JPH05279876A - Dry etching method - Google Patents

Dry etching method

Info

Publication number
JPH05279876A
JPH05279876A JP7645792A JP7645792A JPH05279876A JP H05279876 A JPH05279876 A JP H05279876A JP 7645792 A JP7645792 A JP 7645792A JP 7645792 A JP7645792 A JP 7645792A JP H05279876 A JPH05279876 A JP H05279876A
Authority
JP
Japan
Prior art keywords
substrate
etching
frequency power
dry etching
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7645792A
Other languages
Japanese (ja)
Inventor
Hiroyoshi Sekiguchi
大好 関口
Yasuo Tanaka
靖夫 田中
Hidenori Takeda
秀則 竹田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP7645792A priority Critical patent/JPH05279876A/en
Publication of JPH05279876A publication Critical patent/JPH05279876A/en
Pending legal-status Critical Current

Links

Landscapes

  • Surface Treatment Of Glass (AREA)
  • ing And Chemical Polishing (AREA)
  • Manufacturing Of Electric Cables (AREA)

Abstract

PURPOSE:To prevent the trouble in the conveyance of a substrate caused by electrostatic attraction by generating plasma with low power density and removing charging on the substrate. CONSTITUTION:Reaction gases of CF4, SF6 and O2, are introduced into a chamber 1 through an etching gas flow rate controller By a high-frequency power source 5, high-frequency power with 1.0w/cm<2> power density is impressed on the space between the anode 2 and cathode 3 to generate plasma, and the etching of a silicon nitride film is executed on a glass substrate 10. After that, the discharge is once cut off, a CF4 gas is introduced therein, high-frequency power with about 0.6w/cm<2> power density is impressed thereon for 30sec, and a substrate thrusting pin 8 is raised by an up-down driving source 9. By this method, since the negative charging amt. of the substrate 10 is reduced, it smoothly separated from the cathode 3.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は液晶ディスプレイ製造方
法の特にドライエッチングに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a liquid crystal display manufacturing method, and more particularly to dry etching.

【0002】[0002]

【従来の技術】近年、液晶でのディスプレイ製造工程で
の薄膜加工に用いられるドライエッチング技術において
エッチング形状やパターン精度に対する要求が厳しくな
っている。ドライエッチングにおいて、エッチング形状
やパターン精度は基板温度に大きく依存するため、基板
温度の制御技術が重要視されている。その基板温度を制
御するために静電吸着が用いられている。静電吸着は、
絶縁物を隔てて電極と吸着物との間に電圧を印加し、両
者の間にクーロン力を発現させることにより吸着物を吸
引することを利用したものである。これにより、従来の
機械的チャッキング方法に比べ静電気力によって基板を
吸着するため、基板と電極との密着性を制御でき、基板
温度管理の点で優れている。
2. Description of the Related Art In recent years, in dry etching technology used for thin film processing in a liquid crystal display manufacturing process, requirements for etching shape and pattern accuracy have become strict. In dry etching, since the etching shape and the pattern accuracy largely depend on the substrate temperature, the substrate temperature control technique is regarded as important. Electrostatic attraction is used to control the substrate temperature. Electrostatic attraction
This is a method in which a voltage is applied between an electrode and an adsorbate across an insulator and a Coulomb force is developed between the two to attract the adsorbate. As a result, the substrate is attracted by the electrostatic force as compared with the conventional mechanical chucking method, so that the adhesion between the substrate and the electrode can be controlled, and the substrate temperature control is excellent.

