JPH05281388A - Automatic depressurization system for boiling water reactor power plant - Google Patents

Automatic depressurization system for boiling water reactor power plant

Info

Publication number
JPH05281388A
JPH05281388A JP4079836A JP7983692A JPH05281388A JP H05281388 A JPH05281388 A JP H05281388A JP 4079836 A JP4079836 A JP 4079836A JP 7983692 A JP7983692 A JP 7983692A JP H05281388 A JPH05281388 A JP H05281388A
Authority
JP
Japan
Prior art keywords
pressure
water injection
reactor
injection system
turbine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4079836A
Other languages
Japanese (ja)
Inventor
Masahiko Fujii
正彦 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP4079836A priority Critical patent/JPH05281388A/en
Publication of JPH05281388A publication Critical patent/JPH05281388A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Landscapes

  • Structure Of Emergency Protection For Nuclear Reactors (AREA)

Abstract

PURPOSE:To depressurize with a variety of redundant water injection systems having improved safety by providing a set point of low and high reactor pressure and a judgement means indicating the operation of the water injection system driven by turbine. CONSTITUTION:The title system has a turbine driven water injection system and a low pressure water injection system. The operating reactor pressure is set above the isolation set pressure of the turbine driven steam pipe and the low reactor pressure signal 4 is set below the water injection initiation pressure for the low pressure injection system. And the set point of high reactor pressure signal 3 is below the injection initiation pressure for the low pressure injection system and over the set point of low reactor pressure signal 4. Also a judgment means generating operating signal 2 of the turbine driven water injection system is provided. When the automatic depressurization system automatically actuates to open the automatic depressurization valve, an automatic depressurization valve openned at the set point of the signal 4 is closed during the generation of the signal 2. When it reaches the set point of the signal 3, the automatic depressurization valve is opened again.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はタービン駆動の注水系統
における原子炉への注水を継続させるための沸騰水型原
子力発電所の自動減圧系に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an automatic depressurization system of a boiling water nuclear power plant for continuing water injection to a nuclear reactor in a turbine driven water injection system.

【0002】[0002]

【従来の技術】沸騰水型原子力発電所には、事故あるい
は過渡変化時に原子炉内に注水し、炉心を冷却するため
の非常用の注水系統が複数設置されている。一般的にこ
れらの注水系統には多様性を持たせるため、低圧の注水
系統およびタービン駆動の高圧の注水系統が含まれてい
る。
2. Description of the Related Art A boiling water nuclear power plant is provided with a plurality of emergency water injection systems for injecting water into the reactor and cooling the core in the event of an accident or a transient change. Generally, these water injection systems include a low pressure water injection system and a turbine-driven high pressure water injection system in order to provide diversity.

【0003】図4を参照しながら従来のタービン駆動の
注水系の概略を説明する。図4において、原子炉40は原
子炉格納容器41内に格納されており、原子炉40からター
ビン32までに至るタービン駆動用の蒸気管30に隔離弁31
aと31bが原子炉格納容器41の壁面を隔てて設けられて
いる。タービン32にはタービン駆動ポンプ33が接続さ
れ、このポンプ33の吐出側の注水ライン39には圧力計3
4、最小流量バイパスライン35、流量計36、テストバイ
パスライン37および注入弁38が順次接続されている。
An outline of a conventional turbine-driven water injection system will be described with reference to FIG. In FIG. 4, the reactor 40 is housed in a reactor containment vessel 41, and an isolation valve 31 is installed in a steam pipe 30 for driving the turbine from the reactor 40 to the turbine 32.
a and 31b are provided to separate the wall surface of the reactor containment vessel 41. A turbine drive pump 33 is connected to the turbine 32, and a pressure gauge 3 is installed in a water injection line 39 on the discharge side of the pump 33.
4. The minimum flow bypass line 35, the flow meter 36, the test bypass line 37, and the injection valve 38 are sequentially connected.

【0004】タービン駆動の注水系統はタービン駆動ポ
ンプ33により原子炉40に注水する系統である。この系統
は原子炉40で発生した蒸気によりタービン32を駆動し、
タービン駆動ポンプ33の駆動源とする。したがって、原
子炉40の圧力が低下するとタービン32の駆動が不可能と
なるため、タービン32へ原子炉蒸気を導くタービン駆動
蒸気管30を隔離するように構成されている。一般的に、
この隔離するための原子炉圧力、すなわちタービン駆動
の注水系統が注水可能な最低原子炉圧力は、後述する低
圧の注水系統の注水が可能となる原子炉圧力よりも低く
なるように設計されている。
The turbine-driven water injection system is a system in which water is injected into the reactor 40 by the turbine-driven pump 33. This system drives the turbine 32 with steam generated in the reactor 40,
The drive source for the turbine drive pump 33. Therefore, the turbine 32 cannot be driven when the pressure of the nuclear reactor 40 decreases, so that the turbine drive steam pipe 30 that guides the nuclear reactor steam to the turbine 32 is isolated. Typically,
The reactor pressure for this isolation, that is, the minimum reactor pressure at which the turbine-driven water injection system can be injected is designed to be lower than the reactor pressure at which the low-pressure water injection system described below can be injected. ..

