JPH05282321A - Scheduling method for iron and steel industry - Google Patents

Scheduling method for iron and steel industry

Info

Publication number
JPH05282321A
JPH05282321A JP10398592A JP10398592A JPH05282321A JP H05282321 A JPH05282321 A JP H05282321A JP 10398592 A JP10398592 A JP 10398592A JP 10398592 A JP10398592 A JP 10398592A JP H05282321 A JPH05282321 A JP H05282321A
Authority
JP
Japan
Prior art keywords
schedule
amount
processing
day
final
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10398592A
Other languages
Japanese (ja)
Inventor
Shinichi Fukushima
信一 福島
Tadashi Igai
正 井貝
Masahiro Yamashita
正大 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP10398592A priority Critical patent/JPH05282321A/en
Publication of JPH05282321A publication Critical patent/JPH05282321A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/02Total factory control, e.g. smart factories, flexible manufacturing systems [FMS] or integrated manufacturing systems [IMS]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Landscapes

  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • General Factory Administration (AREA)

Abstract

PURPOSE:To prepare a schedule capable of minimizing an amount of work inprocess goods between each process by comparing the processing amount of each process with the throughput of each process, and fulfilling the processing contract of each process when a comparison expression; processing amount <=throughput is satisfied for the schedule of the intermediate process decided based on a build-up calculation. CONSTITUTION:A required amount and schedule in the final process are applied (step 101), the build-up calculation of each date required amount of each process is executed based on them (step 102), the processing amount and schedule of each intermediate process are decided (step 103), and when the processing amount of each intermediate process is beyond the throughput (step 104), the schedule is made to satisfy the processing contract of each process (step 105).

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、鉄鋼生産にあって工程
間の中間仕掛量を考慮したスケジューリングを立案する
ためのスケジューリング方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a scheduling method for planning scheduling in steel production in consideration of the amount of intermediate work in process.

【0002】[0002]

【従来の技術】従来、日々の工程管理は、工程員(係
員)がその時々の優先順位に基づいて手作業により作成
したスケジュールに従って行っている。
2. Description of the Related Art Conventionally, day-to-day process management is performed according to a schedule manually created by a process staff member (person in charge) based on the priority order at that time.

【0003】[0003]

【発明が解決しようとする課題】しかし、上記した従来
技術にあっては、スケジュールの作成において極めて多
くのデータを取り扱うことから手作業によるスケジュー
リングの工程員の判断に限界があり、納期条件などの優
先順位の高いものしか反映できず、中間工程の仕掛量を
考慮したスケジューリングは得られなかった。
However, in the above-mentioned prior art, since a large amount of data is handled in the creation of a schedule, there is a limit to the manual decision of the scheduling process staff, and there is a limit in terms of delivery date. Only those with a high priority can be reflected, and scheduling that considers the amount of work in process in the intermediate process could not be obtained.

【0004】本発明の目的は、中間工程の仕掛量を考慮
したスケジュールを作成可能な鉄鋼業におけるスケジュ
ーリング方法を提供することにある。
An object of the present invention is to provide a scheduling method in the steel industry which can create a schedule in consideration of the amount of work in process in an intermediate step.

【0005】[0005]

【課題を解決するための手段】上記の目的を達成するた
めに、この発明は、最終工程での所要量及びスケジュー
ルを与え、これらを基に各工程の日別所要量の積み上げ
計算を実施し、各中間工程の処理量及びスケジュールを
決定し、各中間工程の処理量が処理能力を超えた場合に
前記スケジュールが各工程の処理規約を満たすようにし
ている。
In order to achieve the above object, the present invention provides the required amount and schedule in the final process, and based on these, the accumulated calculation of the daily required amount of each process is performed. The processing amount and schedule of each intermediate process are determined, and when the processing amount of each intermediate process exceeds the processing capacity, the schedule satisfies the processing rule of each process.

【0006】[0006]

【作用】上記した手段によれば、積み上げ計算に基づい
て決定された中間工程のスケジュールにたいし、(各工
程の処理量≦各工程の処理能力)の比較を行い、この比
較式を満たした場合、各工程の処理規約を満たすような
決定を行うことで各工程間の中間仕掛量を最少にしたス
ケジュールを作成することができる。
According to the above-mentioned means, the schedule of the intermediate process determined based on the stacking calculation is compared (the processing amount of each process ≤ the processing capacity of each process) and the comparison formula is satisfied. In this case, a schedule can be created in which the amount of intermediate work-in-process between each process is minimized by making a determination that satisfies the processing rule of each process.

