は小さい。
On the other hand, address pits 12, 13, 14,
Since 15 and 16 utilize the imaginary reflectance due to the depression, that is, the change in phase, the influence on the adjacent track reproduction is larger than that of the user recording pit. In the optical disk of this embodiment, no other address pits are arranged in the guide grooves on both sides of the address pit 13, so that the address pit at the shortest distance is the address pit 12 of the next land portion 2 and 4. It is 14. Therefore, when the laser beam irradiates the address pits 13, the address pits 1 on both sides are
The effects from 2 and 14 are small. Moreover, since the ratio of the normal address area to the entire disk area is small,
Even if a blank area is provided next to the area where the address pits are engraved as in the present embodiment, the decrease in recording capacity is small.

【0044】以上のように本実施例の光ディスクは、案
内溝5及び6の溝深さはλ/7+nλ/2以上5λ/1
4+nλ/2以下に設定されているので、案内溝内およ
びランド部の両方に記録を行っているにも関わらず、隣
接するユーザ記録ピット8及び9からのクロストークは
小さい。よって、記録密度を従来の倍にしても、ユーザ
記録ピットとして記録された信号を良好に再生できる。
As described above, in the optical disk of this embodiment, the groove depth of the guide grooves 5 and 6 is λ / 7 + nλ / 2 or more and 5λ / 1.
Since it is set to 4 + nλ / 2 or less, the crosstalk from the adjacent user recording pits 8 and 9 is small even though recording is performed in both the guide groove and the land. Therefore, even if the recording density is doubled as compared with the conventional one, it is possible to excellently reproduce the signal recorded as the user recording pit.

【0045】また、ランド部2,3,4と案内溝5,6
の幅を略等しくしたことにより、集光スポット20が案
内溝上にある場合と、ランド部上にある場合とで回折状
態が同じになる。これにより、反射光から得られる信号
の特性が両者で変わらず、記録もしくは再生を安定に行
うことができる。
Further, the land portions 2, 3, 4 and the guide grooves 5, 6
By making the widths of the two substantially equal, the diffraction state becomes the same when the focused spot 20 is on the guide groove and when it is on the land. As a result, the characteristics of the signal obtained from the reflected light do not change between the two, and recording or reproduction can be performed stably.

【0046】さらに、アドレスピット12,13及び1
4と、アドレスピット15及び16を交互にずらして隣
合わないようにしたため、アドレス信号同士のクロスト
ークを減少し、アドレス信号も良好に再生可能となる。
Further, address pits 12, 13 and 1
4 and the address pits 15 and 16 are alternately shifted so as not to be adjacent to each other, so that crosstalk between the address signals is reduced and the address signals can be reproduced well.

【0047】なお、本実施例においては溝深さをλ/7
+nλ/2以上5λ/14+nλ/2以下としたが、さ
らに好ましくは略λ/5とするとよい。この場合、前述
のようにクロストーク量が極小となり、最も良好に再生
を行うことができる。
In this embodiment, the groove depth is λ / 7.
Although it is set to + nλ / 2 or more and 5λ / 14 + nλ / 2 or less, it is more preferable to set it to approximately λ / 5. In this case, the amount of crosstalk is minimized as described above, and reproduction can be performed most favorably.

【0048】さらに、好ましくは案内溝の深さを略3λ
/10にしてもよい。この場合においても図3より明ら
かなように、クロストーク量を極小にすることが可能で
ある。さらに、光ディスク製造時には記録膜材料をディ
スク上方から積層させるので、溝深さを深くすると壁面
に形成される記録層が薄くなる。これによりランド部と
案内溝間の熱伝導が抑えられ、記録時の熱的クロストー
クが低減できる。よって、ユーザ記録ピットの形状が均
一になり、再生信号の品質が向上するという効果があ
る。
Further, preferably, the depth of the guide groove is approximately 3λ.
It may be / 10. Even in this case, as is clear from FIG. 3, the crosstalk amount can be minimized. Further, since the recording film material is laminated from above the disc during the manufacture of the optical disc, if the groove depth is increased, the recording layer formed on the wall surface becomes thinner. As a result, heat conduction between the land portion and the guide groove is suppressed, and thermal crosstalk during recording can be reduced. Therefore, there is an effect that the shape of the user recording pit becomes uniform and the quality of the reproduced signal is improved.

