JPH0312279B2 - - Google Patents

Info

Publication number
JPH0312279B2
JPH0312279B2 JP57119569A JP11956982A JPH0312279B2 JP H0312279 B2 JPH0312279 B2 JP H0312279B2 JP 57119569 A JP57119569 A JP 57119569A JP 11956982 A JP11956982 A JP 11956982A JP H0312279 B2 JPH0312279 B2 JP H0312279B2
Authority
JP
Japan
Prior art keywords
pool
valve
tank
side bypass
injection
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP57119569A
Other languages
Japanese (ja)
Other versions
JPS5910887A (en
Inventor
Shigeki Arai
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Tokyo Shibaura Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Shibaura Electric Co Ltd filed Critical Tokyo Shibaura Electric Co Ltd
Priority to JP57119569A priority Critical patent/JPS5910887A/en
Publication of JPS5910887A publication Critical patent/JPS5910887A/en
Publication of JPH0312279B2 publication Critical patent/JPH0312279B2/ja
Granted legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/30Nuclear fission reactors

Description

【発明の詳細な説明】 [発明の技術分野] 本発明は、例えば、沸騰水形原子炉の高圧炉心
冷却装置に関する。
DETAILED DESCRIPTION OF THE INVENTION [Technical Field of the Invention] The present invention relates to a high-pressure core cooling system for, for example, a boiling water nuclear reactor.

[発明の技術的背景] 一般に沸騰水形原子炉では、事故時に炉心内に
冷却水を注入し炉心を冷却し、炉心内に収容され
る燃料被覆管のぜい化を防止するため高圧炉心冷
却装置が配設されている。そして、この高圧炉心
冷却装置はプラントの過渡時には原子炉水位を維
持するためにも用いられる。
[Technical Background of the Invention] Generally, in boiling water reactors, cooling water is injected into the core in the event of an accident to cool the core, and high-pressure core cooling is used to prevent the fuel cladding tubes housed in the core from becoming brittle. equipment is installed. This high-pressure core cooling system is also used to maintain the reactor water level during plant transitions.

この高圧炉心冷却装置は、一般に、水源として
復水貯蔵タンクとサプレツシヨンプールとを有し
ており、プラントの過渡時には水質の良好である
復水貯蔵タンク水を炉心内に注入できるよう第1
水源は復水貯蔵タンクとされている。そして復水
貯蔵タンク水が減少するか、またはサプレツシヨ
ンプール水が増加した場合には自動的に水源切換
えが起こり、第2水源であるサプレツシヨンプー
ルに水源が切換えられる。
This high-pressure core cooling system generally has a condensate storage tank and a suppression pool as water sources, and during plant transients, the condensate storage tank water of good quality can be injected into the core.
The water source is said to be a condensate storage tank. When the condensate storage tank water decreases or the suppression pool water increases, water source switching occurs automatically and the water source is switched to the second water source, the suppression pool.

この高圧炉心冷却装置がプラントの過渡時に作
動する場合には、一般に、注水量が炉水減少量を
上回るため炉水位が高となり、この場合には注入
ラインに配設される注入弁が閉とされ、原子炉注
入運転から最小流量バイパス運転に切換えられ
る。そして原子炉への注水が停止され炉水位が低
下すれば再度注入弁が開とされ、炉に冷却水を注
入する原子炉注入運転が行なわれる。
When this high-pressure core cooling system operates during plant transients, the amount of water injected generally exceeds the amount of reactor water reduction, resulting in a high reactor water level, and in this case, the injection valve installed in the injection line closes. and the reactor injection operation is switched to minimum flow bypass operation. Then, when water injection into the reactor is stopped and the reactor water level drops, the injection valve is opened again and a reactor injection operation is performed in which cooling water is injected into the reactor.

すなわち、冷却水ポンプの信頼性を考慮した場
合には、この冷却水ポンプの起動停止を頻繁に行
なうことは望ましくなく、般に原子炉圧力容器に
冷却水が注入されていない時には冷却水ポンプに
許される最小流量の冷却水を冷却水ポンプに供給
し、水源、ポンプ、水源の流路で運転する最小流
量バイパス運転が行われている。
In other words, when considering the reliability of the cooling water pump, it is undesirable to start and stop the cooling water pump frequently, and generally when cooling water is not being injected into the reactor pressure vessel, the cooling water pump should not be started or stopped frequently. Minimum flow bypass operation is performed in which the minimum allowable flow rate of cooling water is supplied to the cooling water pump, and operation is performed in the flow path between the water source, the pump, and the water source.

