JPS58155528A - Optical disc recording and reproducing system, optical disc and its manufacture - Google Patents

Optical disc recording and reproducing system, optical disc and its manufacture

Info

Publication number
JPS58155528A
JPS58155528A JP57038481A JP3848182A JPS58155528A JP S58155528 A JPS58155528 A JP S58155528A JP 57038481 A JP57038481 A JP 57038481A JP 3848182 A JP3848182 A JP 3848182A JP S58155528 A JPS58155528 A JP S58155528A
Authority
JP
Japan
Prior art keywords
light
groove
tracking
optical disc
recording
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP57038481A
Other languages
Japanese (ja)
Inventor
Michiyoshi Nagashima
道芳 永島
Mutsuo Takenaga
睦生 竹永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP57038481A priority Critical patent/JPS58155528A/en
Publication of JPS58155528A publication Critical patent/JPS58155528A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11BINFORMATION STORAGE BASED ON RELATIVE MOVEMENT BETWEEN RECORD CARRIER AND TRANSDUCER
    • G11B7/00Recording or reproducing by optical means, e.g. recording using a thermal beam of optical radiation by modifying optical properties or the physical structure, reproducing using an optical beam at lower power by sensing optical properties; Record carriers therefor
    • G11B7/08Disposition or mounting of heads or light sources relatively to record carriers
    • G11B7/09Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following
    • G11B7/0901Disposition or mounting of heads or light sources relatively to record carriers with provision for moving the light beam or focus plane for the purpose of maintaining alignment of the light beam relative to the record carrier during transducing operation, e.g. to compensate for surface irregularities of the latter or for track following for track following only

Landscapes

  • Optical Recording Or Reproduction (AREA)
  • Optical Record Carriers And Manufacture Thereof (AREA)

Abstract

PURPOSE:To attain the recording or reproduction of high density information, by recording sreviously tracking signals of different frequencies on the top and the bottom of a V-shaped or inverted trapezoidal grooves as pits in advance, and tracking the optical spot at the center of a tilt surface of the groove. CONSTITUTION:Grooves having V-shaped or trapezoidal radial cross section are provided on the optical disc, signals in frequency f1 are formed on the top and signals in frequency f2 are formed on the top as tracking pits, for example. Laser light is collected and irradiated on the optical disc, and when the distribution (b) of light intensity is obtained with a little shift from the center of the tilt surface to the top, the change in the amount of light in the frequency f2 is larger than that in the frequency f1, and when the optical beam is shifted to the bottom inversely (distribution c), the change in the amount of light in frequency f1 is larger. Thus, the tracking to the center of the tilt surface is executed by making the amplitude of the change in the amount of light changing in the two frequencies f1, f2 equal with each other.

Description

【発明の詳細な説明】 本発明は、高密度記録が可能な光学式の記録媒体(ディ
スク)とその製造方法及び光デイスク記録再生方式を提
供する事を目的とする。
DETAILED DESCRIPTION OF THE INVENTION An object of the present invention is to provide an optical recording medium (disk) capable of high-density recording, a method for manufacturing the same, and an optical disk recording and reproducing system.

レーザー等のコヒーレントな光全微小径のスポットに絞
り、画像や音声等の情報が予め記録さ扛たディスク上に
照射し、情報の再生を行なう方法が開発され、既に光学
式「ビデオディスク」として発売さ扛ている。それらの
情報は平面円盤上にトラック列を成す「穴ビット」とし
て記録されており、ピット内外で生じる光学的位相差を
検出して信号としている。
A method has been developed in which coherent light from a laser or other source is focused on a spot with a microscopic diameter and irradiated onto a disc on which information such as images and audio has been recorded in advance, and the information is reproduced. It's on sale now. This information is recorded as "hole bits" that form track rows on a flat disk, and the optical phase difference that occurs inside and outside the pit is detected and used as a signal.

又、上記の再生専用ディスクに対し、ディスク上に感光
性記録材料薄膜を設けて、光スポットの一照射により、
望む情報を記録し、更にこn’iz再生する方法が研究
、開発され、「データファイル」や次世代の[記録再生
ビデオディスク]としての応用が有望である。その様な
記録材料薄膜として、To等の金属薄膜、Tl50)C
(o (x < 2 )等の低酸化物薄膜、MnB1等
の光磁気薄膜などが知られている。こnらの薄膜は従来
平面円盤上に形成されている0こ、れらの記録の方法と
しては、光照射エネルギーに依る、金属薄膜の局所的な
蒸発、’reox膜の反射率と透過率の変化、光磁気材
料では光の偏光角の回転が利用anる。
In addition, for the above-mentioned read-only disc, a thin film of photosensitive recording material is provided on the disc, and by irradiation with a single light spot,
Research and development have been conducted on methods for recording desired information and reproducing it in a digital format, and its application as ``data files'' and next-generation [recording/playback video discs] is promising. Such recording material thin films include metal thin films such as To, Tl50)C
Low oxide thin films such as (o (x < 2)) and magneto-optical thin films such as MnB1 are known. Methods include local evaporation of a metal thin film, changes in the reflectance and transmittance of a 'reox film, and rotation of the polarization angle of light in the case of magneto-optical materials, depending on the energy of light irradiation.

市販てれている再生専用の光学式ビデオディスクでは、
コヒーレントな光源にHeNeレーザ′−ヲ用い、情報
トラック間隔が1.67μmであり、直径30αのディ
スクを毎分1800回転させて、NTSC方式で30分
間の動画を再生できる。
In commercially available playback-only optical video discs,
Using a HeNe laser as a coherent light source, the information track spacing is 1.67 .mu.m, and a disk with a diameter of 30.alpha. is rotated at 1800 revolutions per minute, making it possible to reproduce a 30-minute video in the NTSC system.