【0005】低圧の注水系統はタービン駆動の注水系統
を含む高圧の注水系統により原子炉40への冷却水の供給
が不可能あるいは注水量が不足する場合に原子炉40に注
水する系統であり、一般的に高圧の注水系統よりも注水
量が多く、多量の冷却水を原子炉40に供給することが可
能である。ただし、タービン駆動ポンプ33の吐出圧力が
低いため、原子炉40の圧力が高い場合には、自動減圧系
を作動させ原子炉圧力を低圧の注水系が注水可能な圧力
まで減圧する必要がある。
The low-pressure water injection system is a system for injecting water into the reactor 40 when cooling water cannot be supplied to the reactor 40 or the amount of water injection is insufficient due to a high-pressure water injection system including a turbine-driven water injection system, Generally, the amount of water injected is larger than that of the high-pressure water injection system, and a large amount of cooling water can be supplied to the reactor 40. However, since the discharge pressure of the turbine drive pump 33 is low, when the pressure of the reactor 40 is high, it is necessary to operate the automatic depressurization system to reduce the reactor pressure to a pressure at which the low-pressure water injection system can inject water.

【0006】自動減圧系は原子炉40への注水量の不足を
原子炉水位の低下状態の継続あるいはこれに加えて格納
容器41内の配管の破断を示す格納容器41内圧力の高状態
が同時に発生していることにより判断している。さら
に、自動減圧系が作動すると自動減圧弁が開放して原子
炉40の圧力を減少させるが、この時に原子炉40内の保有
水が蒸気となって原子炉40から流出するので、低圧の注
水系統による原子炉への注水を確実にするため、低圧の
注水系統が正常に作動していることを確認した後、自動
起動するように構成されている。
In the automatic depressurization system, the shortage of the amount of water injected into the reactor 40 causes the reactor water level to continue to drop, or in addition to this, the high pressure inside the containment vessel 41 indicates the breakage of the piping inside the containment vessel 41. Judgment is based on what is occurring. Further, when the automatic pressure reducing system operates, the automatic pressure reducing valve opens to reduce the pressure of the reactor 40, but at this time, the water held in the reactor 40 becomes steam and flows out from the reactor 40, so low-pressure water injection is performed. In order to ensure water injection into the reactor by the system, it is configured to automatically start after confirming that the low-pressure water injection system is operating normally.

【0007】一度作動した自動減圧系は、自動起動を発
生させる要因が除去された後に運転員によりリセットさ
れるまで作動し続け、原子炉圧力がほぼ大気圧になるま
で減圧する。
The once-operated automatic depressurization system continues to operate until the operator resets it after the factor causing the automatic start-up is removed, and depressurizes the reactor pressure to almost atmospheric pressure.

【0008】[0008]

【発明が解決しようとする課題】上述のように自動減圧
系の目的は、高圧の系統による原子炉への注水流量が不
足した場合に、原子炉を減圧させ、低圧の注水系統によ
る注水を可能とさせることであるが、自動減圧系には以
下のような課題がある。
As described above, the purpose of the automatic depressurization system is to depressurize the reactor and inject water by the low pressure water injection system when the flow rate of water injected into the reactor by the high pressure system is insufficient. However, the automatic depressurization system has the following problems.

【0009】すなわち、タービン駆動の注水系統が作動
していても注水流量が不足している場合に自動減圧系が
作動すると、タービン駆動の注水系統の蒸気管が隔離さ
れる圧力以下まで原子炉を減圧してしまう。そこで、注
水量は不足しているものの原子炉への注水を継続してい
るタービン駆動の注水系統を使用不可能としてしまうた
め、原子炉への注水系統の多様性および多重性を減少さ
せてしまい、安全性を減少させる。
That is, even if the turbine-driven water injection system is operating, if the automatic depressurization system operates when the water injection flow rate is insufficient, the reactor is brought to a pressure below the pressure at which the steam pipes of the turbine-driven water injection system are isolated. I will reduce the pressure. Therefore, although the water injection amount is insufficient, the turbine-driven water injection system that continues to inject water into the reactor becomes unusable, reducing the diversity and multiplicity of the water injection system into the reactor. , Reduce safety.

【0010】本発明は上記課題を解決するためになされ
たもので、その目的は、タービン駆動の注水系統が作動
している状態において、自動減圧系の作動が必要となっ
た場合には、タービン駆動の給水系統を喪失させること
なく、かつ設計どおりに低圧の注水系統の機能も確保す
ることにより、注水系統の多様性および冗長性を確保し
てより安全性を向上させるような減圧を行う沸騰水型原
子力発電所の自動減圧系を提供することにある。
The present invention has been made to solve the above problems, and an object of the present invention is to provide a turbine when an automatic depressurization system is required to operate while the turbine-driven water injection system is operating. Boiling that reduces pressure to improve the safety by ensuring the diversity and redundancy of the water injection system by maintaining the function of the low-pressure water injection system as designed without losing the drive water supply system. It is to provide an automatic decompression system for a water nuclear power plant.