【0049】さらに、(数11)より明らかなように、
溝深さdによる位相差φに対して周期2πで、全再生光
量は変化する。したがって、クロストーク量も溝深さに
対して同じ周期性を持つと考えてよい。よって、第1及
び第2の実施例の光ディスクの溝深さよりも、更に位相
差2π分、即ちλ/2の正整数倍だけ案内溝を深くして
もよい。
Furthermore, as is clear from (Equation 11),
The total reproduction light amount changes at a period of 2π with respect to the phase difference φ due to the groove depth d. Therefore, it can be considered that the amount of crosstalk also has the same periodicity with respect to the groove depth. Therefore, the guide groove may be deeper than the groove depth of the optical discs of the first and second embodiments by a phase difference of 2π, that is, a positive integer multiple of λ / 2.

【0050】なお、以上の実施例においては、記録層と
して相変化材料を用いたが、光学定数の変化を利用して
信号を記録する方法であれは何でもよい。あるいは、デ
ィスク基板に予め凹凸によってピットを形成したもので
もよい。
Although the phase change material is used as the recording layer in the above embodiments, any method may be used as long as it is a method of recording a signal by utilizing the change of the optical constant. Alternatively, the disk substrate may be preliminarily formed with pits by ruggedness.

【0051】[0051]

【発明の効果】以上詳細に説明したように本発明の光デ
ィスクは、案内溝の深さを再生光の波長の1/7+n/
2以上5/14+n/2以下(nは0もしくは正整数)
の光路長をなすようにしたことにより、隣接するピット
列による回折を小さくでき、再生信号中のクロストーク
成分を低くすることができる。よって、案内溝相互間と
案内溝内の両方に信号しても、記録した信号を良好に再
生でき、高記録密度の光ディスクを実現できる。
As described above in detail, in the optical disc of the present invention, the depth of the guide groove is set to 1/7 + n / the wavelength of the reproducing light.
2 or more and 5/14 + n / 2 or less (n is 0 or a positive integer)
By setting the optical path length of, the diffraction due to the adjacent pit rows can be reduced and the crosstalk component in the reproduced signal can be reduced. Therefore, even if signals are given both between the guide grooves and inside the guide grooves, the recorded signals can be reproduced well, and an optical disc having a high recording density can be realized.

【0052】さらに好ましくは溝深さを略λ/5とする
とよい。この場合はクロストーク量が極小となり、最も
良好に再生を行うことができる。
More preferably, the groove depth should be approximately λ / 5. In this case, the amount of crosstalk becomes extremely small, and reproduction can be performed best.

【0053】また、好ましくは案内溝の深さを略3λ/
10にしてもよい。この場合もクロストーク量を極小に
することが可能である。しかも、λ/5に比べて深いの
でランド部と案内溝間の熱伝導が抑えられ、記録時の熱
的クロストークが低減できる。よって、ユーザ記録ピッ
トの形状が均一になり、再生信号の品質が向上するとい
う効果がある。
Preferably, the depth of the guide groove is approximately 3λ /
It may be 10. Also in this case, it is possible to minimize the amount of crosstalk. Moreover, since it is deeper than λ / 5, heat conduction between the land portion and the guide groove is suppressed, and thermal crosstalk during recording can be reduced. Therefore, there is an effect that the shape of the user recording pit becomes uniform and the quality of the reproduced signal is improved.

【0054】また、案内溝の幅と案内溝相互間の幅を略
等しくしたことにより、反射光から得られる信号の特性
が両者で変わらず、記録もしくは再生を安定に行うこと
ができる。
Further, by making the widths of the guide grooves and the widths between the guide grooves substantially equal, the characteristics of the signal obtained from the reflected light do not change between the two, and recording or reproduction can be performed stably.

【0055】また、トラックの案内溝に設けられた第1
のアドレス情報部と、案内溝相互間に設けられた第2の
アドレス情報部を半径方向に互いに隣接しないよう配置
したために、アドレス情報もクロストークの低い良好な
再生が可能となる。
The first groove provided in the guide groove of the truck
Since the address information part and the second address information part provided between the guide grooves are arranged so as not to be adjacent to each other in the radial direction, the address information can be reproduced well with low crosstalk.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における光ディスクの構成を説
明するための拡大斜視図
FIG. 1 is an enlarged perspective view for explaining a configuration of an optical disc according to an embodiment of the present invention.

