JPH05279723A - Method for melting low hydrogen steel - Google Patents

Method for melting low hydrogen steel

Info

Publication number
JPH05279723A
JPH05279723A JP7772892A JP7772892A JPH05279723A JP H05279723 A JPH05279723 A JP H05279723A JP 7772892 A JP7772892 A JP 7772892A JP 7772892 A JP7772892 A JP 7772892A JP H05279723 A JPH05279723 A JP H05279723A
Authority
JP
Japan
Prior art keywords
molten steel
gas
ladle
slag
dehydrogenation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP7772892A
Other languages
Japanese (ja)
Inventor
Naoto Tsutsumi
直人 堤
Yoshimasa Mizukami
水上義正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7772892A priority Critical patent/JPH05279723A/en
Publication of JPH05279723A publication Critical patent/JPH05279723A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Treatment Of Steel In Its Molten State (AREA)

Abstract

PURPOSE:To easily execute refining of steel without large difference in comparison with dehydrogenation treatment time when using the ordinary vacuum degassing apparatus, at the time of executing dehydrogenation treatment to the molten steel. CONSTITUTION:In the condition of pushing slag 4 on the surface of the molten steel 1 to the wall side of a ladle 2 by blowing inert gas from the bottom part of the ladle 2 or an auxiliary immersion lance, a refractory-made immersion body 5 is dipped in the ladle 2, and on the surface of the molten steel 1 in which the slag in the immersion tube is removed and deoxidation is executed, the inert gas is blown from the upper part in the immersion body 5, and while renewing gas on the molten steel surface, the dehydrogenation is executed. Without using large-scale vacuum degassing apparatus as in the ordinary method, the solidified quantity of metal stuck in the immersion tube is small and the temp. drop is little even in the case the molten steel quantity is small and the dehydrogenation can stably be executed till low hydrogen concn. By this method, the maintenance is easy and the low hydrogen steel can surely be melted at a low cost.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、低水素鋼の溶製方法に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for melting low hydrogen steel.

【0002】[0002]

【従来の技術】溶鋼中の水素は、従来から凝固時の毛割
れ、圧延後の白点、あるいは鋼板のぜい性破壊や遅れ破
壊等の原因となる有害元素として知られ、近年の鋼材使
用環境の過酷化に対して品質の向上ないしは安定化の観
点から、その濃度を極力低下させた低水素鋼の要求が高
まっている。
2. Description of the Related Art Hydrogen in molten steel has long been known as a harmful element that causes hair cracking during solidification, white spots after rolling, or brittle fracture or delayed fracture of steel sheets. From the viewpoint of improving or stabilizing the quality against the harsh environment, there is an increasing demand for low-hydrogen steel whose concentration has been reduced as much as possible.

【0003】これに対して、従来は、製鋼段階において
転炉にて酸素吹錬によって必要な炭素濃度まで精錬を行
った溶鋼を取鍋等の容器に受鋼した後に、RH法やDH
法といった排気装置に結合された真空脱ガス装置を用い
て、溶鋼の一部を減圧(真空)雰囲気中に配置し、ガス
側の全圧を低下させることで、気体と溶鋼の界面の水素
分圧を低下させる条件下において、次式に示す、溶鋼中
の水素を反応させて水素ガスとして除去させる方法によ
っで脱水素した後、目標の溶鋼成分となるように合金を
添加して調整を行う溶製方法が広く行われている。
On the other hand, conventionally, in the steel making stage, after the molten steel which has been refined to a required carbon concentration by oxygen blowing in a converter is received in a vessel such as a ladle, the RH method or the DH method is applied.
By using a vacuum degassing device that is connected to an exhaust device such as the method, a part of the molten steel is placed in a decompressed (vacuum) atmosphere, and the total pressure on the gas side is reduced to reduce the hydrogen content at the interface between the gas and the molten steel. Under conditions of lowering the pressure, dehydrogenate by the method shown in the following formula, in which hydrogen in molten steel is reacted to remove it as hydrogen gas, and then adjust by adding an alloy so that it becomes the target molten steel composition. The melting method is widely used.