[背景技術の問題点] しかしながら、従来の高圧炉心冷却装置におい
ては、最小流量バイパスラインとしてサプレツシ
ヨンプールへのものしか設置されていないため、
最小流量バイパス運転となつた場合に、サプレツ
シヨンプール水位の上昇に続いて水源切換えが起
こり、サプレツシヨンプール内の冷却水が注入ラ
イン内に流入し、水質の高い復水貯蔵タンク水を
長時間原子炉圧力容器内に注入することが不可能
となつている。
[Problems in the Background Art] However, in conventional high-pressure core cooling systems, only the minimum flow bypass line is installed to the suppression pool.
In the case of minimum flow bypass operation, water source switching occurs following the rise in the suppression pool water level, cooling water in the suppression pool flows into the injection line, and high quality condensate storage tank water is transferred. It has become impossible to inject into the reactor pressure vessel for a long period of time.

すなわち、一般にサプレツシヨンプール内に収
容される冷却水には、鉄、コバルト等の不純物が
含有されており、プラント過渡時のような事故で
はない状態の時には可能な限り復水貯蔵タンク内
の良質な冷却水を原子炉圧力容器内に注入するの
が望ましい。
In other words, the cooling water stored in the suppression pool generally contains impurities such as iron and cobalt, and when there is no accident such as during a plant transition, the cooling water stored in the condensate storage tank should be kept as much as possible. It is desirable to inject high quality cooling water into the reactor pressure vessel.

[発明の目的] 本発明はかかる従来の事情に対処してなされた
もので、冷却水ポンプの最小流量バイパス運転時
においてもサプレツシヨンプール内の冷却水を注
入ラインに流出させることのない高圧炉心冷却装
置を提供しようとするものである。
[Object of the Invention] The present invention has been made in response to the above-mentioned conventional situation, and is a high-pressure system that prevents the cooling water in the suppression pool from flowing out into the injection line even during the minimum flow bypass operation of the cooling water pump. The aim is to provide a core cooling system.

[発明の概要] すなわち本発明は、原子炉圧力容器と復水貯蔵
タンクとを接続し前記復水貯蔵タンク側から順に
タンク側吸込弁、冷却水ポンプ、および注入弁の
配設される注入ラインと、前記タンク側吸込弁と
冷却水ポンプとの間とサプレツシヨンプールとを
接続するプール側吸込弁を備えたプール水配管
と、前記冷却水ポンプと注入弁との間とサプレツ
シヨンプールとを接続するプール側バイパス弁を
備えたプール側バイパスラインと、前記冷却水ポ
ンプと注入弁との間と前記復水貯蔵タンクとを接
続しタンク側バイパス弁を備えたタンク側バイパ
スラインと、前記復水貯蔵タンクを水源とした運
転時に前記注入ラインの流量が予め設定された値
より低下すると、前記タンク側バイパス弁を開と
して前記タンク側バイパスラインによるバイパス
運転を行なうタンク側バイパス弁制御装置と、前
記サプレツシヨンプールを水源とした運転時に前
記注入ラインの流量が予め設定された値より低下
すると、前記プール側バイパス弁を開として前記
タンク側バイパスラインによるバイパス運転を行
なうプール側バイパス弁制御装置とを具備したこ
とを特徴とする高圧炉心冷却装置である [発明の実施例] 以下本発明の詳細を図面に示す一実施例につい
て説明する。
[Summary of the Invention] That is, the present invention provides an injection line that connects a reactor pressure vessel and a condensate storage tank, and in which a tank-side suction valve, a cooling water pump, and an injection valve are arranged in order from the condensate storage tank side. and a pool water pipe having a pool-side suction valve that connects between the tank-side suction valve and the cooling water pump and the suppression pool, and between the cooling water pump and the injection valve and the suppression pool. a pool-side bypass line equipped with a pool-side bypass valve that connects the cooling water pump and the injection valve, and a tank-side bypass line that connects the cooling water pump and the injection valve with the condensate storage tank and equipped with a tank-side bypass valve; A tank-side bypass valve control device that opens the tank-side bypass valve and performs bypass operation using the tank-side bypass line when the flow rate of the injection line decreases below a preset value during operation using the condensate storage tank as a water source. and a pool-side bypass valve that opens the pool-side bypass valve to perform bypass operation using the tank-side bypass line when the flow rate of the injection line decreases below a preset value during operation using the suppression pool as a water source. [Embodiment of the Invention] The details of the present invention will be described below with reference to an embodiment shown in the drawings.