【0003】次に、ドライエッチングの静電吸着につい
て説明する。図1に反応性イオンエッチング装置の例を
示す。エッチングを行うチャンバー1は主に金属からな
り、その上部に陽極2と下部に陰極3が配置され、ガラ
ス基板10は陰極3上に置かれる。陰極3にはインピー
ダンス整合回路4を通じてRF高周波電源5が接続され
ている。また、チャンバー1内部は、エッチングガス流
量コントローラ6を通じて反応性ガスが供給され、真空
排気系路12に設けられた圧力コントローラ7により一
定の圧力に保たれている。高周波電源5により、陽極2
と陰極3との間に高周波放電を発生させることができ、
高周波電力が負の時陰極3に放電で生じたプラズマ中の
正イオンが引きつけられ、高周波電力が正の時陽極2に
電子が引きつけられる。ところが、イオンに対し電子の
質量は小さいため、陰極3に電子が引きよせられる数が
多くなりガラス基板10が負に帯電する。陰極3の表面
を誘電体にすると、帯電した電子が脱離しにくくなり、
かつ、コンデンサと同様な形になるために基板10と陰
極3の間に静電気による引力が働く。この様子を図2に
示す。このように、基板10と陰極3を静電引力により
吸着させることで両者の間で熱交換を促進し基板温度の
制御が可能となる。なお、基板突き上げピン8は昇降駆
動源9により上下する。
Next, electrostatic attraction in dry etching will be described. FIG. 1 shows an example of a reactive ion etching apparatus. A chamber 1 for etching is mainly made of metal, an anode 2 is arranged on an upper portion thereof and a cathode 3 is arranged on a lower portion thereof, and a glass substrate 10 is placed on the cathode 3. An RF high frequency power source 5 is connected to the cathode 3 through an impedance matching circuit 4. Further, the inside of the chamber 1 is supplied with a reactive gas through the etching gas flow rate controller 6, and is kept at a constant pressure by a pressure controller 7 provided in the vacuum exhaust system passage 12. Anode 2 by high frequency power supply 5
High frequency discharge can be generated between the cathode and the cathode 3,
When the high frequency power is negative, positive ions in the plasma generated by the discharge are attracted to the cathode 3, and when the high frequency power is positive, the electrons are attracted to the anode 2. However, since the mass of electrons is smaller than that of ions, the number of electrons attracted to the cathode 3 increases and the glass substrate 10 is negatively charged. If the surface of the cathode 3 is made of a dielectric, it becomes difficult for charged electrons to be released,
In addition, since the shape is similar to that of a capacitor, an attractive force due to static electricity acts between the substrate 10 and the cathode 3. This state is shown in FIG. In this way, by adsorbing the substrate 10 and the cathode 3 by electrostatic attraction, heat exchange between them can be promoted and the substrate temperature can be controlled. The substrate push-up pin 8 is moved up and down by the lifting drive source 9.

【0004】[0004]

【発明が解決しようとする課題】しかしながら、上記の
静電吸着を用いた場合では、エッチング後にもガラス基
板10上の帯電が残るため、基板10と陰極3との間の
残留静電引力により基板10が陰極3に密着し、エッチ
ング後の基板搬送の際、昇降駆動源9により基板突き上
げピン8が上昇した時にガラス基板10が割れるなどの
搬送トラブルを起こす問題があった。なお、突き上げピ
ン8によりガラス基板10が正常に突き上げられた時の
様子を、図3に示す。
However, when the above electrostatic attraction is used, the electrostatic charge on the glass substrate 10 remains after the etching, and therefore the residual electrostatic attraction between the substrate 10 and the cathode 3 causes the substrate to be charged. 10 adheres to the cathode 3, and there is a problem in that when the substrate is transported after etching, the glass substrate 10 is cracked when the substrate push-up pin 8 is lifted by the lifting drive source 9 and other transport problems occur. Note that FIG. 3 shows a state in which the glass substrate 10 is normally pushed up by the push-up pin 8.

【0005】本発明は、上記の問題点を解決するもの
で、基板上の薄膜のエッチング後にプラズマにより基板
上の帯電を除去あるいは弱くすることで、静電吸着によ
る基板搬送トラブルを発生しないドライエッチング方法
を提供することを目的とする。
The present invention solves the above-mentioned problems, and by removing or weakening the charge on the substrate by plasma after etching the thin film on the substrate, dry etching which does not cause substrate transfer trouble due to electrostatic attraction. The purpose is to provide a method.

【0006】[0006]

【課題を解決するための手段】上記の目的を達成するた
めに本発明のドライエッチング方法は、エッチングガス
によるプラズマで、ガラス基板上の薄膜をエッチングす
るプロセスと同じチャンバー内で、エッチング工程より
も低いパワー密度の高周波電力を印加しプラズマを発生
させ、ガラス基板の帯電を除去する工程を備えている。
また、高周波電力を印加する除電工程では、パワー密度
の低下によりガラス基板表面の素子への衝撃を小さくで
きる。
In order to achieve the above object, the dry etching method of the present invention is performed in the same chamber as the process of etching a thin film on a glass substrate with plasma by an etching gas, rather than in the etching step. A step of applying high-frequency power having a low power density to generate plasma to remove the charge on the glass substrate is provided.
Further, in the static elimination step of applying the high frequency power, the impact on the element on the surface of the glass substrate can be reduced due to the reduction of the power density.