【0011】[0011]

【課題を解決するための手段】タービン駆動の注水系統
および低圧の注水系統を有し、原子炉圧力がタービン駆
動用蒸気管の隔離設定圧力以上かつ低圧の注水系統の注
水開始圧力以下に原子炉圧力低の設定点を持ち、低圧の
注水系統の注水開始圧力以下かつ前記原子炉圧力低の設
定点以上に原子炉圧力高の設定点を持ち、しかも前記タ
ービン駆動の注水系統が作動中の判定手段を持ち、自動
減圧系が自動起動し自動減圧弁が開放した場合に、前記
タービン駆動の注水系統が作動中には前記原子炉圧力低
の設定点において開放した前記自動減圧弁を閉鎖し、そ
の後原子炉圧力が前記原子炉圧力高の設定点に達した場
合には、前記自動減圧弁を再度開放するように構成した
ことを特徴とする。
[Means for Solving the Problems] A reactor has a turbine-driven water injection system and a low-pressure water injection system, and the reactor pressure is not less than the isolation set pressure of the turbine drive steam pipe and not more than the injection start pressure of the low-pressure water injection system. It has a set point of low pressure, has a set point of reactor pressure high below the injection start pressure of the low pressure injection system and above the set point of low reactor pressure, and the turbine driven water injection system is operating. With means, when the automatic pressure reducing system is automatically activated and the automatic pressure reducing valve is opened, the automatic pressure reducing valve opened at the reactor pressure low set point is closed during operation of the turbine driven water injection system, After that, when the reactor pressure reaches the set point of the reactor pressure high, the automatic pressure reducing valve is configured to be opened again.

【0012】[0012]

【作用】タービン駆動の注水系統が作動しているか否か
を判定するための判定手段は、タービン駆動ポンプの吐
出圧力が所定の設定値よりも高い場合、またはタービン
駆動の注水系統の系統流量が所定の設定値よりも高い場
合、あるいはタービン駆動の注水系統の原子炉への注入
弁が開放されている場合、もしくは前記三者の組み合わ
せにより判定する。
[Operation] When the discharge pressure of the turbine drive pump is higher than a predetermined set value, or when the system flow rate of the turbine drive water injection system is If it is higher than a predetermined set value, or if the injection valve to the reactor of the water injection system driven by the turbine is open, or if a combination of the three is used.

【0013】したがって、本発明によれば、タービン駆
動の注水系統が動作している時に自動減圧系が必要とな
った場合には、原子炉圧力は低圧の注水系統が機能する
ための圧力までは減圧されるが、タービン駆動の注水系
統が隔離される圧力までには減圧されないため、注水系
統の多様性および冗長性が確保され、原子炉の冷却手段
の信頼性を向上させ、原子炉の安全性を向上させること
が可能となる。
Therefore, according to the present invention, when the automatic pressure reducing system is required while the turbine-driven water injection system is operating, the reactor pressure does not exceed the pressure for the low-pressure water injection system to function. Although the pressure is reduced, it is not reduced to the pressure at which the turbine-driven water injection system is isolated, ensuring the diversity and redundancy of the water injection system, improving the reliability of the reactor cooling means, and improving the safety of the reactor. It is possible to improve the property.

【0014】[0014]

【実施例】本発明に係る沸騰水型原子力発電所の自動減
圧系の実施例を図面を参照して説明する。図1は本発明
の自動減圧系(以下ADSという)の一実施例を示すも
のである。ADS自動起動信号1は従来のADSにより
発生するものと同一であり、一度発生すると発生要因が
除去され、かつ運転員がリセット操作を実施しない限り
継続して発生しているものである。タービン駆動系の動
作中信号2はタービン駆動の注水系が動作している場合
に発生する信号であり、この信号の発生方法に関しては
後述する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of an automatic depressurization system of a boiling water nuclear power plant according to the present invention will be described with reference to the drawings. FIG. 1 shows an embodiment of an automatic depressurization system (hereinafter referred to as ADS) of the present invention. The ADS automatic start signal 1 is the same as that generated by the conventional ADS, and once generated, the cause of the generation is removed, and it is continuously generated unless the operator performs a reset operation. The turbine drive system operating signal 2 is a signal generated when the turbine drive water injection system is operating, and a method of generating this signal will be described later.

【0015】原子炉圧力高信号3および原子炉圧低信号
4は原子炉圧力に関して図3に示す低圧注水系統の注水
可能最高圧力つまりLPCS注水可能点圧力23、原子炉
圧力高信号3、原子炉圧力低い信号4、タービン駆動注
水系統隔離圧力つまりRCIC隔離設定点圧力22の順に
低くなるように設定される。この設定方法に関しては後
述する。
The high reactor pressure signal 3 and the low reactor pressure signal 4 are the maximum pourable pressure of the low pressure pouring system shown in FIG. 3 with respect to the reactor pressure, that is, the LPCS pourable point pressure 23, the high reactor pressure signal 3, The low pressure signal 4 and the turbine drive water injection system isolation pressure, that is, the RCIC isolation set point pressure 22 are set to decrease in this order. This setting method will be described later.