第1図は本発明の一実施例の高圧炉心冷却装置
を示すもので、図において符号1は原子炉圧力容
器2と復水貯蔵タンク3とを接続し、復水貯蔵タ
ンク3側から順にタンク側吸込弁4、逆止弁5、
冷却水ポンプ6、注入弁7および逆止弁8の配設
される注入ラインを示している。
FIG. 1 shows a high-pressure core cooling system according to an embodiment of the present invention. In the figure, reference numeral 1 connects a reactor pressure vessel 2 and a condensate storage tank 3. side suction valve 4, check valve 5,
An injection line in which a cooling water pump 6, an injection valve 7, and a check valve 8 are arranged is shown.

注入ライン1の逆止弁5と冷却水ポンプ6との
間にはサプレツシヨンプール9に接続され、サプ
レツシヨンプール9側から順にプール側吸込弁1
0および逆止弁11の配設されるプール水配管1
2が接続されている。注入ライン1の冷却水ポン
プ6と注入弁7との間にはサプレツシヨンプール
9に接続され、プール側バイパス弁13の介挿さ
れるプール側バイパスライン14が接続されてい
る。そしてプール側バイパスライン14のプール
側バイパス弁13上流から分岐して復水貯蔵タン
ク3に接続される復水貯蔵タンク3側から止め弁
15およびタンク側バイパス弁16の介挿される
タンク側バイパスライン17が接続されている。
A suppression pool 9 is connected between the check valve 5 of the injection line 1 and the cooling water pump 6, and the pool side suction valve 1 is connected in order from the suppression pool 9 side.
Pool water piping 1 where 0 and check valve 11 are installed
2 are connected. A pool-side bypass line 14 is connected between the cooling water pump 6 and the injection valve 7 of the injection line 1 and is connected to a suppression pool 9 and into which a pool-side bypass valve 13 is inserted. A tank side bypass line is branched from the pool side bypass valve 13 upstream of the pool side bypass line 14 and is connected to the condensate storage tank 3. A stop valve 15 and a tank side bypass valve 16 are inserted from the condensate storage tank 3 side. 17 are connected.

なお、復水貯蔵タンク3、サプレツシヨンプー
ル9および原子炉圧力容器2には、それぞれの水
位を測定する復水貯蔵タンク水位計18、サプレ
ツシヨンプール水位計19および原子炉水位計2
0が配設されている。また、注入ライン1のプー
ル側バイパスライン14接続点と注入弁7との間
には、この注入ライン1内を流れる冷却水の流量
を測定する流量計21が配設されている。
The condensate storage tank 3, the suppression pool 9, and the reactor pressure vessel 2 are equipped with a condensate storage tank water level gauge 18, a suppression pool water level gauge 19, and a reactor water level gauge 2 for measuring their respective water levels.
0 is placed. Further, a flow meter 21 is disposed between the connection point of the pool-side bypass line 14 of the injection line 1 and the injection valve 7 to measure the flow rate of the cooling water flowing through the injection line 1 .

図において符号22,23,24,25,2
6,27は、それぞれこの高圧炉心冷却装置に配
設される各種弁の開閉を行なう制御装置を示して
いる。すなわち符号22はプール側吸込弁10の
開閉を行なうプール側吸込弁制御装置を示してお
り、このプール側吸込弁制御装置22は第2図に
示すように、復水貯蔵タンク水位計18およびサ
プレツシヨンプール水位計19からの水位信号を
入力し、復水貯蔵タンク3内の水位があらかじめ
定められた値より低いか又はサプレツシヨンプー
ル9内の水位があらかじめ定められた値より高い
時にプール側吸込弁10を開とする。
In the figure, the numbers 22, 23, 24, 25, 2
Reference numerals 6 and 27 indicate control devices for opening and closing various valves provided in this high-pressure core cooling system, respectively. That is, the reference numeral 22 indicates a pool-side suction valve control device that opens and closes the pool-side suction valve 10, and this pool-side suction valve control device 22, as shown in FIG. The water level signal from the suppression pool water level gauge 19 is input, and the pool is activated when the water level in the condensate storage tank 3 is lower than a predetermined value or the water level in the suppression pool 9 is higher than a predetermined value. The side suction valve 10 is opened.