しかし、実用上、30分の再生時間では不足であり、よ
り長時間の再生が望まれていた。この為、最近では情報
トラックとトラックの間に、クロストークが顕著になら
ない様な方法で新しいトラックを設け、再生時間を2倍
にする工夫がいくつか提案されている。例えば、特開昭
54−12806゜及び、I#開昭54−136303
では、となり合ったトラックで情報信号の「穴ピット」
の深さを互いに違えている。しかし、これらの光ディス
クは作製困難でめり、たとえ製造できても再生専用にし
か用いらnない0 実時間の記録再生ディスクでは、となり合ったトラック
で記録の状態を太きく違えるのは不可能で、望む情報を
記録再生できる光ディスクは、現技術のままでは、直径
3oCrfLに30分の動画の録再が限界である0最近
では光源に小型である事や、直接変調できる事から半導
体レーザーが用いられる様になってきたが、記録もでき
る高出力の半導体レーザーは近赤外の波長であf)、H
eNeレーザー(波長0.633μm)程には絞nない
。レンズの開口数(Nム)を太きくシ、よりレーザーを
絞る事も可能であるが、Nムの太きζについても、ディ
スク基材の厚みムラ等に依る収差の影響より限界があり
、トラックピッチを1μm以下にする事は不可能である
。従って、記録再生ディスクの記録密度の倍増には基本
的な改良が必要である。
However, in practice, a regeneration time of 30 minutes is insufficient, and a longer regeneration time has been desired. For this reason, several methods have recently been proposed to double the playback time by providing a new track between the information track and the track in a way that prevents crosstalk from becoming noticeable. For example, JP-A-54-12806゜ and I# JP-A-54-136303
Now, let's check the "hole pit" of the information signal in the trucks next to each other.
They have different depths. However, these optical discs are difficult to manufacture, and even if they could be manufactured, they would only be used for playback purposes.In real-time recording/playback discs, it is impossible to make drastic changes in the recording state between adjacent tracks. With the current technology, optical disks that can record and play back desired information have a diameter of 3oCrfL and can only record and play back 30 minutes of video. High-power semiconductor lasers that can also record have near-infrared wavelengthsf), H
It is not as narrow as the eNe laser (wavelength: 0.633 μm). It is possible to narrow down the laser by increasing the numerical aperture (N) of the lens, but there is also a limit to the large number ζ due to the effects of aberrations due to uneven thickness of the disk base material, etc. It is impossible to reduce the track pitch to 1 μm or less. Therefore, fundamental improvements are required to double the recording density of recording/reproducing disks.

その為に、情報信号面として、光ディスクの半径方向の
断面が近似的にV字形又は逆梯形の溝の斜面を用いる事
で、トラックピッチを半減化して、記録密度を同上σぜ
、かつ、となり合ったトラックからのクロストークを小
さく医つ方法が提案されている。
Therefore, by using the slope of a groove whose radial cross section of the optical disk is approximately V-shaped or inverted trapezoidal as the information signal surface, the track pitch can be halved and the recording density can be increased to σ and σ. A method has been proposed to reduce crosstalk from matching tracks.

例えば、特開昭55−58144では、レーザー光ビー
ムをレンズに斜めに入射させて、■溝又は逆梯形溝の斜
面にできるたけ垂直に照射させる方法が提案てれている
。一般に、高NAのレンズに斜めに入射された光ビーム
は収差の為に十分には絞れない。特にNAo、6[上の
レンズでは、光軸に対して2〜3度以上もレーザー光を
傾けて入射させると収差の影響は太きく、上記の方法は
全く実用性がない。
For example, JP-A-55-58144 proposes a method in which a laser beam is incident obliquely on a lens to irradiate the slope of a groove or an inverted trapezoidal groove as perpendicularly as possible. Generally, a light beam incident obliquely on a high NA lens cannot be sufficiently focused due to aberrations. In particular, with the lens above NAo, 6[, if the laser beam is incident at an angle of 2 to 3 degrees or more with respect to the optical axis, the influence of aberrations becomes significant, and the above method is completely impractical.

一方、本発明者等は、記録密度を増加するだめの、より
具体的な方法を以前に提案している(特願昭56−18
0685 )。この方法に関する要約ヲ断面形状がV字
形の溝で、再生には光ディスクからの反射光を用いる場
合について説明しておく。この方法は、再生専用光ディ
スクたけでなく、記録再生光ディスクにも適用できるも
のである。
On the other hand, the present inventors have previously proposed a more specific method for increasing the recording density (Japanese Patent Application No. 56-18
0685). To summarize this method, we will explain the case where the groove has a V-shaped cross section and the reflected light from the optical disc is used for reproduction. This method can be applied not only to read-only optical discs but also to recording/reproducing optical discs.

先ず、記録再生用ディスクについて述べる。第1図はレ
ーザ゛−光で記録し、次にこの信号を同じレーザー光で
再生が可能なディスクの−例’kmffl明した図であ
る。図において、1はディスクの基材、2はその基材の
上に設けられた断面形状がrVJ字の溝を形成した紫外
線硬化樹脂(UV樹脂)層、3は記録材料薄膜であり、
4は3にレーザー光の照射で畜き込まれた信号ピットで
ある。この部分の屈折率及び光学濃度が変わっているか
、或いは蒸発により穴状にへこんでいる。第1図では、
基材1側よりレーザービームを入射させて情報の記録又
は再生を行なっている。従ってこの場合、基材1やUV
樹脂2等は透明なものが用いら扛る。
First, the recording/reproducing disc will be described. FIG. 1 is a diagram illustrating an example of a disc on which a signal can be recorded using a laser beam and then reproduced using the same laser beam. In the figure, 1 is the base material of the disk, 2 is an ultraviolet curing resin (UV resin) layer provided on the base material and has grooves with an rVJ-shaped cross section, and 3 is a recording material thin film.
4 is a signal pit that was inserted into 3 by laser beam irradiation. The refractive index and optical density of this portion have changed, or the portion has been depressed into a hole shape due to evaporation. In Figure 1,
Information is recorded or reproduced by entering a laser beam from the base material 1 side. Therefore, in this case, the base material 1 and the UV
A transparent resin is used as the second resin.