【0007】[0007]

【実施例】図1は本発明によるスケジューリング方法を
示すフローチャートである。また、図2は本発明による
処理の対象例を示す説明図である。
1 is a flowchart showing a scheduling method according to the present invention. Further, FIG. 2 is an explanatory diagram showing an example of a target of the processing according to the present invention.

【0008】図2に示すように、冷間圧延工程(CDC
M)1には、溶融亜鉛メッキ工程(CGL)2、焼鈍工
程(BAF)3、連続焼鈍工程(第1CAPL)4、連
続焼鈍工程(第2CAPL)5、の各々が連結され、焼
鈍工程3には調質圧延・再捲取工程(SRL)6及び調
質圧延工程(SRM)7が連結されている。さらに、連
続焼鈍工程4,5及び調質圧延・再捲取工程6には、せ
ん断工程(SHL)8ならびに電気亜鉛メッキ工程(第
1EGL)9及び電気亜鉛メッキ工程(第2EGL)1
0が連結されている。また、調質圧延工程7及び電気亜
鉛メッキ工程9,10には、再捲取工程(RCL)11
が連結されている。
As shown in FIG. 2, the cold rolling process (CDC
The hot dip galvanizing process (CGL) 2, the annealing process (BAF) 3, the continuous annealing process (first CAPL) 4, and the continuous annealing process (second CAPL) 5 are connected to the M) 1 and are connected to the annealing process 3. A temper rolling / rewinding process (SRL) 6 and a temper rolling process (SRM) 7 are connected. Further, in the continuous annealing steps 4 and 5 and the temper rolling / rewinding step 6, a shearing step (SHL) 8 and an electrogalvanizing step (first EGL) 9 and an electrogalvanizing step (second EGL) 1 are performed.
0s are connected. In the temper rolling step 7 and the electrogalvanizing steps 9 and 10, a rewinding step (RCL) 11 is performed.
Are connected.

【0009】薄板用コイルの製造の場合、一般に冷間圧
延工程1を通り、溶融亜鉛メッキ工程2、焼鈍工程3、
連続焼鈍工程4または連続焼鈍工程5を通過する。特
に、自動車及び家電製品向けのメッキコイルにあって
は、溶融亜鉛メッキ工程2を通って最終製品になる。薄
板用コイルの一部は焼鈍工程3を通り、調質圧延・再捲
取工程6または調質圧延工程7を通る。また、自動車及
び家電製品向けのメッキコイルの場合、電気亜鉛メッキ
工程9において化学反応により表面にメッキが形成さ
れ、これにより最終製品となる。
In the case of manufacturing a coil for a thin plate, generally, a cold rolling step 1 is performed, a hot dip galvanizing step 2, an annealing step 3,
The continuous annealing process 4 or the continuous annealing process 5 is passed. Particularly, in the case of plated coils for automobiles and home electric appliances, the final product is passed through the hot dip galvanizing step 2. A part of the coil for thin plate passes through the annealing step 3, the temper rolling / rewinding step 6 or the temper rolling step 7. Further, in the case of a plated coil for automobiles and home electric appliances, plating is formed on the surface by a chemical reaction in the electrogalvanizing step 9, thereby forming a final product.

【0010】また、薄板用コイルの一部は、焼鈍、調
質、圧延などの複数の工程を組み合わせた連続焼鈍工程
を通り、最終工程であるせん断工程8〜再捲取工程11
へとつながる。連続焼鈍工程4,5のいずれかを通るか
は、対象鋼種、コイル幅などに応じて振り分けられる。
そして、調質圧延工程7または電気亜鉛メッキ工程9,
10を通った一部の薄板用コイルに対しては、再捲取工
程11で再捲取が行われ、最終製品となる。
Further, a part of the coil for thin plate passes through a continuous annealing step in which a plurality of steps such as annealing, tempering and rolling are combined, and the final step is a shearing step 8 to a rewinding step 11.
Leads to Whether the continuous annealing process 4 or 5 is performed is determined according to the target steel type, the coil width, and the like.
And the temper rolling step 7 or the electrogalvanizing step 9,
A portion of the coil for thin plate that has passed through 10 is rewound in the rewinding step 11 to be a final product.