【0004】 → H2(ガス) (1) 一般に溶鋼を脱水素させる場合、(1)式で示したよう
に溶鋼中の水素同志を反応させることで、H2ガスを生
成させ、このガスを気体側に除去する方法が用いられ
る。ここで、脱水素反応を進行させるために、ガス側の
水素分圧を低下させることにより、(1)式の反応を右
の方向ヘ進行させる方法として真空脱ガス装置が広く普
及しているわけである。
H + H → H 2 (gas) (1) In general, when dehydrogenating molten steel, H 2 gas is generated by reacting hydrogen in molten steel as shown in equation (1), A method of removing this gas to the gas side is used. Here, the vacuum degassing apparatus is widely used as a method of advancing the reaction of the formula (1) in the right direction by lowering the hydrogen partial pressure on the gas side in order to proceed the dehydrogenation reaction. Is.

【0005】すなわち、次に示す「ジーベルツの法則」
と称される(2)式において、気体側の水素の分圧を小
さくすればするほど、溶鋼中に溶解する平衡水素濃度、
すなわち精錬後の溶鋼中の水素濃度をより低くすること
ができ、さらに(4)式に示されるように、脱水素反応
の駆動力に相当する溶鋼中の水素濃度と平衡到達水素濃
度の差を大きくできることから、脱水素に要する精錬時
間をより短くできるわけである。
That is, the following "Siebert's law"
In equation (2), which is referred to as “equal hydrogen concentration” in the molten steel, the smaller the partial pressure of hydrogen on the gas side,
That is, the hydrogen concentration in the molten steel after refining can be made lower, and as shown in equation (4), the difference between the hydrogen concentration in the molten steel and the equilibrium reaching hydrogen concentration corresponding to the driving force of the dehydrogenation reaction can be calculated. Since it can be increased, the refining time required for dehydrogenation can be shortened.

【0006】[0006]

【数1】 [Equation 1]

【0007】本法によれば、減圧度を高める(真空度を
上げる)ほど(1)式で示す右方向へ脱水素反応が進行
することから、現在工業的にRH法やDH法等において
溶鋼表面を極力高い真空下に維持し、かつ反応を十分に
行わせるために脱水素の処理時間を延長することによっ
て、水素濃度1ppm程度の低水素鋼の溶製が可能とな
っている。
According to this method, the dehydrogenation reaction progresses to the right as shown in the equation (1) as the degree of vacuum is increased (the degree of vacuum is increased). Therefore, the molten steel is currently industrially used in the RH method and the DH method. By maintaining the surface under a vacuum as high as possible and extending the dehydrogenation treatment time in order to sufficiently carry out the reaction, it is possible to produce low hydrogen steel with a hydrogen concentration of about 1 ppm.

【0008】さらに、脱水素時間をより短縮するために
上記(4)式中、Aで示される気体と液体問の反応界面
積を増大させる目的から、真空脱ガス装置において、真
空槽の内径を増大させる方法(特開平2−247315
号公報)や減圧状態に接触させる溶鋼量を増大させるた
めに真空槽内と取鍋内の溶鋼の循環を促進する方法(特
開平2−247325号公報)あるいは溶鋼中に吹き込
むガス量を増大させる方法(特開昭61−183407
号公報)等が開発されている。
Further, in order to further shorten the dehydrogenation time, in order to increase the reaction interfacial area between the gas and the liquid represented by A in the above formula (4), in the vacuum degassing apparatus, the inner diameter of the vacuum chamber is set to Method for increasing the number (Japanese Patent Laid-Open No. 2-247315)
(Japanese Patent Laid-Open Publication No. 2-247325) or a method of promoting circulation of molten steel in a vacuum chamber and a ladle in order to increase the amount of molten steel brought into contact with a depressurized state (JP-A-2-247325) or increasing the amount of gas blown into molten steel. Method (JP-A-61-183407)
Issue) has been developed.

【0009】[0009]

【発明が解決しようとする課題】上記真空脱ガス装置を
用いた脱水素方法は、水素濃度を低下せしめるため、平
衡論的から有効な方法であり、現在広く普及している
が、先にも述べたように、溶鋼の一部分を高真空状態に
接触させるために、非常に大がかりで高価な真空装置が
必要であり、また真空下で溶鋼を処理することから、耐
火物等が溶損し、さらに高温下において減圧状態を維持
するために、各嵌合部の密着性を高めるためのきめ細か
なメンテナンスを要する。
The dehydrogenation method using the above-mentioned vacuum degassing apparatus is an effective method from the viewpoint of equilibrium because it lowers the hydrogen concentration, and it is widely used at present. As mentioned above, in order to bring a part of the molten steel into contact with a high vacuum state, a very large and expensive vacuum device is required, and since the molten steel is processed under vacuum, the refractory and the like are melted and damaged. In order to maintain the depressurized state at high temperature, detailed maintenance is required to improve the adhesion of each fitting part.