【図2】同実施例における原理を説明するための模式図FIG. 2 is a schematic diagram for explaining the principle of the embodiment.

【図3】同実施例におけるクロストーク量と溝深さの関
係を表すグラフ
FIG. 3 is a graph showing the relationship between crosstalk amount and groove depth in the example.

【図4】従来の一般的な光ディスクの構成を説明するた
めの拡大斜視図
FIG. 4 is an enlarged perspective view for explaining the configuration of a conventional general optical disc.

【図5】従来の案内溝相互間と案内溝内の両方に情報信
号を記録する光ディスクの構成を説明するための拡大斜
視図
FIG. 5 is an enlarged perspective view for explaining the configuration of a conventional optical disc that records information signals both between the guide grooves and in the guide grooves.

【符号の説明】[Explanation of symbols]

1 記録層 2,3,4 ランド部 5,6 案内溝 7,8,9,10,11 ユーザ記録ピット 12,13,14,15,16 アドレスピット 17 ユーザデータ部 18 第1アドレス部 19 第2アドレス部 1 recording layer 2,3,4 land part 5,6 guide groove 7,8,9,10,11 user recording pit 12,13,14,15,16 address pit 17 user data part 18 first address part 19 second Address part

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 ディスク上に設けられた案内溝内と前記
案内溝相互間の両方に、光束の照射による局所的光学定
数もしくは物理的形状の変化を利用して信号を記録する
光ディスクであって、前記案内溝の深さが記録及び/ま
たは再生光の波長の1/7+n/2以上5/14+n/
2以下(nは0または正整数)の光路長をなす光ディス
ク。
1. An optical disc for recording a signal in a guide groove provided on a disc and between the guide grooves by utilizing a change in a local optical constant or a physical shape due to irradiation of a light beam. , The depth of the guide groove is 1/7 + n / 2 or more of the wavelength of the recording and / or reproducing light and 5/14 + n /
An optical disc having an optical path length of 2 or less (n is 0 or a positive integer).
【請求項2】 案内溝の深さが記録及び/または再生光
の波長の略1/5の光路長をなす請求項1記載の光ディ
スク。
2. The optical disk according to claim 1, wherein the depth of the guide groove forms an optical path length of about ⅕ of the wavelength of the recording and / or reproducing light.
【請求項3】 案内溝の深さが記録及び/または再生光
の波長の略3/10の光路長をなす請求項1記載の光デ
ィスク。
3. The optical disk according to claim 1, wherein the depth of the guide groove forms an optical path length of approximately 3/10 of the wavelength of the recording and / or reproducing light.
【請求項4】 案内溝の幅と案内溝相互間の幅を略等し
くした請求項1、2もしくは3記載の光ディスク。
4. The optical disk according to claim 1, 2 or 3, wherein the width of the guide groove and the width between the guide grooves are substantially equal to each other.
【請求項5】 案内溝内に設けられディスク上の位置情
報が記録された第1のアドレス情報部と、案内溝相互間
に設けられディスク上の位置情報が記録された第2のア
ドレス情報部とを有し、前記第1のアドレス情報部と前
記第2のアドレス情報部が半径方向において互いに隣接
しないよう配置された請求項1、2、3もしくは4記載
の光ディスク。
5. A first address information portion provided in the guide groove and having positional information on the disc recorded therein, and a second address information portion provided between the guide grooves and having positional information on the disc recorded therein. 5. The optical disk according to claim 1, wherein the first address information section and the second address information section are arranged so as not to be adjacent to each other in the radial direction.
JP4079483A 1992-04-01 1992-04-01 Optical disk Pending JPH05282705A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4079483A JPH05282705A (en) 1992-04-01 1992-04-01 Optical disk

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4079483A JPH05282705A (en) 1992-04-01 1992-04-01 Optical disk

Publications (1)

Publication Number Publication Date
JPH05282705A true JPH05282705A (en) 1993-10-29

Family

ID=13691146

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4079483A Pending JPH05282705A (en) 1992-04-01 1992-04-01 Optical disk