【0011】切り板向けコイルの場合には、調質圧延・
再捲取工程6を通り、最終工程の1つであるせん断工程
8に連結される。また、焼鈍系薄板用コイルにあって
は、一般に調質圧延工程7を通り、再捲取工程11につ
ながる。そして、切り板向けコイルの場合、せん断工程
8によってコイルの切断が行われ、最終製品である切り
板となる。
In the case of a coil for cutting plate, temper rolling
It passes through the rewinding step 6 and is connected to the shearing step 8 which is one of the final steps. Further, in the case of the coil for annealed thin plate, it generally goes through the temper rolling step 7 and leads to the rewinding step 11. Then, in the case of a coil for a cut plate, the coil is cut in the shearing step 8 to obtain a cut plate which is a final product.

【0012】次に、図1の処理内容について説明する。
なお、ここではステップをSで表している。
Next, the processing contents of FIG. 1 will be described.
The step is represented by S here.

【0013】まず、最終工程での所要量及びスケジュー
ルを与える(S101)。具体的には、図2の溶融亜鉛
メッキ工程2、せん断工程8、再捲取工程11などの全
最終工程の日別スケジュール例であり、これをインプッ
トする。例えば、図3の(ア)が溶融亜鉛メッキ工程で
の日別スケジュール例であり、 1日目:GI品種が1000t、NSZ品種が0tの合
計1000t、 2日目:GI品種が900t、NSZ品種が0tの合計
900t、 3日目:GI品種が1000t、NSZ品種が0tの合
計1000t、 4日目:GI品種が900t、NSZ品種が0tの合計
900t、 5日目:GI品種が0t、NSZ品種が500tの合計
500t、 のようにスケジュールを全最終工程において作成する。
First, the required amount and schedule for the final process are given (S101). Specifically, it is an example of a daily schedule of all final steps such as the hot dip galvanizing step 2, the shearing step 8 and the rewinding step 11 in FIG. 2, which is input. For example, (A) of FIG. 3 is an example of a daily schedule in the hot-dip galvanizing process. The first day: 1000 tons of GI varieties and 0 tons of NSZ varieties, total of 1000 tons, second day: 900 tons of GI varieties, NSZ varieties. 0t total 900t, 3rd day: GI variety 1000t, NSZ variety 0t total 1000t, 4th day: GI variety 900t, NSZ variety 0t total 900t, 5th day: GI variety 0t, NSZ A schedule is created in all final steps, such as a total of 500 tons of 500 tons.

【0014】ついで、積み上げ計算を実行する(S10
2)。具体的には、ステップ101の最終工程でのスケ
ジュールを満足させるために、最終工程の1つ前の工程
からのスケジュールを準備作成していく。図3の(ア)
に示すように、1CGLでは1日目にGI品種を100
0t処理するので、1CGLの前面在庫と冷間圧延工程
1での処理量を合わせて1000t以上の財源を保有す
る必要がある。したがって、それらの繰り返しにより冷
間圧延工程1の1CGL−GI品種向けの処理量を日々
決定することができ、同様の手続きを他の工程において
も順次行っていく。その際、図3の(イ)に示す品種別
工程歩留り、図3(ウ)に示す品種別連続焼鈍ヒートパ
ターン構成比率、ヒートパターン移行制約などをモデル
に織り込み、モデルの精度を向上させる。
Then, a stacking calculation is executed (S10).
2). Specifically, in order to satisfy the schedule in the final process of step 101, the schedule from the process immediately before the final process is prepared and created. Figure 3 (A)
As shown in, in 1 CGL, 100 GI varieties were selected on the first day.
Since 0t processing is performed, it is necessary to have a financial resource of 1000t or more in total including the front stock of 1CGL and the processing amount in the cold rolling process 1. Therefore, the amount of processing for the 1CGL-GI product in the cold rolling step 1 can be determined every day by repeating these steps, and the same procedure is sequentially performed in other steps. At this time, the process yield by product type shown in FIG. 3A, the continuous annealing heat pattern composition ratio by product type shown in FIG. 3C, the heat pattern transfer constraint, etc. are incorporated into the model to improve the accuracy of the model.

【0015】具体的には、図3の(イ)より1CGLの
工程歩留りは1.025であり、1CGLで1000t
を処理するためには、前工程の冷間圧延工程1では10
00/1.025=976tの1CGL向けコイルの処
理を行う必要がある。
Specifically, from FIG. 3A, the process yield of 1 CGL is 1.025, and 1 CGL is 1000 t.
In the cold rolling process 1 of the previous process, 10
It is necessary to process the coil for 1CGL of 00 / 1.025 = 976t.