しかし、基材側と反対方向からの記録又は再生も可能で
ある。光ビームスポットtv字形の斜面の片方、例えば
第1図の0面に沿って照射させ、情報ピット4を記録す
る。2P(第1図)″ff従来のトラックピッチと等し
くしておけば、0面の再生時は、従来の再生専用ビデオ
ディスクに用いらnる再生光学系に依っても、A面及び
X面からの信号の混入(クロストーク)は小さい0 しかし、記録密度の倍増の為、B囲やD面にも情報が記
録さnている力)ら、C曲再生時の8面やD面からの信
号のクロストークが、信号品質を劣化させない程に小び
くなる様に、■溝の断面形状が決定され、それに関する
新たな記録及び再生の方法が特願昭56−180685
には記載きれている。
However, recording or reproduction from the direction opposite to the base material side is also possible. A light beam spot is irradiated along one side of the TV-shaped slope, for example, along the 0 side in FIG. 1, and information pits 4 are recorded. 2P (Fig. 1) If the track pitch is set equal to the conventional track pitch, when playing back the 0th side, even with the playback optical system used for conventional playback-only video discs, the A side and the However, due to the doubling of the recording density, information is also recorded on the B side and D side. The cross-sectional shape of the groove was determined in order to reduce the crosstalk of the signal without deteriorating the signal quality, and a new recording and playback method related to it was proposed in Japanese Patent Application No. 180685-1985.
is completely described.

レンズに入射した光ビームは、ディスク上に絞られ、デ
ィスクは2次元の回折格子として働き、ディスクからの
反射光、或いは透過光は多くの回折光に分離嘔れる。反
射光の場合について、第2図を用いて説明しよう。レン
ズ6面上に2いて、ディスクの半径方向にX軸をとり、
紙面に垂直、即ち、ディスク円周の接線方向にy軸をと
る。し/ズ6に入射する光ビームIOの電場の分布1A
(X、Y)とする。但し、入射光ビームの拡がりの半径
はWであり、x2+y2<w2である。X及゛びy軸に
平行にディスク面上にξ及びη軸を設定して、ディスク
面の光電場振幅に対する複素反射率の分布’tR(ξ、
η)とする。レンズ5面上における反射光に対する座標
系として、X軸及びy軸に各々一致させてU軸及びy軸
を設定する。
The light beam incident on the lens is focused onto the disk, and the disk acts as a two-dimensional diffraction grating, and the reflected light or transmitted light from the disk is separated into many diffracted lights. The case of reflected light will be explained using FIG. 2. 2 on the lens 6 surface, with the X axis in the radial direction of the disk,
The y-axis is perpendicular to the plane of the paper, that is, in the tangential direction of the disk circumference. Distribution 1A of the electric field of the optical beam IO incident on the lens 6
Let it be (X, Y). However, the radius of spread of the incident light beam is W, and x2+y2<w2. By setting the ξ and η axes on the disk surface parallel to the X and y axes, we can calculate the distribution of complex reflectance 'tR(ξ,
η). As a coordinate system for the reflected light on the lens 5 surface, the U axis and the y axis are set to coincide with the X axis and the y axis, respectively.

このような場合、一般に次の事が言える。反射光は多く
の回折光に分離され、Kg (z==o 。
In such cases, the following can generally be said: The reflected light is separated into many diffracted lights, Kg (z==o.

±1.±2.・・・・・・)はUマ平面での4次の回折
光電場である。全ての回折光電場匂は、入射光電場ム(
x、y)とは同じ拡がり半径W金持ち、又相似的な強度
分布を持つ。各々の回折光のUマ面λf 上での隔たりは−であり、第3図にその様子をP 示している。又、各々の反射回折光Elの振幅と位相は
、ξ軸方向に周期2PのR(ξ、η)の7IJ工級数展
開の複素係数町に依り決まる。一般に、複素反射率分布
R(ξ、η)はη軸方向にも周期構造を持ち、回折光や
複素係数も2次元で扱う必要がある。しかし、溝の断面
形状の説明にはη軸方向は均一とすることができ、ξ軸
方向のみの一次元的扱いで十分である0 反射率分布R(ξ、η)として、第2図の「V溝」を考
えるoトラック斜面の傾斜角がθで、トラックピッチが
Pである。又、斜面Cの光強度に対する反射率がlr、
+2で、斜面BとDの反射率が1121  とする。光
電場振幅に対する反射率は一般に複素数で、各々r、と
r2である0即ち、反射率が1r112の斜面と1r2
12の斜面が交互に周期的に並んでいる。実際には、斜
面BやDには異なる情報が入っている。しかし、トラッ
ク斜面Cの情報の再生において、他の斜面、特に斜面B
とDの情報のクロストークを最小にする事を考える為、
斜面BとDの反射率を同じとして、r2  の影響を最
小となる条件を満せば十分である。
±1. ±2. ) is the fourth-order diffracted light electric field in the U plane. The electric field of all diffracted light is equal to the electric field of incident light (
x, y) have the same spread radius W and similar intensity distribution. The distance between the respective diffracted lights on the U plane λf is -, and the situation is shown in FIG. Further, the amplitude and phase of each reflected diffracted light El are determined by the complex coefficients of the 7IJ series expansion of R (ξ, η) with a period of 2P in the ξ-axis direction. Generally, the complex reflectance distribution R (ξ, η) has a periodic structure also in the η-axis direction, and the diffracted light and complex coefficients also need to be treated in two dimensions. However, to explain the cross-sectional shape of the groove, the η-axis direction can be assumed to be uniform, and a one-dimensional treatment of only the ξ-axis direction is sufficient. Consider a "V-groove" o The inclination angle of the track slope is θ, and the track pitch is P. Also, the reflectance of the slope C with respect to the light intensity is lr,
+2, and the reflectance of slopes B and D is 1121. The reflectance for the amplitude of the optical electric field is generally a complex number, r and r2, respectively.
Twelve slopes are arranged alternately and periodically. Actually, slopes B and D contain different information. However, in reproducing the information of track slope C, other slopes, especially slope B
In order to consider minimizing the crosstalk between the information of and D,
It is sufficient to satisfy the condition that the reflectance of slopes B and D is the same and the influence of r2 is minimized.