第1図において符号23はタンク側吸込弁4の
開閉を制御するタンク側吸込弁制御装置を示して
おり、このタンク側吸込弁制御装置23は第3図
に示すようにプール側吸込弁10からこのプール
側吸込弁10の開閉信号を入力し、プール側吸込
弁10が全開とされた時にタンク側吸込弁4を閉
とする。
In FIG. 1, reference numeral 23 indicates a tank-side suction valve control device that controls opening and closing of the tank-side suction valve 4, and this tank-side suction valve control device 23 is connected to the pool-side suction valve 10 as shown in FIG. The opening/closing signal for the pool side suction valve 10 is input, and when the pool side suction valve 10 is fully opened, the tank side suction valve 4 is closed.

第1図において符号24はプール側バイパス弁
13の開閉を制御するプール側バイパス弁制御装
置を示しており、このプール側バイパス弁制御装
置24は第4図に示すようにプール側吸込弁10
の開閉信号および流量計21からの流量信号を入
力しプール側吸込弁10が全閉とされておらず、
かつ流量計21の流量値があらかじめ定められた
値より低い場合にプール側バイパス弁13を開と
し、流量計21から入力される流量値があらかじ
め与えられた値より高い場合にはプール側バイパ
ス弁13を閉とする。
In FIG. 1, reference numeral 24 indicates a pool side bypass valve control device that controls the opening and closing of the pool side bypass valve 13, and this pool side bypass valve control device 24 is connected to the pool side suction valve 10 as shown in FIG.
The opening/closing signal and the flow rate signal from the flow meter 21 are input, and it is determined that the pool side suction valve 10 is not fully closed.
When the flow rate value of the flow meter 21 is lower than a predetermined value, the pool side bypass valve 13 is opened, and when the flow rate value input from the flow meter 21 is higher than a predetermined value, the pool side bypass valve 13 is opened. 13 is closed.

第1図において符号25はタンク側バイパス弁
16の開閉を制御するタンク側バイパス弁制御装
置を示しており、このタンク側バイパス弁制御装
置25は第5図に示すように、プール側吸込弁1
0の開閉信号、流量計21の流量信号およびプー
ル側バイパス弁13の開閉信号を入力しプール側
吸込弁10が全閉とされ、流量計21からの流量
値があらかじめ与えられた値より低い時にタンク
側バイパス弁16を開とし、流量計21からの流
量値があらかじめ与えられた値より高い時あるい
はプール側バイパス弁13が全開とされている時
にはタンク側バイパス弁16を閉とする。
In FIG. 1, reference numeral 25 indicates a tank-side bypass valve control device that controls opening and closing of the tank-side bypass valve 16, and this tank-side bypass valve control device 25, as shown in FIG.
0 open/close signal, the flow rate signal of the flow meter 21, and the open/close signal of the pool-side bypass valve 13 are input, the pool-side suction valve 10 is fully closed, and the flow rate value from the flow meter 21 is lower than a predetermined value. The tank side bypass valve 16 is opened, and the tank side bypass valve 16 is closed when the flow rate value from the flow meter 21 is higher than a predetermined value or when the pool side bypass valve 13 is fully open.

第1図において符号26は止め弁15の開閉を
制御する止め弁制御装置を示しており、この止め
弁制御装置26は第6図に示すように、プール側
バイパス弁13およびプール側吸込弁10から開
閉信号を入力しプール側バイパス弁13が全開ま
たはプール側吸込弁10が全開とされている場合
には、止め弁15を閉とする。
In FIG. 1, reference numeral 26 indicates a stop valve control device that controls the opening and closing of the stop valve 15. As shown in FIG. When an open/close signal is input from the pool side bypass valve 13 or the pool side suction valve 10 is fully open, the stop valve 15 is closed.