【0016】また、図3の(ウ)については、連続焼鈍
工程4,5と電気亜鉛メッキ工程9,10、せん断工程
8との処理様式が異なるため、処理ロットの変換を行う
必要がある。例えば、電気亜鉛メッキ工程で1000t
の処理を行う場合、前工程の連続焼鈍工程4からはヒー
トパターンA,Bのものを35.7%の357t、ヒー
トパターンCのものを54.8%の548t、ヒートパ
ターンDのものを、8.1%の81t、ヒートパターン
Eのものを1.4%の14tを予め処理し、電気亜鉛メ
ッキ工程9,10向けに準備しておく必要がある。
Further, in FIG. 3C, since the treatment modes of the continuous annealing steps 4 and 5, the electrogalvanizing steps 9 and 10 and the shearing step 8 are different, it is necessary to convert the treatment lot. For example, 1000t in electrogalvanizing process
In the case of performing the above process, from the continuous annealing process 4 of the previous process, 35.7% of the heat patterns A and B, 357t, 54.8% of the heat pattern C, 548t, and the heat pattern D, It is necessary to pretreat 81% of 8.1% and 14t of 1.4% of the one having the heat pattern E to prepare for the electrogalvanizing steps 9 and 10.

【0017】ついで、中間工程の処理量、スケジュール
量を決定する(S103)。具体的には、ステップ10
2の積み上げ計算を順次繰り返し、冷間圧延工程1〜再
捲取工程11に至る工程のスケジュールを決定する。
Then, the processing amount and schedule amount of the intermediate process are determined (S103). Specifically, step 10
The stacking calculation of 2 is sequentially repeated to determine the schedule of the processes from the cold rolling process 1 to the rewinding process 11.

【0018】さらに、各工程の処理量≦各工程の処理能
力の関係が成立するか否かを判定する(S104)。上
記の関係が成立する場合、各工程の処理制約を満たすか
否かを判定する(S105)。ここでの処理は、具体的
にはステップ103までに作成した各中間工程のスケジ
ュール(図3の(エ))が各中間工程の処理能力と処理
制約を満たすか否かをチェックし、満たすようになるま
でステップ103の作業を繰り返すものである。例え
ば、図3の(エ)においては、1日目の冷間圧延の処理
量が1CGL−GI品種向け850t、1CAPL−E
GL向け940t、計10,940tであり、夫々の品
種毎にT/Hrを持っているテーブルと照らし合わせ、
1日で全量を処理しきれるか否かをチェックする。不可
能な場合、その量を可能な範囲で前後日に振らせてい
く。このような作業を順次繰り返し実行する。
Further, it is determined whether or not the relation of the processing amount of each process ≦ the processing capacity of each process is satisfied (S104). When the above relationship is established, it is determined whether or not the processing constraint of each process is satisfied (S105). Specifically, the processing here is performed by checking whether the schedule ((D) of FIG. 3) of each intermediate process created up to step 103 satisfies the processing capability and processing constraint of each intermediate process, and satisfies them. The work of step 103 is repeated until. For example, in FIG. 3D, the processing amount of the cold rolling on the first day is 850 t for 1CGL-GI product and 1CAPL-E.
940t for GL, 10,940t in total, and compared with the table having T / Hr for each product type,
Check if the total amount can be processed in one day. If it is not possible, shake the amount as much as possible before and after. Such work is sequentially and repeatedly executed.

【0019】一方、ステップ105で満たされた場合、
各工程間の中間仕掛量を求める(S106)。なお、ス
テップ104及びステップ105において否の判定がな
された場合、処理をステップ102に戻し、以降の処理
を再実行する。ステップ105までの処理を行うことに
より、各工程のスケジュールが確定する。これを基に簡
単な引き算により各工程の前面における品種別の中間仕
掛量が算出される。例えば、図3の(オ)に示すよう
に、1CGLのGI品種の各日の期末在庫量は次のよう
になる。
On the other hand, if step 105 is satisfied,
The amount of intermediate work in process between each process is calculated (S106). In addition, when a determination of NO is made in step 104 and step 105, a process is returned to step 102 and the subsequent processes are re-executed. By performing the processes up to step 105, the schedule of each process is fixed. Based on this, the amount of intermediate work in process for each product type in front of each process is calculated by simple subtraction. For example, as shown in (e) of FIG. 3, the end-of-year inventory quantity of 1 CGL GI product on each day is as follows.