ディスクが回転し、光ビームスポット点での反射率が記
録された情報に従って時間変化するから。
This is because the disk rotates and the reflectance at the light beam spot changes over time according to the recorded information.

r、及びr2は時間tの関数である。r and r2 are functions of time t.

第2図の、「v溝」の傾斜角θと、トラックピッチP、
及びレーザー波長λの関係が コ を満たす時、即ちV溝の深嘔がλ/4nの時には次の事
が言える。この式中06は、■溝が接するレーザー(波
長λ)の入射側の透明媒質の屈接率である。斜面Cに沿
った再生時には、(−1)次反射回折光X−1は0面の
反射率r1 たけの情報を含み、B及びD面の反射率r
2  には依存しない。
In Fig. 2, the inclination angle θ of the "v groove" and the track pitch P,
When the relationship between the laser wavelength λ and the laser wavelength λ satisfies the following, that is, when the depth of the V groove is λ/4n, the following can be said. In this equation, 06 is the refractive index of the transparent medium on the incident side of the laser (wavelength λ) that the groove contacts. During reproduction along the slope C, the (-1)th order reflected diffraction light X-1 contains information of the reflectance r1 of the 0 surface, and the reflectance r of the B and D surfaces.
It does not depend on 2.

O次回指光はr、及びr2の両方に同程度影響され、(
−2)次回指光もr、とr2の両方に依存するが、r2
 の影響は小ざい。又% (−1)次回指光は0次回指
光と同位相であり、(+1)次回指光は0次回指光と位
相が180度異なっていて、これらの各回折光が互いに
干渉し合って、Uv面での反射光強度分布は形成される
。この光強度の適当な領域での積分値が受光量となる。
The O-th order light is affected to the same extent by both r and r2, and (
-2) The next indication also depends on both r and r2, but r2
The impact is small. Also, the (-1) order light has the same phase as the 0th order light, and the (+1) order light has a phase difference of 180 degrees from the 0th order light, and these diffracted lights interfere with each other. Thus, the reflected light intensity distribution on the Uv plane is formed. The integral value of this light intensity in a suitable region becomes the amount of received light.

第2図には、均一反射率(r1=r、、)での、各回折
光(実線)とレンズを通過する反射光の強度分布の波形
(破線)を示している。即ち、(1)式を満たす時は、
  (−1)次回指光は斜面Cの情報のみを含み、斜面
Cの再生には(−1)次回指光を中心に受光すわば、B
面及びD面からのクロストークを低下できる。
FIG. 2 shows the waveforms (broken lines) of the intensity distribution of each diffracted light (solid line) and the reflected light passing through the lens at a uniform reflectance (r1=r, . . . ). That is, when formula (1) is satisfied,
(-1) The next instruction light contains only the information of slope C, and to reproduce slope C, (-1) If the next instruction light is received as the center, B
Crosstalk from the surface and the D surface can be reduced.

よりクロストークの低下を計る為には、0次回指光がB
面やD面の情報を含んでいるので、(−1)次回指光を
中心に受光する際に、(−1)次回指光と0次回指光を
干渉芒せない方がよい。レンズ5の全面に入射光重0が
入射すると、各法の反射光の拡がりは入射光と同じであ
るから、レンズを通過する反射回折光は全て0矢反射光
と干渉してしまう。従って、入射光I。をレンズ外周部
には入射させなければ、0次反射光はその外周部を通過
せず、そのレンズ外周部を反射してくる回折光を受光す
nば良い。第2,3図はその様な場合を示している。第
2図のF、G部、即ち、入射光カニ存在しない部分の反
射光には%  (−2)次回指光の中のわずかのクロス
トーク成分を含むたけである。
In order to further reduce crosstalk, the 0th order instruction should be set to B.
Since the information on the plane and the D plane is included, it is better not to interfere with the (-1) next instruction light and the 0th order instruction light when receiving light centered on the (-1) next instruction light. When zero weight of incident light is incident on the entire surface of the lens 5, the spread of the reflected light in each method is the same as that of the incident light, so all reflected diffracted light passing through the lens interferes with the zero weight reflected light. Therefore, the incident light I. If it is not made incident on the outer periphery of the lens, the zero-order reflected light will not pass through the outer periphery of the lens, and only the diffracted light reflected from the outer periphery of the lens will be received. Figures 2 and 3 show such a case. The reflected light from portions F and G in FIG. 2, ie, the portions where no incident light beam is present, contains only %(-2) of a slight crosstalk component in the next instruction light.

具体的には、第4図で示した様な、少なくとも2つの部
分MとNに分割された光検出器を反射光路中に、U軸の
光検出器面上への投影軸に平行に、かつ、レンズ6の光
検出器面上への投影像(第4図の破線)の中心Oに対称
に設置する。しかもこの時、レンズ投影像のうち外周部
、即ち前述のわずかな(+2)次回指光を含む(+1)
次回指光のみが、前述の光検出器M或いはNへ入射する
様に反射光路の倍率を設定する。
Specifically, a photodetector divided into at least two parts M and N as shown in FIG. Moreover, it is installed symmetrically to the center O of the projected image of the lens 6 onto the photodetector surface (broken line in FIG. 4). Moreover, at this time, the outer peripheral part of the lens projection image, that is, the above-mentioned slight (+2) next instruction light is included (+1)
The magnification of the reflected optical path is set so that next time only the pointing light will be incident on the photodetector M or N described above.