【0010】また、溶鋼を減圧状態にするための装置
は、勿論予熱を充分行った状態で使用されるが、装置全
体が大きなために、特に真空槽内径が増大すればするほ
ど、全体を均一に一定温度まで予熱することが難しく、
脱水素処理開始時点では、溶鋼の温度降下が、とりわけ
処理溶鋼量が少ないほど大きい。このため、水素濃度を
低下させるため十分に脱水素処理を行つた溶鋼を、連続
鋳造等のプロセスで安定に鋳造するためには、脱水素処
理中の温度降下分を補償する必要があるため、精錬処理
費用が増大する。
The apparatus for depressurizing the molten steel is, of course, used with sufficient preheating. However, since the apparatus as a whole is large, the larger the inner diameter of the vacuum chamber is, the more uniform the entire apparatus becomes. Difficult to preheat to a certain temperature,
At the start of the dehydrogenation treatment, the temperature drop of the molten steel becomes larger as the amount of treated molten steel decreases. Therefore, in order to stably cast molten steel that has been sufficiently dehydrogenated to reduce the hydrogen concentration in a process such as continuous casting, it is necessary to compensate for the temperature drop during dehydrogenation. Refining treatment costs increase.

【0011】さらに、真空槽内と取鍋内の溶鋼の循環を
促進するため、あるいは溶鋼中での気体と溶鋼の反応界
面積を増加させるために、溶鋼が減圧状態に接触した状
態で溶鋼中に吹き込むガス量を増大させるほど、ガスが
溶鋼表面から離脱する際に溶鋼が周辺の密閉容器内に飛
散して生ずる、地金と称する凝固した鋼の付着量が増加
するため溶鋼の歩留りが低下するばかりか、この付着地
金の除去に多大な労力を要する、等の問題点が生する。
Further, in order to promote the circulation of the molten steel in the vacuum chamber and the ladle, or to increase the reaction interfacial area between the gas and the molten steel in the molten steel, the molten steel is kept in contact with the molten steel under reduced pressure. As the amount of gas blown into the molten steel increases, the yield of molten steel decreases because the amount of solidified steel called solid metal that adheres to the surrounding sealed container increases when the gas leaves the molten steel surface. In addition to this, there is a problem that a great amount of labor is required to remove the adhered metal.

【0012】上記のような事情を鑑み、本発明はこれら
の課題を解決し、安価な設備で、従来行われている真空
脱ガス装置を用いて溶製されると同等の低水素鋼の溶製
方法を提供することを目的とするものである。
In view of the above circumstances, the present invention solves these problems and melts low-hydrogen steel equivalent to that manufactured by using a conventional vacuum degassing apparatus with inexpensive equipment. The purpose is to provide a manufacturing method.

【0013】[0013]

【課題を解決するための手段】本発明は、(1)取鍋の
底部もしくは補助浸漬ランスから不活性ガスを吹き込
み、溶鋼表面のスラグを取鍋の壁側に押しやった状態
で、取鍋内に耐火物製の浸漬体を浸漬して該浸漬管内の
スラグを除去した、脱酸された溶鋼の表面に浸漬体内部
の上方から不活陸ガスを吹付けて溶鋼表面の気体を更新
しながら脱水素させることを特徴とする低水素鋼の溶製
方法。
According to the present invention, (1) in a ladle in a state where an inert gas is blown from the bottom of a ladle or an auxiliary immersion lance and the molten steel surface slag is pushed to the wall side of the ladle. The slag in the dip pipe was removed by immersing the refractory dip in, while spraying an inert land gas from above the inside of the dip on the surface of the deoxidized molten steel while renewing the gas on the molten steel surface. A method for producing low-hydrogen steel, which comprises dehydrogenating.

【0014】また本発明は、(2)上記耐火物製浸漬体
でスラグを排除する溶鋼面積が取鍋内溶鋼表面積の20
%以上であることを特徴とする前記(1)項記載の低水
素鋼の溶製方法。
Further, according to the present invention, (2) the molten steel area for eliminating slag in the refractory-made dipping body is 20 times the molten steel surface area in the ladle.
% Or more, the method for melting low hydrogen steel according to the item (1).