【0020】1日目の期末在庫量:初期在庫量(405
0t)+前工程(CDCM工程)の1CGL−GI向け
処理量(850t)−1CGL工程のGI品種処理量
(1000t)=3900t 2日目の期末在庫量:3900t+860t−900t
=3860t 3日目の期末在庫量:3860t+0t−1000t=
2860t 4日目の期末在庫量:2860t+0t−900t=1
960t 5日目の期末在庫量:1960t+0t−0t=196
0t 同様に、1CGLのNSZ品種については、次のように
なる。
Inventory quantity at the end of the first day: Initial inventory quantity (405
0t) + pre-process (CDCM process) 1CGL-GI processing amount (850t) -1CGL process GI product processing amount (1000t) = 3900t 2nd day end inventory: 3900t + 860t-900t
= 3860t End-of-term inventory on the third day: 3860t + 0t-1000t =
2860t 4th day end inventory: 2860t + 0t-900t = 1
960t 5th day end inventory: 1960t + 0t-0t = 196
Similarly to 0t, the 1CGL NSZ product is as follows.

【0021】 1日目の期末在庫量:0t+0t−0t=0t 2日目の期末在庫量:0t+0t−0t=0t 3日目の期末在庫量:0t+655t−0t=655t 4日目の期末在庫量:655t+655t−0t=13
10t 5日目の期末在庫量:1310t+655t−500t
=1465t 各工程において、「前日期末の自工程前面在庫量」に
「当日の前工程の自工程向け必要量」を加え、「当日の
自工程の処理量」を差し引くことで自工程の前面在庫量
が算出される。
End-of-year inventory amount on day 1: 0t + 0t-0t = 0t End-of-year inventory amount on day 2: 0t + 0t-0t = 0t 3 End-term inventory amount on day 3: 0t + 655t-0t = 655t End-term inventory amount on day 4: 655t + 655t-0t = 13
10t 5th day end inventory: 1310t + 655t-500t
= 1465t For each process, add the "necessary amount for the previous process of the previous process for the current process" to the "amount of the in-process front inventory at the end of the previous day" and subtract the "process amount of the current process for the current day" to subtract the front inventory of the current process The amount is calculated.

【0022】以上のステップ101〜106に至る処理
が繰り返し工程間仕掛量が最少になるようにスケジュー
ルを作成し、そのスケジュールをもとに日々の工程管理
が実行される。そして、このような処理は、パーソナル
コンピュータによって実現可能である。
The above steps 101 to 106 are repeated to create a schedule so that the amount of work in process is minimized, and daily process management is executed based on the schedule. Then, such processing can be realized by a personal computer.

【0023】[0023]

【発明の効果】以上説明した通り、この発明は、最終工
程での所要量及びスケジュールを与え、これらをもとに
各工程の日別所要量の積み上げ計算を実施し、各中間工
程の処理量及びスケジュールを決定し、各中間工程の処
理量が処理能力を超えた場合に前記スケジュールが各工
程の処理規約を満たすようにしたので、中間工程の仕掛
量を考慮したスケジュールの作成が可能になる。
As described above, according to the present invention, the required amount and schedule in the final process are given, and the daily required amount of each process is accumulated based on these, and the processing amount of each intermediate process is calculated. Also, the schedule is determined, and when the processing amount of each intermediate step exceeds the processing capacity, the schedule satisfies the processing rules of each step, so that it is possible to create a schedule in consideration of the in-process amount of the intermediate step. ..

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるスケジューリング方法を示すフロ
ーチャートである。
FIG. 1 is a flowchart showing a scheduling method according to the present invention.

【図2】本発明による処理の対象例を示す説明図であ
る。
FIG. 2 is an explanatory diagram showing a target example of processing according to the present invention.

【図3】本発明の処理量を示す説明図である。FIG. 3 is an explanatory diagram showing a processing amount of the present invention.

【符号の説明】[Explanation of symbols]

1 冷間圧延工程(CDCM) 2 溶融亜鉛メッキ工程(CGL) 3 焼鈍工程(BAF) 4 連続焼鈍工程(第1CAPL) 5 連続焼鈍工程(第2CAPL) 6 調質圧延・再捲取工程(SRL) 7 調質圧延工程(SRM) 8 せん断工程(SHL) 9 電気亜鉛メッキ工程(第1EGL) 10 電気亜鉛メッキ工程(第2EGL) 11 再捲取工程(RCL) 1 Cold Rolling Process (CDCM) 2 Hot Dip Galvanizing Process (CGL) 3 Annealing Process (BAF) 4 Continuous Annealing Process (1st CAPL) 5 Continuous Annealing Process (2nd CAPL) 6 Temper Rolling / Rewinding Process (SRL) 7 Tempering Rolling Process (SRM) 8 Shearing Process (SHL) 9 Electrogalvanizing Process (First EGL) 10 Electrogalvanizing Process (Second EGL) 11 Rewinding Process (RCL)