一1図の情報ピット4が、反射率や透過率が変化した「
濃淡ピット」の場合は、第2図のrl。
Information pit 4 in Figure 11 shows that the reflectance and transmittance have changed.
In the case of "shade pit", rl in Figure 2.

r2 は共に実数とできる。こnは、記録材料薄膜−3
にテルルの低酸化物薄膜を用い、レニザー光スポットヲ
照射して実現できる。(特願昭63−118468号) 情報ピット4が、ピットの内外で光に位相差を生じさせ
る「穴ビット」の場合は、第2図のr、。
Both r2 can be real numbers. This is recording material thin film-3
This can be achieved by using a low tellurium oxide thin film and irradiating it with a laser light spot. (Japanese Patent Application No. 63-118468) When the information pit 4 is a "hole bit" that causes a phase difference in light inside and outside the pit, r in FIG.

r2  は複素数で表わされる。例えば、ピットの深さ
がd、ピット内外で反射率が等しくr。の時は、複素反
射率は r = roexp (2ikd ) と表わされる。(k=2π/λ) この様な「穴ビット
」は記録材料薄膜3にテルル金属を用い、レーザー光照
射に依る蒸発でできるO (i5図)更に、第6図の様
な記録済みの光ディスクからの複製に依り、第6図の構
造の様な再生専用光ディスクも作る事ができ、これにつ
いても本発明〜者等の先の出願・%願昭55−1806
85に記載された発明は適用できる〇 今迄はV字形溝の場合について述べてきたが、V溝の山
の頂、及び谷の底の厳密な形状は重要ではない。従って
、今迄の説明は、山や谷が微かに曲率を持つ略V字形溝
、或いは山や谷の部分が平担な透梯形溝にも適用できる
r2 is expressed as a complex number. For example, the depth of the pit is d, and the reflectance inside and outside the pit is r. When , the complex reflectance is expressed as r = roexp (2ikd). (k=2π/λ) Such a "hole bit" is produced by using tellurium metal as the recording material thin film 3 and evaporating it by laser beam irradiation. It is also possible to make a read-only optical disc with the structure shown in Figure 6 by copying from the original application, which is also disclosed in the earlier application filed by the present inventors in 1806/1986.
The invention described in No. 85 can be applied. Up to now, the case of a V-shaped groove has been described, but the exact shapes of the tops of the crests and the bottoms of the valleys of the V-groove are not important. Therefore, the explanation up to now can also be applied to a substantially V-shaped groove in which the peaks and valleys have a slight curvature, or a transparent ladder-shaped groove in which the peaks and valleys are flat.

以上の様な方法で光ディスクの記録密度を倍増できる。The recording density of an optical disc can be doubled by the method described above.

例えばビデオディスクでは、直径30(mの光ディスク
エ、トリック再生が可能な等角速度回転で裏表両面で2
時間、等線速度回転では両面4時間の動画再生が可能と
なる。
For example, in the case of a video disc, an optical disc with a diameter of 30 meters (30 m) rotates at a constant angular speed that allows trick play, and has 2 discs on both the front and back sides.
When rotating at equal linear speed over time, it is possible to play back 4 hours of video on both sides.

以上に述べてきた前提には、V溝の片斜面に光ビームス
ポットを沿わせて照射する、即ち、トラッキングが可能
でなけnばならない。
The above-mentioned premise requires that a light beam spot be irradiated along one slope of the V-groove, that is, tracking must be possible.

第2図におけるV溝の谷S、或いは山Tに沿ってトラッ
キングをかけ、記録、及び、再生する事はできる(第7
図)。例えは、レンズ面上での反射光強度分布がトラッ
クの方向に対して対称である様に制御して行なえ、遠視
野(Far−Field)によるトラッキングとして公
知である。■溝の片斜面へのトラッキングも、谷Sへの
トラッキング制御から故意にずらす事によって制憐可眺
である。
Tracking can be performed along the valley S or peak T of the V-groove in Fig. 2 for recording and playback (see No. 7).
figure). For example, this can be done by controlling the reflected light intensity distribution on the lens surface to be symmetrical with respect to the track direction, which is known as far-field tracking. ■Tracking to one slope of the groove is also controlled by intentionally shifting the tracking control from the valley S.

しかし、第8図の様にB面が記録済みのところへ0面へ
トラッキングしようとすれば、B面が未記録の時とは反
射光強度分布が変わDs 0面の中心にはトラッキング
できない。0面への記録再生のトラッキングが、B面や
D面の記録状態に大きく依存し、トラッキング制御は不
安定となる。
However, as shown in FIG. 8, when attempting to track to the 0 surface where the B surface has been recorded, the reflected light intensity distribution changes from when the B surface is unrecorded, and tracking to the center of the Ds 0 surface is not possible. Tracking of recording and reproduction on side 0 largely depends on the recording state of sides B and D, and tracking control becomes unstable.

本発明は、上記のような問題点を解決せんとするもので
あり、近接するトラックにおける記録信号の状態によら
ず、安定なトラッキングが可能となる手段を提供せんと
するものである。
The present invention aims to solve the above-mentioned problems and provides a means that enables stable tracking regardless of the state of recording signals in adjacent tracks.

以下に、本発明について詳細に説明する。The present invention will be explained in detail below.

■溝、又は逆梯形溝の山部と谷部に互いに異なる2種類
の周波数で、光学的性質が変化した「ピット]を形成し
ておく。そのピットとしては、ピットの内外で光に位相
差を与える「穴ピット」でもよいし、又、反射率や透過
率が変化した「濃淡ピット」でもよい。ディスクからの
反射光量が2種類の周波数で変化し、光量変化振巾の各
々の周波数成分が等しくなる様にする事で、V溝又は逆
+杉濤の斜面にトラッキングする。
■A "pit" with different optical properties is formed at the peak and valley of the groove or inverted trapezoidal groove at two different frequencies.The pit has a phase difference between the light inside and outside the pit. It may be a "hole pit" that gives a 100% change in reflectance or a "shaded pit" that has a changed reflectance or transmittance. The amount of reflected light from the disk changes at two types of frequencies, and by making the frequency components of each of the amplitudes of light amount changes equal, tracking is performed on a V-groove or an inverted + cedar slope.