Country Status (1)

Country Link
JP (1) JPH05282705A (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0626679A2 (en) * 1993-05-26 1994-11-30 Matsushita Electric Industrial Co., Ltd. Optical information recording media and optical information read/write device
EP0628952A2 (en) * 1993-06-08 1994-12-14 Matsushita Electric Industrial Co., Ltd. Optical disk, and information recording/reproduction apparatus
EP0696795A1 (en) * 1994-08-12 1996-02-14 Nikon Corporation Optical disk memory
US5493552A (en) * 1993-03-16 1996-02-20 Kabushiki Kaisha Toshiba Phase change optical information recording system with a header area in the form of prepit rows
EP0740290A2 (en) * 1995-04-27 1996-10-30 Nikon Corporation Recording medium having first tracks and second tracks at different levels and with different recording formats
US5581539A (en) * 1994-08-12 1996-12-03 Mitsubishi Chemical Corporation Optical recording medium
US5645909A (en) * 1994-10-19 1997-07-08 Fuji Xerox Co., Ltd. Optical recording medium and method for forming same
US5650992A (en) * 1995-09-27 1997-07-22 Nec Corporation Phase change optical disc
US5740154A (en) * 1995-08-17 1998-04-14 Fujitsu Limited Magnetooptical record medium having adjacent header signals
US5745475A (en) * 1994-04-20 1998-04-28 Matsushita Electric Industrial Co., Ltd. Optical information recording medium
EP0899725A1 (en) * 1997-08-28 1999-03-03 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and its recording and reproducing methods
US5936924A (en) * 1996-06-07 1999-08-10 Nikon Corporation Information recording and reproduction device
US5991243A (en) * 1995-12-20 1999-11-23 Nikon Corporation Data playback device to control a laser illuminating position by comparing phase of a laser drive signal and a laser tracking error detection signal
EP0984440A2 (en) 1998-09-04 2000-03-08 Matsushita Electric Industrial Co., Ltd. Aberration detection device and optical information recording and reproducing apparatus
US6096400A (en) * 1997-12-25 2000-08-01 Tdk Corporation Optical recording medium
US6118752A (en) * 1995-07-07 2000-09-12 Matsushita Electric Industrial Co., Ltd. Optical information recording medium offset pre-pit array indicating identification information
EP1039452A2 (en) * 1999-03-17 2000-09-27 Fujitsu Limited Optical information storage medium having lands and grooves both serving as recording tracks
US6128270A (en) * 1996-09-26 2000-10-03 Canon Kabushiki Kaisha Optical information recording medium capable of recording information on both track guide grooves and lands and optical information reproducing apparatus for optical information recording medium
US6192024B1 (en) 1997-12-25 2001-02-20 Tdk Corporation Optical recording medium
US6268034B1 (en) 1998-08-05 2001-07-31 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and method for producing the same, method for recording and reproducing information thereon and recording/reproducing apparatus
US6343062B1 (en) 1997-09-26 2002-01-29 Matsushita Electric Industrial Co., Ltd Optical disk device and optical disk for recording and reproducing high-density signals
US6456584B1 (en) 1998-05-15 2002-09-24 Matsushita Electric Industrial Co., Ltd. Optical information recording medium comprising a first layer having a phase that is reversibly changeable and a second information layer having a phase that is reversibly changeable
US6487147B2 (en) 1995-07-07 2002-11-26 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and an optical information recording/reproduction device
US6503690B1 (en) 1997-08-12 2003-01-07 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, method for producing the same, and method for recording and reproducing optical information
JP2003208735A (en) * 2002-01-11 2003-07-25 Fuji Photo Film Co Ltd Optical information recording medium
JP2003208734A (en) * 2002-01-11 2003-07-25 Fuji Photo Film Co Ltd Optical information recording medium
US6646978B2 (en) 2000-09-20 2003-11-11 Nec Corporation Optical storage medium with improved substrate structure to provide uniform signal quality
US6744706B2 (en) 1995-07-07 2004-06-01 Matsushita Electric Industrial Co. Optical system with tracking controller
US6821707B2 (en) 1996-03-11 2004-11-23 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, producing method thereof and method of recording/erasing/reproducing information
US6829212B1 (en) 1995-12-05 2004-12-07 Nikon Corporation High density optical disk and a method of high density recording
US7277379B2 (en) 2001-09-26 2007-10-02 Victor Company Of Japan, Limited Information recording carrier
US7391709B2 (en) 2001-09-20 2008-06-24 Victor Company Of Japan, Limited Information recording carrier and method of reproducing the same
US7411873B2 (en) 2000-12-28 2008-08-12 Victor Company Of Japan, Limited Recording medium having a substrate containing microscopic pattern of parallel groove and land sections and recording/reproducing equipment therefor