【0007】[0007]

【作用】本発明では、まず、静電吸着を用いた基板温度
制御性のよいドライエッチングを行い、次の工程にてガ
ラス基板の帯電を除去または弱めることにより静電吸着
力を弱くすることができるので、エッチング形状を基板
温度により制御し、かつ、搬送トラブルの発生しないド
ライエッチングが可能となる。これより次の工程につい
て述べる。次の工程ではパワー密度が低いため、放電中
に電子とイオンが陰極に引かれるクーロン力も小さくな
る。それにより、電子とイオンの速度は低下するが、両
者の速度差も小さくなるので、定常状態となったときの
基板の負の帯電量も減少する。したがって、次の工程に
よりガラス基板の帯電量を減少させ、静電吸着力を弱く
することができる。
In the present invention, first, dry etching with good substrate temperature controllability using electrostatic adsorption is performed, and the electrostatic adsorption force can be weakened by removing or weakening the charge on the glass substrate in the next step. Therefore, the etching shape can be controlled by the substrate temperature, and the dry etching can be performed without any trouble in transportation. Now, the next step will be described. In the next step, since the power density is low, the Coulomb force of attracting electrons and ions to the cathode during discharge is also small. As a result, the speeds of electrons and ions decrease, but the speed difference between the two also decreases, so that the amount of negative charge on the substrate in the steady state also decreases. Therefore, the electrostatic charge can be weakened by reducing the charge amount of the glass substrate in the next step.

【0008】[0008]

【実施例】以下に本発明の実施例について説明する。EXAMPLES Examples of the present invention will be described below.

【0009】本発明を実施したドライエッチング装置
は、図1と同様のものを用いた。また、今回の実施例で
は、ガラス基板サイズ150mm×200mm,電極寸法1
80mm×230mmを用いた。
As the dry etching apparatus embodying the present invention, the same one as shown in FIG. 1 was used. Further, in this example, the glass substrate size is 150 mm × 200 mm, the electrode size is 1
80 mm × 230 mm was used.

【0010】上記のドライエッチング装置にCF4,S
6およびO2ガスを導入し、パワー密度1.0W/cm2
の高周波電力を印加しプラズマを発生させて、ガラス基
板上の窒化シリコン膜のエッチングを行ったところ、エ
ッチング終了後、静電気力によりガラス基板が陰極に静
電吸着され、基板突き上げピンが上昇した際基板が割れ
てしまった。次に、基板上の薄膜を同条件でエッチング
した後、一度放電を絶ち、CF4ガスを導入しパワー密
度0.6W/cm2程度の高周波電力を30秒間印加する
と、基板突き上げピン上昇時に発生した割れがなくなっ
た。基板帯電を除く工程でCF4,SF6およびO2ガス
を導入した時の結果を(表1)に示す。
In the above dry etching apparatus, CF 4 , S
Introducing F 6 and O 2 gas, power density 1.0 W / cm 2
When the silicon nitride film on the glass substrate was etched by applying high-frequency power to generate plasma, when the glass substrate was electrostatically attracted to the cathode by electrostatic force after the etching was completed and the substrate push-up pin was raised. The board has cracked. Next, after the thin film on the substrate was etched under the same conditions, the discharge was once cut off, CF 4 gas was introduced, and high frequency power with a power density of about 0.6 W / cm 2 was applied for 30 seconds. There are no cracks left. The results when CF 4 , SF 6 and O 2 gas were introduced in the process of removing the substrate charge are shown in (Table 1).

【0011】[0011]

【表1】 [Table 1]

【0012】次に、基板の帯電を除く工程でCF4,S
6およびO2ガスを用い、高周波電力密度を変化させた
時の基板の静電吸着の状況を(表2)に示す。
Next, in the step of removing the charge on the substrate, CF 4 , S
The state of electrostatic adsorption of the substrate when changing the high frequency power density using F 6 and O 2 gas is shown in (Table 2).

【0013】[0013]

【表2】 [Table 2]

【0014】(表2)より、除電工程で印加する高周波
電力密度は、0.6W/cm2以下とすると効果があるこ
とがわかる。
It can be seen from Table 2 that the high frequency power density applied in the static elimination step is effective when the power density is 0.6 W / cm 2 or less.