以上のように構成された高圧炉心冷却装置で
は、原子炉の事故時あるいはプラント過渡時にお
いて、この高圧炉心冷却装置が原子炉自動注入運
転を行ない原子炉圧力容器内に十分な冷却水を補
給し、原子炉水位が確保された場合には、原子炉
水位計20からの高水位信号により注入弁7が自
動的に閉とされ、流量計21の流量低信号により
復水貯蔵タンク3またはサプレツシヨンプール9
側の最小流量バイパス弁が開となり、高圧炉心冷
却装置は最小流量バイパス運転とされる。
In the high-pressure core cooling system configured as described above, in the event of a reactor accident or plant transition, the high-pressure core cooling system performs automatic reactor injection operation to replenish sufficient cooling water into the reactor pressure vessel. When the reactor water level is secured, the injection valve 7 is automatically closed by the high water level signal from the reactor water level gauge 20, and the condensate storage tank 3 or the supplement is closed by the low flow signal from the flow meter 21. Chillon pool 9
The minimum flow bypass valve on the side is opened, and the high-pressure core cooling system is placed in minimum flow bypass operation.

すなわち、通常、復水貯蔵タンク3が水源とさ
れているためタンク側バイパス弁制御装置25に
よりタンク側バイパス弁16が流量低信号を受け
て自動開とされ、復水貯蔵タンク3、冷却水ポン
プ6、復水貯蔵タンク3の流路で最小流量バイパ
ス運転が行なわれる。従つて復水貯蔵タンク3内
の冷却水はサプレツシヨンプール9に流入するこ
とはなく、サプレツシヨンプール9の水位高信号
により水源がサプレツシヨンプール9へ切換るこ
とはない。そして、再度原子炉水位が低となれば
注入弁7が自動開とされ、タンク側バイパス弁制
御装置25に入力される流量高信号によりタンク
側バイパス弁16が閉とされ原子炉注入運転とな
る。
That is, since the condensate storage tank 3 is normally used as a water source, the tank side bypass valve 16 is automatically opened by the tank side bypass valve control device 25 upon receiving a low flow signal, and the condensate storage tank 3 and the cooling water pump are automatically opened. 6. A minimum flow bypass operation is performed in the flow path of the condensate storage tank 3. Therefore, the cooling water in the condensate storage tank 3 will not flow into the suppression pool 9, and the water source will not be switched to the suppression pool 9 due to the high water level signal of the suppression pool 9. Then, when the reactor water level becomes low again, the injection valve 7 is automatically opened, and the tank side bypass valve 16 is closed by the flow rate high signal input to the tank side bypass valve control device 25, and the reactor injection operation is started. .

また、以上のように構成された高圧炉心冷却装
置では、原子炉注入運転中に復水貯蔵タンク3の
水位低あるいはサプレツシヨンプール9の水位高
が生じた場合には、プール側吸込弁10がプール
側吸込弁制御装置22により開とされ、このプー
ル側吸込弁10が全開になるとタンク側吸込弁4
がタンク側吸込制御装置23により閉とされ、サ
プレツシヨンプール9水源運転に切換えられる。
In addition, in the high-pressure core cooling system configured as described above, when the water level of the condensate storage tank 3 becomes low or the water level of the suppression pool 9 becomes high during reactor injection operation, the pool side suction valve 10 is opened by the pool side suction valve control device 22, and when the pool side suction valve 10 is fully opened, the tank side suction valve 4 is opened.
is closed by the tank-side suction control device 23, and the suppression pool 9 is switched to water source operation.

ここで最小流量バイパス運転となつた場合に
は、プール側吸込弁10が開動作したためプール
側バイパス弁制御装置24およびタンク側バイパ
ス弁制御装置25によりプール側バイパス弁13
が開とされ、プール側バイパスライン14が用い
られる。またこの時にはプール側吸込弁10が全
開とされているため止め弁制御装置26により止
め弁15が閉とされる。
When the minimum flow rate bypass operation is started here, the pool side suction valve 10 has opened, so the pool side bypass valve control device 24 and the tank side bypass valve control device 25 control the pool side bypass valve 13.
is opened, and the pool side bypass line 14 is used. Also, at this time, since the pool-side suction valve 10 is fully open, the stop valve control device 26 closes the stop valve 15.