【0015】また本発明は、(3)上記耐火物製浸漬体
内部の上方から吹き付ける不活性ガスの条件として、溶
鋼表面のガス流速を20m/sec以上とすることを特
徴とするまたは前記(1)または(2)項記載の低水素
鋼の溶製方法。
Further, the present invention is (3) characterized in that the gas flow velocity on the molten steel surface is 20 m / sec or more as the condition of the inert gas blown from above inside the refractory-made dip body. ) Or (2) the method for melting low hydrogen steel.

【0016】また本発明は、(4)上記耐火物製浸漬体
内部の上方から不活性ガスを吹付ける方法として、耐火
物製の浸漬体の側部に設けたガス吹き出し口から90度
以下の角度で溶鋼表面へ該ガスを吹付けることを特徴と
する前記(1)乃至(4)項記載の低水素鋼の溶製方
法。である。
The present invention also provides (4) a method of spraying an inert gas from above the inside of the refractory-made dip body, wherein the temperature is 90 ° or less from a gas outlet provided on the side portion of the refractory-made dip body. The method for producing low hydrogen steel according to the above (1) to (4), characterized in that the gas is sprayed onto the surface of the molten steel at an angle. Is.

【0017】[0017]

【発明の作用】本発明者等は、従来の高価かつ大がかり
な真空脱ガス装置を必要とすることなく、安定に溶鋼中
の水素濃度を低下させる方法について検討し、溶鋼と気
体の界面の水素ガスの分圧を低下させる点に着目し、溶
鋼の一部分の表面を減圧状態下に保たずとも、アルゴン
等の不活性ガスを溶鋼表面に吹付け、脱水素の結果とし
て発生する水素ガスを界面から除去し、その分圧を低下
させることによって、大気圧下においても1ppm以下
の水素濃度まで脱水素反応が十分に進行し、低水素鋼の
溶製が可能であることを見出し、この発明をなすに至っ
た。
The present inventors have investigated a method for stably reducing the hydrogen concentration in molten steel without the need for a conventional expensive and large-scale vacuum degassing apparatus, and have investigated hydrogen at the interface between molten steel and gas. Focusing on the point of reducing the partial pressure of gas, even if the surface of a part of the molten steel is not kept under reduced pressure, an inert gas such as argon is blown onto the surface of the molten steel to remove hydrogen gas generated as a result of dehydrogenation. It was found that by removing from the interface and reducing the partial pressure thereof, the dehydrogenation reaction proceeds sufficiently to a hydrogen concentration of 1 ppm or less even under atmospheric pressure, and it is possible to produce a low-hydrogen steel. Came to make.

【0018】ここで、本発明の要件である取鍋内の溶鋼
表面上のスラグを除去する理由としては、そもそも溶鋼
表面にスラグが存在した場合に、該スラグが気体と溶鋼
の界面で反応する水素ガスの溶鋼表面から離脱を阻害す
るためである。ここで、安定に脱水素を行わせるために
は、溶鋼全表面積に対してスラグを20%以上除去する
ことが望ましく、この理由としては、20%未満の面積
ではそもそも不活性ガスを吹き付けることで促進される
脱水素への有効な反応界面積が確保できず、低水素濃度
まで脱水素に要する時問が長くなるためである。
Here, the reason for removing the slag on the molten steel surface in the ladle, which is a requirement of the present invention, is that when slag is present on the molten steel surface, the slag reacts at the interface between the gas and the molten steel. This is because it prevents the hydrogen gas from leaving the surface of the molten steel. Here, in order to carry out dehydrogenation stably, it is desirable to remove 20% or more of slag with respect to the total surface area of molten steel. The reason for this is that in an area of less than 20%, an inert gas is sprayed in the first place. This is because an effective reaction interfacial area for accelerated dehydrogenation cannot be secured and the time required for dehydrogenation becomes long even at low hydrogen concentrations.