【0015】さらに、基板の帯電を除く工程でCF4
SF6およびO2ガスを用いた際、高周波電力印加による
放電時間を変化させたときの基板の静電吸着の結果を
(表3)に示す。
Further, in the process of removing the charge of the substrate, CF 4 ,
Table 3 shows the results of electrostatic adsorption of the substrate when the discharge time was changed by applying high-frequency power when SF 6 and O 2 gas were used.

【0016】[0016]

【表3】 [Table 3]

【0017】(表3)より、除電工程で高周波電力を印
加し、放電時間を1分以下とすることで除電効果が現れ
ることがわかる。
From Table 3, it can be seen that the static elimination effect appears by applying high frequency power in the static elimination step and setting the discharge time to 1 minute or less.

【0018】また、上記の効果はCF4,SF6,O2
ス単体だけでなく、それらを含む混合ガスを用いても効
果が得られる。加えて、今回の実施ではガラス基板サイ
ズ150mm×200mm,電極寸法180mm×230mmで
行ったが、ガラス基板サイズ,電極寸法が変化しても、
同様な効果が得られるのは言うまでもない。
Further, the above effects can be obtained not only by using CF 4 , SF 6 , and O 2 gas alone but also by using a mixed gas containing them. In addition, in this implementation, the glass substrate size was 150 mm x 200 mm and the electrode size was 180 mm x 230 mm, but even if the glass substrate size and the electrode size change,
It goes without saying that the same effect can be obtained.

【0019】なお、ガラス基板の帯電を除く工程の放電
状態の安定化を図るため、ガラス基板上の薄膜をエッチ
ングする工程と基板の帯電を除去する工程との間に、他
の条件で放電を行っても同様な結果が得られることは明
らかである。
In order to stabilize the discharge state in the step of removing the charge on the glass substrate, discharge is performed under other conditions between the step of etching the thin film on the glass substrate and the step of removing the charge on the substrate. It is clear that similar results can be obtained even if it is performed.

【0020】また、上記の実施例では、ガラス基板上の
薄膜をエッチングする工程と除電工程との間で放電を切
っているが、連続放電でも同様な結果が得られる。
Further, in the above embodiment, the discharge is cut off between the step of etching the thin film on the glass substrate and the static elimination step, but similar results can be obtained by continuous discharge.

【0021】[0021]

【発明の効果】これまで述べてきたように本発明では、
エッチングガスを導入し圧力制御されたチャンバ内に設
置された平行平板電極の片側にガラス基板を配置し、両
電極間に高周波電力を印加することによりプラズマを発
生させ、電極に設置したガラス基板上の薄膜をドライエ
ッチングする工程にて、反応ガスのプラズマを発生させ
ガラス基板上の薄膜をエッチングする工程と、同一のチ
ャンバ内で前途の工程よりも電力密度が低い高周波電力
を印加してプラズマを発生させ、ガラス基板の帯電によ
る電極への吸着を弱める除電工程を設けることで、従来
の基板温度制御性を維持し、加えて、基板搬送の信頼性
が高いドライエッチングを実現できる。
As described above, according to the present invention,
A glass substrate is placed on one side of a parallel plate electrode installed in a chamber whose pressure is controlled by introducing an etching gas, and high-frequency power is applied between both electrodes to generate plasma. In the process of dry-etching the thin film of, the process of generating plasma of the reaction gas to etch the thin film on the glass substrate and the high-frequency power having a lower power density than the previous process in the same chamber are applied to generate plasma. By providing the static elimination step for generating and weakening the adsorption to the electrode due to the charging of the glass substrate, the conventional substrate temperature controllability can be maintained, and in addition, dry etching with high reliability of substrate transportation can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明を実施したドライエッチング装置の構造
を示す構成図
FIG. 1 is a configuration diagram showing a structure of a dry etching apparatus embodying the present invention.

【図2】エッチング後基板が電極に吸着した様子を示す
構成図
FIG. 2 is a configuration diagram showing a state where a substrate is adsorbed on an electrode after etching.

【図3】図1において基板が正常に突き上げられた時の
構成図
FIG. 3 is a configuration diagram when the board is normally pushed up in FIG.