この方法を、■溝の場合について第9図で説明する。谷
部には周波数ハの、又、山部には周波数f2  のトラ
ッキング用の信号がピットとして形成されている。第9
図のピットは「穴ビット」の例である。a、b、及びC
は光デイスク上に絞られたレーザー光の強度分布である
。斜面の中央よシ山部の方に少しずnて光ビームが照射
した時、例えば光強度分布がbの様な時は、周波数f2
の信号部により強い光が照射さ扛る事になり、周波数f
2での光量変化が周波数f、での光量変化より大きくな
る。又、光ビームが谷部の方にずれ扛ば(分布Cの時)
、逆に周波数f、での光量変化がf2での変化より大き
くなる。即ち、山部と谷部の丁度真中である斜面の中央
に光ビームが照射された時(分布&)に、周波数f、と
f2での光量変化の振巾が等しくなる。従って、fl 
p f2  の2つの周波数で変化する光量変化振巾を
等しくする事で、斜面の中央へのトラッキングができる
This method will be explained with reference to FIG. 9 for the case of the groove. Tracking signals of frequency C are formed as pits in the valleys, and tracking signals of frequency f2 are formed in the peaks. 9th
The pit shown is an example of a "hole bit." a, b, and C
is the intensity distribution of the laser beam focused on the optical disk. When the light beam is irradiated slightly from the center of the slope to the mountain part, for example, when the light intensity distribution is like b, the frequency is f2.
A stronger light is emitted from the signal part of
The change in light amount at frequency f is larger than the change in light amount at frequency f. Also, if the light beam shifts toward the valley (when distribution C)
, conversely, the change in light amount at frequency f is larger than the change at frequency f2. That is, when the light beam is irradiated to the center of the slope, which is exactly in the middle of the peak and the valley (distribution &), the amplitudes of the light amount changes at frequencies f and f2 become equal. Therefore, fl
Tracking to the center of the slope can be achieved by equalizing the amplitude of the light amount change that changes at the two frequencies p f2 .

同様の方法は、溝形状が逆梯形の場合についても適用で
きる。第10図に七の4形状を示す0次にトラッキング
用ピットの作り方を述べておく。■溝又は逆梯形溝は、
銅等でできた鏡面円盤に、先端がV字形又は梯形の形を
した。ダイヤモンド針で機械的カッティングをして炸裂
できる。
A similar method can also be applied to the case where the groove shape is an inverted trapezoid. The method of making a zero-order tracking pit, whose shape is shown in FIG. 10, will be described below. ■ Grooves or reverse trapezoidal grooves are
A mirror-like disc made of copper or the like with a V-shaped or trapezoidal tip. It can be exploded by mechanical cutting with a diamond needle.

トラッキング用ビットが「濃淡ピット」の場合は、上記
のカッティングされた原盤より、スタンバ工程、レプリ
カ工程等を経て、V溝等が形成δれた基材を作る。その
基材上に、テルルの低酸化物の記録材料薄膜を蒸着し、
山と谷へトラッキングしながらレーザー光照射する事で
「濃淡ピット」を記録する。そうすれば、既述の方法で
の斜面へのトラッキングは可能で、情報の高密度記録が
できるようになる。第11図にその様子を示してあり%
C面には情報が記録さnている。
When the tracking bit is a "shade pit", a base material having V grooves etc. formed thereon is made from the above-mentioned cut master through a standby process, a replica process, etc. On the substrate, a thin film of a low tellurium oxide recording material is deposited,
By irradiating laser light while tracking the peaks and valleys, "shade pits" are recorded. This makes it possible to track the slope using the method described above, and enables high-density recording of information. The situation is shown in Figure 11.%
Information is recorded on the C side.

トラッキング用ビットが「穴ピット」の場合も、記録材
料薄膜にテルル金属を用いればレーザー光照射による蒸
発で、又、フォトレジを用いればレーザー光照射及びエ
ツチングを経て作る事ができる。この際、記録材料ケ設
ける基盤としては、銅厚M 、スタンバ、或いはレプリ
カでもよい。こうして、V溝又は逆梯形溝の山と谷にト
ラッキング用穴ピットが形成されたディスクが作られ、
今度はこf′Lヲ原盤として同様な形状の基材が作らn
る。
Even if the tracking bit is a "hole pit", it can be made by evaporation by laser beam irradiation if tellurium metal is used as the thin film of the recording material, or by laser beam irradiation and etching if photoresist is used. At this time, the substrate on which the recording material is provided may be a copper thickness M, a standby, or a replica. In this way, a disk is produced in which tracking hole pits are formed in the peaks and valleys of the V-groove or inverted trapezoidal groove,
This time, a base material with a similar shape was made as the master for this f'L.
Ru.

その基材上に記録材料を設け、斜面にトラッキングして
望む情報の記録再生ができる。記録材料にテルル低酸化
物を用い扛ば、情報信号は「濃淡ビット」となり、その
様子を第12図aに示す。
A recording material is provided on the base material, and desired information can be recorded and reproduced by tracking the slope. When tellurium low oxide is used as the recording material, the information signal becomes a "shade bit", as shown in FIG. 12a.

又、テルル金属を用いれば、情報信号はトラッキング用
信号と同じ「穴ピット」となり、第12図のbに示して
おく。
Furthermore, if tellurium metal is used, the information signal becomes a "hole pit" similar to the tracking signal, as shown in FIG. 12b.

さて、第12図すの様にトラッキング用ビットも情報信
号ピットも「穴ピット」の場合は、このディスク自体を
再び原盤として複製して、再生専用の高密度光ディスク
が作ら扛る。しかし、゛その様な再生専用光ディスクは
、トラッキング用ビットヲ作る時に、同時に情報信号を
記録する事でより容易に作られる。■溝が形成された基
盤上に記録材料を設けるが、その材料としてTe金属や
無機フォトレジ等を用いる事ができる。2つの記録用光
ビームを、各々、独立に変調できる様にして、同時に光
デイスク上に照射する。1つの光ビームでV溝の山又は
谷にトラッキングしながら、トラッキング用ピッIf記
録し、又、他の光ビームは情報信号を記録する。
Now, if both the tracking bits and the information signal pits are "hole pits" as shown in FIG. 12, this disc itself is again duplicated as a master to create a high-density optical disc for reproduction only. However, such a read-only optical disc can be more easily produced by simultaneously recording information signals when creating tracking bits. (2) A recording material is provided on the substrate in which the grooves are formed, and Te metal, inorganic photoresist, etc. can be used as the material. Two recording light beams are made to be able to be modulated independently and are simultaneously irradiated onto the optical disk. One light beam records the tracking pitch If while tracking the peaks or valleys of the V-groove, and the other light beam records information signals.