【0016】ADS自動起動信号1が発生した場合に、
タービン駆動の注水系統が動作していない場合には、タ
ービン駆動系動作中信号2が発生しないため、NOT論
理6が成立し、AND論理5、OR論理11が成立し、自
動減圧弁(以下ADS弁という)開信号13が発生し、原
子炉を低圧の注水系統が注水可能な圧力以下まで減圧
し、この減圧状態を維持する。この場合には従来のAD
Sと全く同一の動作を行う。
When the ADS automatic start signal 1 is generated,
When the turbine drive water injection system is not operating, the turbine drive system operating signal 2 is not generated, so NOT logic 6 is established, AND logic 5 and OR logic 11 are established, and the automatic pressure reducing valve (hereinafter ADS) is established. An open signal 13 (referred to as a valve) is generated, and the reactor is depressurized to a pressure below the pressure at which the low pressure water injection system can inject water, and this depressurized state is maintained. In this case, the conventional AD
Performs exactly the same operation as S.

【0017】タービン駆動の注水系統が動作している場
合には、タービン駆動系動作中信号2が発生するため、
AND論理5は成立しない。ADS自動起動信号1が発
生する初期においては、原子炉圧力が高いため原子炉圧
力高信号3が発生する。したがって、AND論理10が成
立し、OR論理11が成立し、ADS弁開信号13が発生す
る。これによりADS弁が開放し、原子炉は減圧され
る。
When the turbine driven water injection system is operating, the turbine drive system operating signal 2 is generated.
AND logic 5 does not hold. At the initial stage of generation of the ADS automatic start signal 1, the reactor pressure is high, so that the reactor pressure high signal 3 is generated. Therefore, the AND logic 10 is established, the OR logic 11 is established, and the ADS valve open signal 13 is generated. This opens the ADS valve and depressurizes the reactor.

【0018】このADS弁開信号13は一度発生すると、
原子炉圧力高信号3が成立しなくなっても、原子炉圧力
低信号4が成立していない間はNOT論理7およびAN
D論理10が成立しているため、AND論理8、OR論理
9により保持され、AND論理10、OR論理11が成立し
続け、ADS弁開信号13は成立し続け、ADS弁は開状
態を維持し、減圧を継続し、低圧の注水系統の注水可能
圧力以下まで減圧する。
Once this ADS valve open signal 13 is generated,
Even if the reactor pressure high signal 3 does not hold, while the reactor pressure low signal 4 does not hold, NOT logic 7 and AN
Since D logic 10 is established, it is held by AND logic 8 and OR logic 9, AND logic 10 and OR logic 11 continue to be established, ADS valve open signal 13 continues to be established, and the ADS valve remains open. Then, the pressure reduction is continued, and the pressure is reduced to a pressure lower than the water injection pressure of the low pressure water injection system.

【0019】原子炉の減圧が進行し、原子炉圧力低信号
4が成立するようになると、NOT論理7が成立しない
ため、AND論理8も成立せず、また原子炉圧力高信号
3も成立しなくなるため、OR論理9、AND論理10、
OR論理11が成立しなくなる。したがって、NOT論理
12が成立し、ADS弁閉信号14が発生し、ADS弁は閉
鎖され、原子炉の減圧は停止するが、この時点では原子
炉圧力低信号4はタービン駆動の注水系統の隔離設定圧
力以上に設定されているため、タービン駆動の注水系統
は原子炉への注水を継続可能である。
When the reactor pressure reduction progresses and the reactor pressure low signal 4 is satisfied, the NOT logic 7 is not satisfied, the AND logic 8 is not satisfied, and the reactor pressure high signal 3 is also satisfied. Since it disappears, OR logic 9, AND logic 10,
OR logic 11 is no longer valid. Therefore, NOT logic
12 is satisfied, the ADS valve closing signal 14 is generated, the ADS valve is closed, and the depressurization of the reactor is stopped, but at this point, the reactor pressure low signal 4 exceeds the isolation set pressure of the turbine driven water injection system. Since it is set, the turbine-driven water injection system can continue to inject water into the reactor.

【0020】ADS弁が閉鎖されると、原子炉内の崩壊
熱により原子炉圧力は徐々に上昇する。原子炉圧力が原
子炉圧力高信号3が成立するまで上昇すると、上述と同
様の過程により、再度ADS弁開信号13が発生し、原子
炉は再び原子炉圧力低信号4が成立するまで減圧され
る。
When the ADS valve is closed, the decay pressure in the reactor causes the reactor pressure to gradually rise. When the reactor pressure rises until the high reactor pressure signal 3 is established, the ADS valve opening signal 13 is generated again by the same process as described above, and the reactor is depressurized until the low reactor pressure signal 4 is established again. It

【0021】このように本発明によれば、一度ADS自
動起動信号1が成立すれば、原子炉圧力は原子炉圧力高
信号3の設定点および原子炉圧力低信号4の設定点の間
に維持され、この間は低圧の注水系統、タービン駆動の
注水系統ともに原子炉への注水を継続することを可能と
する。
As described above, according to the present invention, once the ADS automatic start signal 1 is established, the reactor pressure is maintained between the set point of the high reactor pressure signal 3 and the set point of the low reactor pressure signal 4. During this period, it is possible to continue injecting water into the reactor through both the low-pressure injection system and the turbine-driven injection system.