Cited By (68)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5493552A (en) * 1993-03-16 1996-02-20 Kabushiki Kaisha Toshiba Phase change optical information recording system with a header area in the form of prepit rows
EP0626679A3 (en) * 1993-05-26 1994-12-14 Matsushita Electric Industrial Co., Ltd. Optical information recording media and optical information read/write device
US5448551A (en) * 1993-05-26 1995-09-05 Miyagawa; Naoyasu Optical information recording media and optical information read/write device
EP0626679A2 (en) * 1993-05-26 1994-11-30 Matsushita Electric Industrial Co., Ltd. Optical information recording media and optical information read/write device
EP0628952A2 (en) * 1993-06-08 1994-12-14 Matsushita Electric Industrial Co., Ltd. Optical disk, and information recording/reproduction apparatus
US6021101A (en) * 1993-06-08 2000-02-01 Matsushita Electric Industrial Co., Ltd. Optical disk, and information recording/reproduction apparatus
EP0628952A3 (en) * 1993-06-08 1997-11-05 Matsushita Electric Industrial Co., Ltd. Optical disk, and information recording/reproduction apparatus
US5745475A (en) * 1994-04-20 1998-04-28 Matsushita Electric Industrial Co., Ltd. Optical information recording medium
EP0696795A1 (en) * 1994-08-12 1996-02-14 Nikon Corporation Optical disk memory
US5581539A (en) * 1994-08-12 1996-12-03 Mitsubishi Chemical Corporation Optical recording medium
US5645909A (en) * 1994-10-19 1997-07-08 Fuji Xerox Co., Ltd. Optical recording medium and method for forming same
US5831964A (en) * 1995-04-27 1998-11-03 Nikon Corporation Recording medium having first tracks and second tracks at different levels and with different recording formats
EP0740290A3 (en) * 1995-04-27 1997-12-17 Nikon Corporation Recording medium having first tracks and second tracks at different levels and with different recording formats
EP0740290A2 (en) * 1995-04-27 1996-10-30 Nikon Corporation Recording medium having first tracks and second tracks at different levels and with different recording formats
US6487147B2 (en) 1995-07-07 2002-11-26 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and an optical information recording/reproduction device
US6744706B2 (en) 1995-07-07 2004-06-01 Matsushita Electric Industrial Co. Optical system with tracking controller
US6118752A (en) * 1995-07-07 2000-09-12 Matsushita Electric Industrial Co., Ltd. Optical information recording medium offset pre-pit array indicating identification information
US5740154A (en) * 1995-08-17 1998-04-14 Fujitsu Limited Magnetooptical record medium having adjacent header signals
US5650992A (en) * 1995-09-27 1997-07-22 Nec Corporation Phase change optical disc
US6829212B1 (en) 1995-12-05 2004-12-07 Nikon Corporation High density optical disk and a method of high density recording
US5991243A (en) * 1995-12-20 1999-11-23 Nikon Corporation Data playback device to control a laser illuminating position by comparing phase of a laser drive signal and a laser tracking error detection signal
US7037413B1 (en) 1996-03-11 2006-05-02 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, producing method thereof and method of recording/erasing/reproducing information
US6821707B2 (en) 1996-03-11 2004-11-23 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, producing method thereof and method of recording/erasing/reproducing information
US5936924A (en) * 1996-06-07 1999-08-10 Nikon Corporation Information recording and reproduction device
US6128270A (en) * 1996-09-26 2000-10-03 Canon Kabushiki Kaisha Optical information recording medium capable of recording information on both track guide grooves and lands and optical information reproducing apparatus for optical information recording medium
US6503690B1 (en) 1997-08-12 2003-01-07 Matsushita Electric Industrial Co., Ltd. Optical information recording medium, method for producing the same, and method for recording and reproducing optical information
EP0899725A1 (en) * 1997-08-28 1999-03-03 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and its recording and reproducing methods
US6388984B2 (en) 1997-08-28 2002-05-14 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and its recording and reproducing method
US6343062B1 (en) 1997-09-26 2002-01-29 Matsushita Electric Industrial Co., Ltd Optical disk device and optical disk for recording and reproducing high-density signals
US6192024B1 (en) 1997-12-25 2001-02-20 Tdk Corporation Optical recording medium
US6096400A (en) * 1997-12-25 2000-08-01 Tdk Corporation Optical recording medium
US6456584B1 (en) 1998-05-15 2002-09-24 Matsushita Electric Industrial Co., Ltd. Optical information recording medium comprising a first layer having a phase that is reversibly changeable and a second information layer having a phase that is reversibly changeable
US6268034B1 (en) 1998-08-05 2001-07-31 Matsushita Electric Industrial Co., Ltd. Optical information recording medium and method for producing the same, method for recording and reproducing information thereon and recording/reproducing apparatus
US6430137B1 (en) 1998-09-04 2002-08-06 Matsushita Electric Industrial Co., Ltd Aberration detection device and optical information recording and reproducing apparatus
EP0984440A2 (en) 1998-09-04 2000-03-08 Matsushita Electric Industrial Co., Ltd. Aberration detection device and optical information recording and reproducing apparatus