前記2つの光ビームの光デイスク上の照射位置間の距離
は、常に一定に保つ様に光源、光学系を配置しておく。
The light source and optical system are arranged so that the distance between the irradiation positions of the two light beams on the optical disk is always kept constant.

その距離は光ディスクの半径方向にはV溝の山と山との
ピッチの4分の1の奇数倍とする。又、光ディスクの円
周方向には、例えばレーザーの波長の2〜3倍以上に離
して照射す扛ば、2つの光ビームの重なり合う部分の光
強度は小さく記録してしまう事はな−02つの光ビーム
を用いた場合の光デイスク上の様子を第13図に示しで
ある。工はトラッキング用ピットヲ記録する光ビームス
ポットでV溝の山にトラッキングしている例であり、…
は情報信号記録用光ビームで□ あり、ディスク半径方向(ξ方向)に山と山との間隔の
4分のまたけ離れている。
The distance in the radial direction of the optical disc is an odd number multiple of one-fourth of the pitch between the peaks of the V-groove. Also, if the optical disc is irradiated at a distance of 2 to 3 times the wavelength of the laser in the circumferential direction of the optical disc, the light intensity of the overlapping part of the two light beams will be small and recorded. FIG. 13 shows the state on the optical disk when a light beam is used. This is an example of tracking the peak of the V groove with a light beam spot that records the tracking pit.
is an information signal recording light beam □, and is spaced apart by four minutes of the distance between the peaks in the disk radial direction (ξ direction).

以上の様に、V溝又は逆梯形溝の山及び谷に、各々異な
る周波数のトラッキング用信号をピットとして、予め記
録しておく事に依り、V溝又は逆梯形溝の斜面にトラッ
キングして、高密度に情報信号を記録又は再生する方法
を提供するものである。
As described above, by pre-recording tracking signals of different frequencies as pits on the peaks and valleys of the V-groove or the reverse trapezoidal groove, the slopes of the V-groove or the reverse trapezoidal groove can be tracked. The present invention provides a method for recording or reproducing information signals with high density.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はV字形溝を設けた光ディスクの構造を示す切欠
斜視図、第2図はV溝からの反射光の様子を示す図、第
3図はレンズ面上での反射回折光の様子を示す図、第4
図には光検出器の一例を示す平面図、第5図は金属薄膜
の蒸発により記録するディスクの記録状態を示す断面図
、第6図は穴ビットによυ予め情報が記録された光ディ
スクの断面図、第7図および第8図はV溝への記録の様
子を示す斜視図、第9図はV溝斜面へのトラッキングの
手段の説明図、第10図はトラ、キング用ピットを設け
た逆梯形溝を示す図、第11図および第12図はv溝肩
部への記録の様子を示す図、第13図はトラッキング用
ピット作製時の光デイスク上の2つの光スポットl示す
図である。 1・・・・・・基材、2・・・・・・紫外線硬化樹脂、
3・・・・・・感光性記録材料薄膜、4・・・・・・記
録ピット、5・・・10.レンズ。 代理人の氏名 弁理士 中 尾 敏 男 はが1名第1
WA L−ず′− !361 第4図 *sai 第61g 第7図 4110 II @12図 第13図 □ち
Figure 1 is a cutaway perspective view showing the structure of an optical disc with V-shaped grooves, Figure 2 is a diagram showing the state of reflected light from the V-groove, and Figure 3 is a diagram showing the state of reflected diffracted light on the lens surface. Figure shown, 4th
Figure 5 is a plan view showing an example of a photodetector, Figure 5 is a cross-sectional view showing the recording state of a disc recorded by evaporation of a metal thin film, and Figure 6 is a diagram of an optical disc on which information is pre-recorded using hole bits. 7 and 8 are perspective views showing how recording is performed on the V-groove, FIG. 9 is an explanatory diagram of the means for tracking on the slope of the V-groove, and FIG. 10 is a diagram showing the provision of pits for tigers and kings. Figures 11 and 12 are diagrams showing recording on the shoulder of the V-groove, and Figure 13 is a diagram showing two light spots on the optical disc when creating tracking pits. It is. 1... Base material, 2... Ultraviolet curing resin,
3...Photosensitive recording material thin film, 4...Recording pits, 5...10. lens. Name of agent: Patent attorney Toshio Nakao (1st person)
WA L-Z'-! 361 Fig. 4 *sai Fig. 61g Fig. 7 4110 II @ Fig. 12 Fig. 13 □chi

Claims (1)