【0022】次に、タービン駆動の注水系統の動作中信
号2の発生方法について説明する。タービン駆動の注水
系統は図4に示すような概略構成となっている。タービ
ン32は原子炉40で発生した蒸気をタービン駆動用の蒸気
管30により導いて駆動するように構成されている。この
蒸気管30には格納容器41の内外に隔離弁31a,31bが設
けられ、原子炉40内の圧力が隔離設定点圧力22以下にな
るとこれらの隔離弁31a,31bが閉鎖し、蒸気の供給が
不可能となる。
Next, a method of generating the in-operation signal 2 of the turbine-driven water injection system will be described. The turbine-driven water injection system has a schematic configuration as shown in FIG. The turbine 32 is configured to guide and drive the steam generated in the nuclear reactor 40 by the steam pipe 30 for driving the turbine. The steam pipe 30 is provided with isolation valves 31a and 31b inside and outside the containment vessel 41, and when the pressure in the reactor 40 becomes equal to or lower than the isolation set point pressure 22, these isolation valves 31a and 31b are closed to supply steam. Becomes impossible.

【0023】タービン駆動の注水系統が動作している場
合には注入弁38が開放され、タービン32により駆動され
るポンプ33によって、注水管39を介して、図示しない水
源の水を原子炉40に注水するように構成されている。タ
ービン駆動の注水系統が動作中にはポンプの吐出圧が確
立しているため、ポンプ出口部に設置された圧力計34は
待機時の圧力よりも高い状態を示す。また系統の流量計
36の原子炉への注水量を示す。したがって、タービン駆
動の注水系統に全く異常がなく原子炉40に注水している
場合には、タービン駆動ポンプの吐出圧力計34が所定の
設定値よりも高い場合、またはタービン駆動の注水系統
の系統流量計36が所定の設定値よりも高い場合、あるい
はタービン駆動の注水系統の原子炉への注入弁38が開放
されている場合のいずれかを検出することにより検知可
能である。
When the turbine-driven water injection system is operating, the injection valve 38 is opened, and the pump 33 driven by the turbine 32 causes water from a water source (not shown) to the reactor 40 via the water injection pipe 39. It is configured to inject water. Since the discharge pressure of the pump is established during operation of the turbine-driven water injection system, the pressure gauge 34 installed at the pump outlet shows a state higher than the standby pressure. Also the flow meter of the system
The amount of water injected into 36 reactors is shown. Therefore, when there is no abnormality in the turbine-driven water injection system and water is being injected into the reactor 40, the discharge pressure gauge 34 of the turbine-driven pump is higher than a predetermined set value, or the turbine-driven water injection system system. This can be detected by detecting either the case where the flow meter 36 is higher than a predetermined set value, or the case where the injection valve 38 to the reactor of the turbine driven water injection system is opened.

【0024】しかしながら、これらそれぞれの信号は必
ずしもタービン駆動の注水系統が原子炉40に注水してい
る場合のみ発生するとは限らない。すなわち、注入弁38
は定例試験においても開放される。また、注入弁38が開
放されておらずポンプ33の締切運転を回避するために設
けられている最小流量バイパスライン35のみに水を流し
ている場合にも吐出圧力計34は確立する。さらに、ポン
プが所定の流量を満足できるかを試験するために設けら
れているテストバイパスライン37を使用した流量試験時
にも吐出圧力計34は確立し、系統流量計36は所定の流量
を示す。
However, these respective signals do not always occur only when the turbine-driven water injection system is injecting water into the reactor 40. That is, the injection valve 38
Will also be opened in regular tests. Further, the discharge pressure gauge 34 is established even when the injection valve 38 is not opened and water is flowing only through the minimum flow rate bypass line 35 provided to avoid the shutoff operation of the pump 33. Further, the discharge pressure gauge 34 is established even during the flow rate test using the test bypass line 37 provided to test whether the pump can satisfy the predetermined flow rate, and the system flow meter 36 shows the predetermined flow rate.

【0025】したがって、タービン駆動の注水系統が動
作中か否かを信頼性良く判定するためには前記3信号を
適切に組み合わせることが望ましい。図2はその一実施
例であり、前記信号が全て成立する場合にタービン駆動
の注水系統が動作中と判定するように構成したものであ
る。
Therefore, in order to reliably judge whether or not the turbine-driven water injection system is operating, it is desirable to appropriately combine the three signals. FIG. 2 is an example of the configuration, and is configured to determine that the turbine-driven water injection system is operating when all of the signals are satisfied.

【0026】このように構成するとタービン駆動の注水
系統が動作中と判定された場合には確実に動作中である
が、反面いずれかの信号が発生しなかった場合、実際に
は動作中のタービン駆動の注水系統を動作中ではないと
判定する可能性がある。このような場合には前記3信号
の内、2信号以上が成立すれば、タービン駆動の注水系
統が動作中と判定すれば良い。
With this configuration, when the turbine-driven water injection system is determined to be operating, it is operating reliably, but when no signal is generated, the turbine actually operating is in operation. It is possible to determine that the drive water injection system is not in operation. In such a case, if two or more of the three signals are satisfied, it may be determined that the turbine-driven water injection system is operating.