US6856584B2 (en) 1998-09-04 2005-02-15 Matsushita Electric Industrial Co., Ltd. Aberration detection device and optical information recording and reproducing apparatus
US6661750B2 (en) 1998-09-04 2003-12-09 Matsushita Electric Industrial Co., Ltd. Aberration detection device and optical information recording and reproducing apparatus
EP1039452A3 (en) * 1999-03-17 2002-01-02 Fujitsu Limited Optical information storage medium having lands and grooves both serving as recording tracks
US6781949B2 (en) 1999-03-17 2004-08-24 Fujitsu Limited Optical information storage medium having lands and grooves both serving as recording tracks
EP1039452A2 (en) * 1999-03-17 2000-09-27 Fujitsu Limited Optical information storage medium having lands and grooves both serving as recording tracks
US6646978B2 (en) 2000-09-20 2003-11-11 Nec Corporation Optical storage medium with improved substrate structure to provide uniform signal quality
US8228767B2 (en) 2000-12-28 2012-07-24 JVC Kenwood Corporation Recording medium having a substrate containing microscopic pattern of parallel groove and land sections and recording/reproducing equipment therefor
US8238205B2 (en) 2000-12-28 2012-08-07 JVC Kenwood Corporation Recording medium having a substrate containing microscopic pattern of parallel groove and land sections and recording/reproducing equipment therefor
US7961564B2 (en) 2000-12-28 2011-06-14 Victor Company Of Japan, Limited Recording medium having a substrate containing microscopic pattern of parallel groove and land sections and recording/reproducing equipment therefor
US7907483B2 (en) 2000-12-28 2011-03-15 Victor Company Of Japan, Limited Recording medium having a substrate containing microscopic pattern of parallel groove and land sections and recording/reproducing equipment therefor
US7903509B2 (en) 2000-12-28 2011-03-08 Victor Company Of Japan, Limited Recording medium having a substrate containing microscopic pattern of parallel groove and land sections and recording/reproducing equipment therefor
US7411873B2 (en) 2000-12-28 2008-08-12 Victor Company Of Japan, Limited Recording medium having a substrate containing microscopic pattern of parallel groove and land sections and recording/reproducing equipment therefor
US7729210B2 (en) 2000-12-28 2010-06-01 Victor Company Of Japan, Limited Recording medium having a substrate containing microscopic pattern of parallel groove and land sections and recording/reproducing equipment therefor
US7729211B2 (en) 2000-12-28 2010-06-01 Victor Company Of Japan, Limited Recording medium having a substrate containing microscopic pattern of parallel groove and land sections and recording/reproducing equipment therefor
US7457207B2 (en) 2000-12-28 2008-11-25 Victor Company Of Japan, Limited Recording medium having a substrate containing microscopic pattern of parallel groove and land sections and recording/reproducing equipment therefor
US7643402B2 (en) 2001-09-20 2010-01-05 Victor Company Of Japan, Limited Information recording carrier and method of reproducing the same
US7796497B2 (en) 2001-09-20 2010-09-14 Victor Company Of Japan, Limited Information recording carrier and method of reproducing the same
US7643403B2 (en) 2001-09-20 2010-01-05 Victor Company Of Japan, Limited Information recording carrier and method of reproducing the same
US7391709B2 (en) 2001-09-20 2008-06-24 Victor Company Of Japan, Limited Information recording carrier and method of reproducing the same
US7796496B2 (en) 2001-09-20 2010-09-14 Victor Company Of Japan, Limited Information recording carrier and method of reproducing the same
US7505393B2 (en) 2001-09-20 2009-03-17 Victor Company Of Japan, Limited Information recording carrier and method of reproducing the same
US7440390B2 (en) 2001-09-26 2008-10-21 Victor Company Of Japan, Limited Information recording carrier and information reproducing apparatus for the same
US7751301B2 (en) 2001-09-26 2010-07-06 Victor Company Of Japan, Limited Information recording carrier and information reproducing apparatus for the same
US7420911B2 (en) 2001-09-26 2008-09-02 Victor Company Of Japan, Limited Information recording carrier and information reproducing apparatus for the same
US7729230B2 (en) 2001-09-26 2010-06-01 Victor Company Of Japan, Limited Information recording carrier and information reproducing apparatus for the same
US7652974B2 (en) 2001-09-26 2010-01-26 Victor Company Of Japan, Limited Information recording carrier and information reproducing apparatus for the same
US7382716B2 (en) 2001-09-26 2008-06-03 Victor Company Of Japan, Limited Information recording carrier and information reproducing apparatus for the same
US7911924B2 (en) 2001-09-26 2011-03-22 Victor Company Of Japan, Limited Information recording carrier and information reproducing apparatus for the same
US7277379B2 (en) 2001-09-26 2007-10-02 Victor Company Of Japan, Limited Information recording carrier
US8036097B2 (en) 2001-09-26 2011-10-11 Victor Company Of Japan, Limited Information recording carrier and information reproducing apparatus for the same
US8077590B2 (en) 2001-09-26 2011-12-13 Victor Company Of Japan, Limited Information recording carrier and information reproducing apparatus for the same
JP2003208734A (en) * 2002-01-11 2003-07-25 Fuji Photo Film Co Ltd Optical information recording medium
JP2003208735A (en) * 2002-01-11 2003-07-25 Fuji Photo Film Co Ltd Optical information recording medium