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 最終工程での所要量及びスケジュールを
与え、これらを基に各工程の日別所要量の積み上げ計算
を実施し、各中間工程の処理量及びスケジュールを決定
し、各中間工程の処理量が処理能力を超えた場合に前記
スケジュールが各工程の処理規約を満たすようにするこ
とを特徴とする鉄鋼業におけるスケジューリング方法。
1. The required amount and schedule for the final process are given, and based on these, the daily required amount for each process is accumulated and calculated, and the throughput and schedule of each intermediate process are determined. A scheduling method in the steel industry, characterized in that, when the processing amount exceeds the processing capacity, the schedule satisfies the processing rules of each process.
JP10398592A 1992-03-31 1992-03-31 Scheduling method for iron and steel industry Pending JPH05282321A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10398592A JPH05282321A (en) 1992-03-31 1992-03-31 Scheduling method for iron and steel industry

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP10398592A JPH05282321A (en) 1992-03-31 1992-03-31 Scheduling method for iron and steel industry

Publications (1)

Publication Number Publication Date
JPH05282321A true JPH05282321A (en) 1993-10-29

Family

ID=14368610

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10398592A Pending JPH05282321A (en) 1992-03-31 1992-03-31 Scheduling method for iron and steel industry

Country Status (1)

Country Link
JP (1) JPH05282321A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005524165A (en) * 2002-04-30 2005-08-11 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Agent-responsive scheduling in an automated manufacturing environment.
CN112215543A (en) * 2020-09-25 2021-01-12 远光软件股份有限公司 Method and device for counting commodity inventory, terminal equipment and storage medium

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005524165A (en) * 2002-04-30 2005-08-11 アドバンスト・マイクロ・ディバイシズ・インコーポレイテッド Agent-responsive scheduling in an automated manufacturing environment.
CN112215543A (en) * 2020-09-25 2021-01-12 远光软件股份有限公司 Method and device for counting commodity inventory, terminal equipment and storage medium

Similar Documents

Publication Publication Date Title
US9734539B2 (en) Coordinated coil scheduling method of multiple production lines for cold rolling area in steel plant
TW200537343A (en) Method of production control and method of manufacturing industrial product
JPH05282321A (en) Scheduling method for iron and steel industry
CN106707994B (en) Steel rolls dynamic debugging system and its method
JPH05307551A (en) Scheduling method in iron and steel industry
CN103632014A (en) Technological parameter predication method for hot continuous rolling product production flow
CN114004388A (en) Integrated production plan scheduling method suitable for oriented electrical steel production line
JPH0772907A (en) Device or method for changing criterion for evaluation and device or method for generating production planning
Tang et al. An efficient optimal solution to the coil sequencing problem in electro-galvanizing line
CN117195460A (en) Cold-rolled product sampling method and system based on dynamic programming algorithm
JPH11217619A (en) System for deciding ratio of scrap amount to be used
JP2006338110A (en) Production/shipping plan preparation system for steel product and its production/shipping plan preparation method
JP2003256017A (en) Producing method for forecasted order product
Hatoum et al. Trade-off between quoted lead time and price
KR100431841B1 (en) Method for analyzing ross between process of iron manufacture
JPH0635920A (en) Scheduling device
Dhingra et al. Hybrid genetic algorithm for SDST flow shop scheduling with due dates: a case study
JP2007094624A (en) Slab design method and device thereof
Xu et al. A subpopulation-based differential evolution algorithm for scheduling with batching decisions in steelmaking-continuous casting production
KR100362601B1 (en) Automated Schedule Modeling Method in CPM Line of Cold Rolling Mill
JP5803693B2 (en) Production logistics schedule creation system and production logistics schedule creation method
Liu et al. Multi-Constraint Flexible Job Scheduling Algorithm Based on DDQN: A Deep Reinforcement Learning Algorithm for Solving Practical Job Scheduling Problems
JP2001100832A (en) System for delivery date calculation, and method for calculating delivery date for ordered product
JPH0452222A (en) Material quality designing device for steel products
JPH09179904A (en) Lot aggregating method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 19980324