【0027】これらの3信号をどのように組み合わせて
判定するかはタービン駆動の注水系統が動作中の信号を
誤動作あるいは不作動を考慮しどの程度の信頼性で設計
するかに依存するため、実際の設計に委ねられる。
How to determine the combination of these three signals depends on how reliable the turbine driven water injection system is to design the operating signal in consideration of malfunction or non-operation. Entrusted to the design of.

【0028】続いて、原子炉圧力高信号3および原子炉
圧力低信号4の設定方法に関して説明する。図3には一
例として、沸騰水型原子炉の原子炉圧力とタービン駆動
の注水系統としてRCICの特性曲線20および低圧の注
水系統としてLPCSの特性曲線21の概要を示す。RC
ICは原子炉圧力が約10kg/cm2 gまで定格流量を注水
できるように設計され、蒸気管30のRCIC隔離設定点
圧力22は約 3.5kg/cm2 gに設定され、これ以下では機
能しなくなるように設計されている。一方、LPCSは
原子炉への注水が可能となるLPCS注水可能点圧力23
は約20kg/cm2 gであり、約8kg/cm2 gにおいて定格
流量を注水できるように設計されている。
Next, a method of setting the high reactor pressure signal 3 and the low reactor pressure signal 4 will be described. As an example, FIG. 3 shows an outline of the RCIC characteristic curve 20 as a reactor pressure and turbine driven water injection system of a boiling water reactor and the LPCS characteristic curve 21 as a low pressure water injection system. RC
The IC is designed to inject the rated flow up to a reactor pressure of approximately 10 kg / cm 2 g, the RCIC isolation set point pressure 22 of the steam pipe 30 is set to approximately 3.5 kg / cm 2 g and below this will work. It is designed to disappear. On the other hand, the LPCS allows injection of water into the reactor, and the LPCS injection point pressure 23
Is about 20 kg / cm 2 g, and is designed so that the rated flow rate can be injected at about 8 kg / cm 2 g.

【0029】図3に示す実施例においては、RCICの
蒸気管のRCIC隔離設定点圧力22以上かつLPCS注
水可能点圧力23以下となる原子炉圧力低信号4の設定点
を約8kg/cm2 gに設定し、LPCS注水可能点圧力23
以下でかつ原子炉圧力低信号4の設定点以上となる原子
炉圧力高信号3の設定点を約14kg/cm2 gに設定してい
る。
In the embodiment shown in FIG. 3, the set point of the reactor pressure low signal 4 which is above the RCIC isolation set point pressure 22 of the RCIC steam pipe and below the LPCS water injection possible point pressure 23 is about 8 kg / cm 2 g. Set to LPCS water injection point pressure 23
The set point of the reactor pressure high signal 3 which is less than or equal to the set point of the reactor pressure low signal 4 is set to about 14 kg / cm 2 g.

【0030】このように原子炉圧力高信号3および原子
炉圧力低信号4の設定点を設定することにより、ADS
が作動した後も、原子炉圧力は約8kg/cm2 gと約14kg
/cm2 gの間に維持され、LPCS、RCICともに定
格流量の約70%の流量を原子炉に注水することが可能と
なる。
By setting the set points of the high reactor pressure signal 3 and the low reactor pressure signal 4 in this manner, the ADS
Even after the operation of the reactor, the reactor pressure was about 8 kg / cm 2 g and about 14 kg.
/ Cm 2 g is maintained between, LPCS, RCIC together it is possible to injection flow rate of approximately 70% of the rated flow rate to the reactor.

【0031】なお、この場合、両系統とも必ずしも常に
定格流量を原子炉に注水できるわけではないが、本来L
PCSはADSが作動しなくても定格流量が注水できる
程原子炉が減圧される事象に対する必要流量を定格流量
として設計されているため、ADSの作動により減圧を
促進する必要がある事象に対しては、定格流量より少な
い注水量でも十分原子炉の冷却が可能であり、安全性は
維持できる。またRCICに関しては全く注水量がゼロ
となるよりも原子炉の冷却には大きく貢献し、安全性を
向上させることが可能である。
In this case, it is not always possible to inject water into the reactor at the rated flow rate in both systems.
The PCS is designed with the required flow rate for the event that the reactor is decompressed so that the rated flow can be injected even if the ADS does not operate. Can cool the reactor sufficiently with a water injection volume less than the rated flow rate and maintain safety. Further, regarding RCIC, it contributes to the cooling of the nuclear reactor to a greater extent than when the water injection amount becomes zero, and it is possible to improve safety.