【符号の説明】[Explanation of symbols]

1 金属製チャンバ 2 陽極 3 陰極 4 インピーダンス整合回路 5 高周波電源 6 ガスコントローラ 7 圧力コントローラ 8 基板突き上げピン 9 基板突き上げピン昇降駆動源 10 ガラス基板 11 真空排気系路 1 Metal Chamber 2 Anode 3 Cathode 4 Impedance Matching Circuit 5 High Frequency Power Supply 6 Gas Controller 7 Pressure Controller 8 Substrate Push-up Pin 9 Substrate Push-up Pin Elevating Drive Source 10 Glass Substrate 11 Vacuum Exhaust System Path

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 平行平板電極が設けられた反応室内の一
方の電極上に基板を配置し、反応室内にエッチングガス
を導入するとともに各電極間に高周波電力を印加するこ
とによりプラズマを発生させ、反応室内のガラス基板上
の薄膜をエッチングするドライエッチングにおいて、エ
ッチング終了後エッチング時よりも小さい高周波電力を
印加しプラズマを発生させる工程を備えたことを特徴と
するドライエッチング方法。
1. A plasma is generated by placing a substrate on one electrode in a reaction chamber provided with parallel plate electrodes, introducing an etching gas into the reaction chamber, and applying high-frequency power between the electrodes, A dry etching method comprising: in dry etching for etching a thin film on a glass substrate in a reaction chamber, applying a high-frequency power lower than that during etching after the completion of etching to generate plasma.
【請求項2】 エッチング終了後の印加電力密度が0.
6W/cm2以下とする請求項1記載のドライエッチング
方法。
2. The applied power density after etching is 0.
The dry etching method according to claim 1, wherein the dry etching rate is 6 W / cm 2 or less.
【請求項3】 エッチング終了後の高周波電力を印加し
てプラズマを発生させる時間を1分以下とする請求項1
記載のドライエッチング方法。
3. The time for applying high-frequency power and generating plasma after etching is set to 1 minute or less.
The dry etching method described.
JP7645792A 1992-03-31 1992-03-31 Dry etching method Pending JPH05279876A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7645792A JPH05279876A (en) 1992-03-31 1992-03-31 Dry etching method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7645792A JPH05279876A (en) 1992-03-31 1992-03-31 Dry etching method

Publications (1)

Publication Number Publication Date
JPH05279876A true JPH05279876A (en) 1993-10-26

Family

ID=13605690

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7645792A Pending JPH05279876A (en) 1992-03-31 1992-03-31 Dry etching method

Country Status (1)

Country Link
JP (1) JPH05279876A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348686A (en) * 2000-06-08 2001-12-18 Mitsui Chemicals Inc Dry etching method
JP5679513B2 (en) * 2009-05-07 2015-03-04 日本電気硝子株式会社 Glass substrate and manufacturing method thereof

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001348686A (en) * 2000-06-08 2001-12-18 Mitsui Chemicals Inc Dry etching method
JP4565480B2 (en) * 2000-06-08 2010-10-20 合同資源産業株式会社 Dry etching method
JP5679513B2 (en) * 2009-05-07 2015-03-04 日本電気硝子株式会社 Glass substrate and manufacturing method thereof

Similar Documents

Publication Publication Date Title
US5460684A (en) Stage having electrostatic chuck and plasma processing apparatus using same
US6174370B1 (en) Semiconductor wafer chucking device and method for stripping semiconductor wafer
US6235640B1 (en) Techniques for forming contact holes through to a silicon layer of a substrate
JP2879887B2 (en) Plasma processing method
JP2758755B2 (en) Dry etching apparatus and method
US5552955A (en) Substrate removal method and mechanism for effecting the method
JP2002203837A (en) Plasma treatment method and apparatus, and manufacturing method of semiconductor device
JPH1027780A (en) Plasma treating method
JPH07335570A (en) Control method of substrate temperature in plasma treatment
JPH05279876A (en) Dry etching method
JP3170849B2 (en) Dry etching method
JP2880920B2 (en) Etching equipment
JPH06122983A (en) Plasma treatment and plasma device
JPH04132219A (en) Plasma treatment apparatus and manufacture of semiconductor device using same
JP2002367967A (en) Method and apparatus for treating plasma
JP2000223480A (en) Plasma-etching device
JPH11111830A (en) Electrostatic sucking device and method, and method and device for treatment apparatus using them
CN111341657A (en) Plasma processing method
JPH0653192A (en) Dry etching method
JP3227812B2 (en) Dry etching method
JP2001077186A (en) Vacuum processing method
JP2985761B2 (en) Sample processing method
JPH05226291A (en) Plasma-processing method
JPS6126223A (en) Method and device for etching
JP2976898B2 (en) Dry etching method