【特許請求の範囲】 (1]  光デイスク上にその半径方向の断面がV字形
又は逆梯形である錦ヲ設け、前記溝のV字形又は逆梯形
を成す面傾斜面の各々に沿って絞られた光ビームスポラ
トラ照射し、情報の記録又は再生を行なう記録再生方式
において、前記溝の山と谷の各々に互いに異なる周波数
で予めトラ、キング用ビットヲ形成しておき、前記光デ
ィスクからの反射光の時間的変化から作られる信号のう
ち、前記2種類の周波数成分の信号振巾を等しくする事
で、前記溝の斜面の中央に光スポットをトラッキングし
て高密度情報の記録又は再生することを特徴とする光デ
イスク記録再生方式。 (2)光ディス2上にその半径方向のpI面がV字形又
は逆梯形である溝を有し、かつ前記V字形又は逆梯形の
溝の山と谷の各々に互いに異なる周波数でトラッキング
用ピットを形成してなる光ディスク。 (3)トラッキングピットは、反射率の変化したピット
で構成されることを特徴とする特許請求の範囲第2項に
記載の光ディスク。 (4)、、、)ラッキング用ピットは、内外で光に位相
差を与える凹形又は凸形のピットで構成きれることを特
徴とする特許請求の範囲第2項に記載の光ディスク。 (5)半径方向の断面がV字形又は逆梯形である溝を有
する光ディスクに、独立に変調できる第1および第2の
光ビームスポラトラ絞って、同時照射し、前記第1の光
ビームスポットで前記溝の山又は谷にトラッキングしな
がら、トラッキング用ピットを形成し、かつ前記第2の
光ビームスポットで前記溝の傾斜面に情報信号トラック
を形成することを特徴とする光ディスクの製造方法。
[Claims] (1) A brocade whose radial cross section is V-shaped or inverted trapezoidal is provided on the optical disk, and the groove is narrowed along each of the V-shaped or inverted trapezoidal inclined surfaces. In a recording/reproducing method in which information is recorded or reproduced by irradiating a sporatra with a light beam, groove and king bits are formed in advance at different frequencies on each of the peaks and valleys of the groove, and the reflected light from the optical disc is By making the signal amplitudes of the two types of frequency components equal among the signals generated from the temporal changes of An optical disk recording and reproducing method characterized by: (2) having a groove on the optical disk 2 whose radial pI surface is V-shaped or inverted trapezoidal; An optical disc in which tracking pits are formed at different frequencies. (3) The optical disc according to claim 2, wherein the tracking pits are comprised of pits with different reflectances. (4) The optical disc according to claim 2, wherein the racking pits are concave or convex pits that give a phase difference to the light inside and outside. (5) First and second light beams that can be modulated independently are focused and simultaneously irradiated onto an optical disk having a groove whose radial cross section is V-shaped or inverted trapezoid, and the first light beam spot is A method for manufacturing an optical disk, comprising forming tracking pits while tracking the peaks or valleys of the groove, and forming an information signal track on the slope of the groove using the second light beam spot.
JP57038481A 1982-03-10 1982-03-10 Optical disc recording and reproducing system, optical disc and its manufacture Pending JPS58155528A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57038481A JPS58155528A (en) 1982-03-10 1982-03-10 Optical disc recording and reproducing system, optical disc and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57038481A JPS58155528A (en) 1982-03-10 1982-03-10 Optical disc recording and reproducing system, optical disc and its manufacture

Publications (1)

Publication Number Publication Date
JPS58155528A true JPS58155528A (en) 1983-09-16

Family

ID=12526442

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57038481A Pending JPS58155528A (en) 1982-03-10 1982-03-10 Optical disc recording and reproducing system, optical disc and its manufacture

Country Status (1)

Country Link
JP (1) JPS58155528A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170930A (en) * 1985-01-22 1986-08-01 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Record carrier body, structural body former, information recorder and reader and record carrier
US4949331A (en) * 1985-06-19 1990-08-14 Hitachi, Ltd. Apparatus and record carrier for optical disc memory with correction pattern and master disc cutting apparatus
US5530641A (en) * 1991-05-17 1996-06-25 Olympus Optical Co., Ltd. Optical recording medium having grooves and lands and/or plural pit lines, and reproducing apparatus therefor

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5479603A (en) * 1977-12-07 1979-06-25 Canon Inc Tracking device
JPS5658144A (en) * 1979-09-27 1981-05-21 Philips Nv Record carrier and reader therefor

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5479603A (en) * 1977-12-07 1979-06-25 Canon Inc Tracking device
JPS5658144A (en) * 1979-09-27 1981-05-21 Philips Nv Record carrier and reader therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61170930A (en) * 1985-01-22 1986-08-01 フィリップス エレクトロニクス ネムローゼ フェンノートシャップ Record carrier body, structural body former, information recorder and reader and record carrier
US4949331A (en) * 1985-06-19 1990-08-14 Hitachi, Ltd. Apparatus and record carrier for optical disc memory with correction pattern and master disc cutting apparatus
US5530641A (en) * 1991-05-17 1996-06-25 Olympus Optical Co., Ltd. Optical recording medium having grooves and lands and/or plural pit lines, and reproducing apparatus therefor

Similar Documents

Publication Publication Date Title
US4959822A (en) Record-carrier body provided with a relief structure of optically detectable servo-track portions and sector addresses and apparatus for forming said structure
US4569038A (en) Optical disk, high density optical disk system, and high density recording/reproducing method using the optical disk
US5563873A (en) Multilayer optical disk and apparatus
US4972403A (en) Record carrier body with an optical servo track and optical apparatus for writing and reading information from the carrier
JPH0121543B2 (en)
JPH05282705A (en) Optical disk
US4905214A (en) Method for illuminating adjoining slants of an optical disk having a V-shaped groove
JP2809043B2 (en) optical disk
US4499574A (en) Record carrier with an optically readable information structure
US7242662B2 (en) Optical recording/reproducing medium, mother stamper for producing optical recording/reproducing medium and optical recording/reproducing device
JPH0481816B2 (en)
JP3082758B2 (en) Recording and playback device
KR100913509B1 (en) Optical recording medium, master disc for manufacturing optical recording medium, and device and method for manufacturing master disc for manufacturing optical recording medium
JPS58155528A (en) Optical disc recording and reproducing system, optical disc and its manufacture
JP2506642B2 (en) Information recording master recording method
JPH08147761A (en) Information recording medium
JP3075277B2 (en) Optical information recording master production method
JPH0150971B2 (en)
JPS6066332A (en) Recording and reproducing method of optical disc and said optical disc
JP2906703B2 (en) Information record carrier and its recording / reproducing device
JPH02103752A (en) Optical disk and its production
JPS6018832A (en) Optical informaton disk and its recording and reproducing device
JPH0132578B2 (en)
JPH0482018A (en) Optical disk reproducing method and photodetector
JPS5958639A (en) Optical disc