【0032】本実施例の場合は、原子炉圧力高信号3お
よび原子炉圧力低信号4の設定点をそれぞれと約8kg/
cm2 gと約14kg/cm2 gに設定したが、一般的には、こ
れらの設定点は低圧の注水系統の必要注水量とその注水
特性およびタービン駆動の注水系統の必要注水量とその
隔離設定圧力に基づき、LPCS注水可能点圧力23、原
子炉圧力高信号3、原子炉圧力低信号4、タービン駆動
注水系統のRCIC隔離設定点圧力22の順に低くなるよ
うに設定すれば、これまで説明してきた効果が得られ、
注水系統の多様性および多重性が従来よりも増加し、原
子炉の安全性をより向上させることが可能となる。
In the case of this embodiment, the set points of the high reactor pressure signal 3 and the low reactor pressure signal 4 are about 8 kg /
cm 2 g and about 14 kg / cm 2 g were set, but in general, these set points are the required amount of water injection of the low pressure water injection system and its injection characteristics, and the amount of water injection of the turbine driven water injection system and its isolation. Based on the set pressure, LPCS water injection possible point pressure 23, high reactor pressure signal 3, low reactor pressure signal 4, RCIC isolation set point pressure 22 for turbine drive water injection system You can get the effect
The diversity and multiplicity of the water injection system will increase more than before, and it will be possible to further improve the safety of the reactor.

【0033】また、既存のプラントに対しても図1およ
び図2に示すような論理を追加するのみの改造で済むた
め、安価に安全性を向上させることが可能である。
Further, since it is sufficient to modify the existing plant only by adding the logic as shown in FIGS. 1 and 2, it is possible to improve the safety at low cost.

【0034】以上の本発明の一実施例は、沸騰水型原子
炉のタービン駆動の注水系統および低圧の注水系統がそ
れぞれ1系統の場合について説明してきたが、異なる特
性(原子炉圧力に対する注水量、定格注水量、隔離設定
圧力)を持つ複数のタービン駆動の注水系統または低圧
の注水系統が設置されている原子炉に対して、前述の原
子炉圧力高および低の設定点と動作中の信号をそれぞれ
の注水系統およびその組み合わせに応じて多段階に設定
し、それぞれに関して上述した論理を組むことにより、
使用可能な注水系統を最大限に利用できるようにしても
よい。
The above-described one embodiment of the present invention has been described for the case where the turbine driven water injection system and the low pressure water injection system of the boiling water reactor are each one system, but different characteristics (water injection amount with respect to the reactor pressure are described. , Rated injection volume, isolated set pressure) for reactors with multiple turbine-driven injection systems or low-pressure injection systems installed, the reactor pressure high and low set points and operating signals described above. Is set in multiple stages according to each water injection system and its combination, and by forming the logic described above for each,
The available water injection system may be maximized.

【0035】[0035]

【発明の効果】本発明によれば、自動減圧系の作動以前
に正常に動作していたタービン駆動の注水系統を自動減
圧系が作動したことにより、その機能の継続を喪失させ
ることなく、本来の目的である低圧の注水系統の原子炉
への注水も可能とできる。このため、注水系統の多様性
および多重性が従来よりも増加し、原子炉の安全性をよ
り向上させることが可能となる。また、既存のプラント
に対しても論理を追加する改造のみで本発明を適用でき
るため、安価に安全性を向上させることが可能である。
According to the present invention, since the automatic pressure reducing system operates the turbine-driven water injection system that was normally operating before the automatic pressure reducing system operates, the original function of the turbine drive water injection system is not lost. It is possible to inject water into the reactor of the low-pressure water injection system, which is the purpose of. For this reason, the diversity and multiplicity of the water injection system will increase more than before, and it will be possible to further improve the safety of the nuclear reactor. Moreover, since the present invention can be applied to an existing plant only by modifying the existing logic, safety can be improved at low cost.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る沸騰水型原子力発電所の自動減圧
系の一実施例における自動減圧弁の開閉を制御するため
の論理図。
FIG. 1 is a logic diagram for controlling opening / closing of an automatic pressure reducing valve in an embodiment of an automatic pressure reducing system of a boiling water nuclear power plant according to the present invention.

【図2】図1におけるタービン駆動の動作中を判定する
ための論理図。
FIG. 2 is a logic diagram for determining that the turbine drive in FIG. 1 is operating.

【図3】本発明における原子炉圧力高および低の設定点
とタービン駆動の注水系および低圧駆動の注水系の注水
特性の関係を示す特性図。
FIG. 3 is a characteristic diagram showing a relationship between set points of high and low reactor pressures and water injection characteristics of a turbine driven water injection system and a low pressure driven water injection system in the present invention.

【図4】タービン駆動の注水系の概略構成図。FIG. 4 is a schematic configuration diagram of a turbine-driven water injection system.