さらに、以上のように構成された高圧炉心冷却
装置では、復水貯蔵タンク3、冷却水ポンプ6、
復水貯蔵タンク3の最小流量バイパス運転中に水
源切換えが発生した場合には、プール側吸込弁制
御装置22とタンク側吸込弁制御装置23との働
きによりタンク側吸込弁4とプール側吸込弁10
との切換えが行なわれ、プール側バイパス弁13
がプール側バイパス弁制御装置24により全開と
された後、タンク側バイパス弁16が閉とされ
る。なお、この時、万一復水貯蔵タンク3へのタ
ンク側バイパス弁16が故障により閉とならなく
ても止め弁15が同時に閉とされるためタンク側
バイパスライン17は必ず閉止されることとな
る。
Furthermore, in the high pressure core cooling system configured as described above, the condensate storage tank 3, the cooling water pump 6,
When water source switching occurs during the minimum flow rate bypass operation of the condensate storage tank 3, the pool side suction valve control device 22 and the tank side suction valve control device 23 work together to switch the tank side suction valve 4 and the pool side suction valve. 10
The pool side bypass valve 13
is fully opened by the pool-side bypass valve control device 24, and then the tank-side bypass valve 16 is closed. At this time, even if the tank-side bypass valve 16 to the condensate storage tank 3 does not close due to a failure, the tank-side bypass line 17 will always be closed because the stop valve 15 will be closed at the same time. Become.

[発明の効果] 以上述べたように本発明の高圧炉心冷却装置に
よれば、復水貯蔵タンクを水源とし最小流量バイ
パス運転を行なう場合には復水貯蔵タンクへ接続
されるタンク側バイパスラインを利用することが
できるため、復水貯蔵タンク水源を利用する最小
流量バイパス運転時におけるサプレツシヨンプー
ルへの水源切換えを防止することができ、より長
時間にわたり良質の冷却水を原子炉圧力容器内へ
注入することが可能となる。
[Effects of the Invention] As described above, according to the high-pressure core cooling system of the present invention, when performing minimum flow bypass operation using the condensate storage tank as a water source, the tank-side bypass line connected to the condensate storage tank can be This makes it possible to prevent water source switching to the suppression pool during minimum flow bypass operation that uses the condensate storage tank water source, and to ensure that high-quality cooling water is kept in the reactor pressure vessel for a longer period of time. It becomes possible to inject into.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示す配管系統図、
第2図はプール側吸込弁制御装置のブロツク図、
第3図はタンク側吸込弁制御装置のブロツク図、
第4図はプール側バイパス弁制御装置のブロツク
図、第5図はタンク側バイパス弁制御装置のブロ
ツク図、第6図は止め弁制御装置のブロツク図で
ある。 1……注入ライン、2……原子炉圧力容器、3
……復水貯蔵タンク、4……タンク側吸込弁、6
……冷却水ポンプ、7……注入弁、10……プー
ル側吸込弁、12……プール水配管、13……プ
ール側バイパス弁、14……プール側バイパスラ
イン、16……タンク側バイパス弁、17……タ
ンク側バイパスライン。
FIG. 1 is a piping system diagram showing an embodiment of the present invention;
Figure 2 is a block diagram of the pool side suction valve control device.
Figure 3 is a block diagram of the tank side suction valve control device.
FIG. 4 is a block diagram of the pool side bypass valve control device, FIG. 5 is a block diagram of the tank side bypass valve control device, and FIG. 6 is a block diagram of the stop valve control device. 1...Injection line, 2...Reactor pressure vessel, 3
... Condensate storage tank, 4 ... Tank side suction valve, 6
... Cooling water pump, 7 ... Injection valve, 10 ... Pool side suction valve, 12 ... Pool water piping, 13 ... Pool side bypass valve, 14 ... Pool side bypass line, 16 ... Tank side bypass valve , 17...tank side bypass line.

Claims (1)