Similar Documents

Publication Publication Date Title
JPH05282705A (en) Optical disk
US4893298A (en) Record-carrier body provided with a relief structure of optically detectable servo-track portions and sector addresses and apparatus for forming said structure
US5493561A (en) Optical information recording medium and information recording and reproducing method thereof
JPH0248983B2 (en)
JP2801176B2 (en) Objective lens and optical pickup device having the same
EP0564260A2 (en) Optical recording medium and optical recording/reproducing apparatus
JP2005093069A (en) High density optical recording medium and method for recording data on the same
JPH0481816B2 (en)
US5799007A (en) High density compact disc
JPS58100249A (en) Carrier for optical information recording
KR19990023532A (en) Phase change optical disc media
JP3287860B2 (en) Optical information recording method and recording medium
JPH08147761A (en) Information recording medium
JPS58100248A (en) Optical information recording medium
JPH06162575A (en) Optical information recording medium and its information recording and reproducing method and recording and reproducing device
JP3910105B2 (en) Optical recording medium device and tracking method
JP2985100B2 (en) Optical information recording medium and recording method thereof
JP3106318B2 (en) Optical information recording medium and recording method thereof
JPH03241538A (en) Optical recording medium disk
JPS58155528A (en) Optical disc recording and reproducing system, optical disc and its manufacture
JP2633834B2 (en) Optical information recording medium
JPH07105569A (en) Optical information recording member
JPS61133055A (en) Optical information recording medium
KR20040047898A (en) Magneto-optical recording medium
JPH02266978A (en) Optical information recording medium