【符号の説明】[Explanation of symbols]

1…ADS自動起動信号、2…動作中信号、3…原子炉
圧力高信号、4…原子炉圧力低信号、5,8,10,18…
AND論理、6,7,12…NOT論理、9,11…OR論
理、13…ADS弁開信号、14…ADS弁閉信号、15…ポ
ンプ吐出圧確立信号、16…系統流量高信号、17…注入弁
開信号、20…RCICの特性曲線、21…LPCSの特性
曲線、22…RCIC隔離設定点圧力、23…LPCS注水
可能点圧力、30…蒸気管、31a,31b…隔離弁、32…タ
ービン、33…タービン駆動ポンプ、34…圧力計、35…最
小流量バイパスライン、36…流量計、37…テストバイパ
スライン、38…注入弁、39…注入ライン、40…原子炉、
41…格納容器。
1 ... ADS automatic start signal, 2 ... in-operation signal, 3 ... reactor pressure high signal, 4 ... reactor pressure low signal, 5,8,10,18 ...
AND logic, 6, 7, 12 ... NOT logic, 9, 11 ... OR logic, 13 ... ADS valve open signal, 14 ... ADS valve close signal, 15 ... Pump discharge pressure establishment signal, 16 ... High system flow rate signal, 17 ... Injection valve open signal, 20 ... RCIC characteristic curve, 21 ... LPCS characteristic curve, 22 ... RCIC isolation set point pressure, 23 ... LPCS water injection point pressure, 30 ... Steam pipe, 31a, 31b ... Isolation valve, 32 ... Turbine , 33 ... Turbine driven pump, 34 ... Pressure gauge, 35 ... Minimum flow bypass line, 36 ... Flow meter, 37 ... Test bypass line, 38 ... Injection valve, 39 ... Injection line, 40 ... Reactor,
41 ... Storage container.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 タービン駆動の注水系統および低圧の注
水系統を有し、原子炉圧力がタービン駆動用蒸気管の隔
離設定圧力以上かつ低圧の注水系統の注水開始圧力以下
に原子炉圧力低の設定点を持ち、低圧の注水系統の注水
開始圧力以下かつ前記原子炉圧力低の設定点以上に原子
炉圧力高の設定点を持ち、しかも前記タービン駆動の注
水系統が作動中の判定手段を持ち、自動減圧系が自動起
動し自動減圧弁が開放した場合に、前記タービン駆動の
注水系統が作動中には前記原子炉圧力低の設定点におい
て開放した前記自動減圧弁を閉鎖し、その後原子炉圧力
が前記原子炉圧力高の設定点に達した場合には、前記自
動減圧弁を再度開放するように構成したことを特徴とす
る沸騰水型原子力発電所の自動減圧系。
1. A low pressure reactor system having a turbine-driven water injection system and a low-pressure water injection system, in which the reactor pressure is higher than the isolation set pressure of the turbine drive steam pipe and lower than the water injection start pressure of the low-pressure water injection system. With a point, having a low pressure injection system water injection starting pressure and a reactor pressure high set point above the reactor pressure low set point and having a determination means that the turbine driven water injection system is operating, When the automatic pressure reducing system is automatically started and the automatic pressure reducing valve is opened, the automatic pressure reducing valve opened at the reactor pressure low set point is closed while the turbine-driven water injection system is operating, and then the reactor pressure is reduced. Is configured to reopen the automatic pressure reducing valve when the reactor pressure high set point is reached, the automatic pressure reducing system for a boiling water nuclear power plant.
JP4079836A 1992-04-01 1992-04-01 Automatic depressurization system for boiling water reactor power plant Pending JPH05281388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4079836A JPH05281388A (en) 1992-04-01 1992-04-01 Automatic depressurization system for boiling water reactor power plant

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4079836A JPH05281388A (en) 1992-04-01 1992-04-01 Automatic depressurization system for boiling water reactor power plant

Publications (1)

Publication Number Publication Date
JPH05281388A true JPH05281388A (en) 1993-10-29

Family

ID=13701301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4079836A Pending JPH05281388A (en) 1992-04-01 1992-04-01 Automatic depressurization system for boiling water reactor power plant

Country Status (1)

Country Link
JP (1) JPH05281388A (en)

Similar Documents

Publication Publication Date Title
JPH05307094A (en) Reactor cooling system of boiling water type nuclear reactor
JP5642091B2 (en) Reactor transient mitigation system
JPH05281388A (en) Automatic depressurization system for boiling water reactor power plant
JP6348855B2 (en) Emergency core cooling system for nuclear power plants
JP2859990B2 (en) Boiling water reactor equipment
JP2008020234A (en) Emergency core cooling system
JPH05264774A (en) Emergency reactor cooling equipment
JPH0634782A (en) Dynamic water pressure device for driving control rod
JPH05223979A (en) Water feeding system for nuclear reactor
JPH03216592A (en) Cooling water supplying device of boiling water nuclear reactor
JPH05215886A (en) Emergency reactor core cooling system
JPH07270593A (en) Automatic output controller for reactor
JPH03100496A (en) Nuclear reactor having emergency cooling water replenishing equipment
JPH0222360B2 (en)
JPH0534494A (en) Control of nuclear reactor water level
Israel EPR: steam generator tube rupture analysis in Finland and in France
JPS62148890A (en) Cooling spray system of container for nuclear reactor
JPH0399296A (en) Device for preventing malfunction of control rod driving mechanism
JPH0454199B2 (en)
JPH08233990A (en) Reactor safety system and its functioning state indication method
JPS62272195A (en) Nuclear-reactor water filler
JPS60171495A (en) Controller for automatic decompression system of boiling-water type nuclear power plant
JPH0312279B2 (en)
JPH0145599B2 (en)
JPH0641989B2 (en) Automatic decompression system controller