【特許請求の範囲】[Claims] 1 原子炉圧力容器と復水貯蔵タンクとを接続し
前記復水貯蔵タンク側から順にタンク側吸込弁、
冷却水ポンプ、および注入弁の配設される注入ラ
インと、前記タンク側吸込弁と冷却水ポンプとの
間とサプレツシヨンプールとを接続するプール側
吸込弁を備えたプール水配管と、前記冷却水ポン
プと注入弁との間とサプレツシヨンプールとを接
続するプール側バイパス弁を備えたプール側バイ
パスラインと、前記冷却水ポンプと注入弁との間
と前記復水貯蔵タンクとを接続しタンク側バイパ
ス弁を備えたタンク側バイパスラインと、前記復
水貯蔵タンクを水源とした運転時に前記注入ライ
ンの流量が予め設定された値より低下すると、前
記タンク側バイパス弁を開として前記タンク側バ
イパスラインによるバイパス運転を行なうタンク
側バイパス弁制御装置と、前記サプレツシヨンプ
ールを水源とした運転時に前記注入ラインの流量
が予め設定された値より低下すると、前記プール
側バイパス弁を開として前記タンク側バイパスラ
インによるバイパス運転を行なうプール側バイパ
ス弁制御装置とを具備したことを特徴とする高圧
炉心冷却装置。
1 Connect the reactor pressure vessel and the condensate storage tank, and sequentially from the condensate storage tank side, the tank side suction valve,
a cooling water pump, an injection line in which an injection valve is arranged, and a pool water pipe provided with a pool side suction valve that connects between the tank side suction valve and the cooling water pump and the suppression pool; A pool-side bypass line having a pool-side bypass valve connecting between the cooling water pump and the injection valve and the suppression pool, and connecting between the cooling water pump and the injection valve and the condensate storage tank. When the flow rate of the injection line decreases below a preset value during operation using the condensate storage tank as a water source, the tank side bypass line is equipped with a tank side bypass valve, and when the flow rate of the injection line decreases below a preset value, the tank side bypass valve is opened and the tank side bypass line is opened. A tank side bypass valve control device performs bypass operation using a side bypass line, and when the flow rate of the injection line decreases below a preset value during operation using the suppression pool as a water source, the pool side bypass valve is opened. A high-pressure core cooling system comprising: a pool-side bypass valve control device that performs bypass operation using the tank-side bypass line.
JP57119569A 1982-07-09 1982-07-09 High pressure core cooling device Granted JPS5910887A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP57119569A JPS5910887A (en) 1982-07-09 1982-07-09 High pressure core cooling device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP57119569A JPS5910887A (en) 1982-07-09 1982-07-09 High pressure core cooling device

Publications (2)

Publication Number Publication Date
JPS5910887A JPS5910887A (en) 1984-01-20
JPH0312279B2 true JPH0312279B2 (en) 1991-02-19

Family

ID=14764583

Family Applications (1)

Application Number Title Priority Date Filing Date
JP57119569A Granted JPS5910887A (en) 1982-07-09 1982-07-09 High pressure core cooling device

Country Status (1)

Country Link
JP (1) JPS5910887A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436491A (en) * 1977-08-29 1979-03-17 Toshiba Corp Core cooling system for emergency
JPS56108995A (en) * 1980-02-04 1981-08-28 Tokyo Shibaura Electric Co Fuel pool feedwater device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5436491A (en) * 1977-08-29 1979-03-17 Toshiba Corp Core cooling system for emergency
JPS56108995A (en) * 1980-02-04 1981-08-28 Tokyo Shibaura Electric Co Fuel pool feedwater device

Also Published As

Publication number Publication date
JPS5910887A (en) 1984-01-20

Similar Documents

Publication Publication Date Title
JPH0411836B2 (en)
US5085825A (en) Standby safety injection system for nuclear reactor plants
JPH0312279B2 (en)
JP2009180526A (en) Fuel pool water supply system
JPS61265546A (en) Method of testing check valve
JPH05264774A (en) Emergency reactor cooling equipment
JPH0634782A (en) Dynamic water pressure device for driving control rod
JPH0145599B2 (en)
JPH03100496A (en) Nuclear reactor having emergency cooling water replenishing equipment
JPH0738036B2 (en) Neutron poison tank for ATWS housed in the reactor pressure vessel
JPH03216592A (en) Cooling water supplying device of boiling water nuclear reactor
JPH02222876A (en) Emergency core cooling system
JPS5844396A (en) Bwr type reactor plant
JPS58100796A (en) Bwr type reactor power plant
JPS60165585A (en) Automatic decompression device for reactor
JPH05281388A (en) Automatic depressurization system for boiling water reactor power plant
JPS61129595A (en) Driving hydraulic device for control rod
JPH07270593A (en) Automatic output controller for reactor
JPS61169796A (en) Supply device for coolant of boiling water type reactor
JPS63101794A (en) Emergency core cooling device
JPH0511592B2 (en)
JPS61116693A (en) Cooling facility for auxiliary machinery
No et al. Study on the validity of safety depressurization system design
JPS635720B2 (en)
JPS60166890A (en) Inhibiting device for reactivity of reactor