【0019】取鍋内の溶鋼表面上のスラグを、溶鋼表面
積に対して20%以上除去する方法としては、例えば、
取鍋の底部あるいは、溶鋼に浸漬した耐火物製のランス
からガスを吹込み、ガスによる溶鋼の流れで溶鋼表面の
スラグを取鍋の内壁部ヘ押しやった状態で、リング状の
耐火物製の浸漬管を浸漬し、この浸漬管内のスラグを排
出する方法等が簡潔である。また他の手段としては、転
炉から取鍋への溶鋼の受鋼時にスラグボールやスラグス
トッパーといった転炉内の酸化性スラグの流出を抑える
方法や、あるいは取鍋内から、物理的にスラグを掻きだ
すスラグドラッガー法等の方法で物理的に取鍋内のスラ
グを除去すればなお確実である。
As a method for removing slag on the surface of molten steel in the ladle by 20% or more with respect to the surface area of molten steel, for example,
Gas is blown from the bottom of the ladle or from a refractory lance soaked in molten steel, and the slag on the molten steel surface is pushed by the flow of molten steel toward the inner wall of the ladle. The method of immersing the immersion pipe and discharging the slag in the immersion pipe is simple. As another means, a method of suppressing the outflow of oxidizing slag in the converter such as slag balls and slag stoppers when receiving molten steel from the converter to the ladle, or physically removing slag from the ladle It is even more reliable if the slag in the ladle is physically removed by a method such as the scraping slug dragger method.

【0020】次に、溶鋼の表面に吹付けるガスとして不
活性ガスを用いる理由としては、吹付けるガス中に酸化
性ガスが混入すると、溶鋼の表面で炭素やマンガン、シ
リコン、アルミといった溶鋼中の成分元素の酸化が起こ
り、界面に溶融状態の酸化物スラグが生成し、このスラ
グが除々に蓄積して、脱水素に有効な界面積が減少して
しまう結果、脱水素速度も小さくなり水素濃度1ppm
以下まで脱水素させる場合には、より長時間を要してし
まう結果を得たためである。
Next, the reason for using an inert gas as the gas sprayed on the surface of the molten steel is that when an oxidizing gas is mixed in the sprayed gas, the surface of the molten steel contains carbon, manganese, silicon, aluminum Oxidation of component elements occurs, molten oxide slag is generated at the interface, and this slag gradually accumulates, reducing the effective interfacial area for dehydrogenation.As a result, the dehydrogenation rate also decreases and the hydrogen concentration increases. 1 ppm
This is because the dehydrogenation up to the following results in obtaining a longer time.

【0021】ここで用いる不活性ガスの種類としては、
アルゴンガスが一般的であるが、ヘリウムガス等も可能
であるし、鋼の材質上問題がなければ窒素ガスの使用も
可能であり、これらのガスを混合しても構わない。
The types of inert gas used here include:
Argon gas is generally used, but helium gas or the like is also possible, and nitrogen gas can be used if there is no problem in the material of steel, and these gases may be mixed.

【0022】スラグを除去した溶鋼の表面に吹き付ける
不活性ガスの流量としては、ガスを吹き付けるランスや
ガス吹出口の条件にもよるが、溶鋼表面のガス流速を2
0m/sec以上確保することが有効である。ここで、
溶鋼表面でのガス流速が20m/sec以下であると、
そもそも脱水素によって発生する水素ガスを界面から除
去する速度が遅く、界面の水素ガスの分圧を低位に維持
することが難しく、脱水素処理時間が長くなるからであ
る。従って、溶鋼表面のガス流速を20m/sec以上
確保することによって、大気圧下においても、溶鋼表面
に十分に減圧下と同様の状態が確保されるわけであり、
この流速が大きければ大きいほど、その効果は大きいわ
けである。
The flow rate of the inert gas blown onto the surface of the molten steel from which the slag has been removed depends on the conditions of the lance for blowing the gas and the gas outlet, but the gas flow velocity on the surface of the molten steel is 2
It is effective to secure 0 m / sec or more. here,
When the gas flow velocity on the molten steel surface is 20 m / sec or less,
This is because the rate at which hydrogen gas generated by dehydrogenation is removed from the interface is slow, it is difficult to maintain the partial pressure of the hydrogen gas at the interface at a low level, and the dehydrogenation treatment time becomes long. Therefore, by ensuring a gas flow velocity of 20 m / sec or more on the surface of the molten steel, a state similar to that under reduced pressure can be ensured on the surface of the molten steel even under atmospheric pressure.
The higher this flow velocity, the greater the effect.

【0023】界面に不活性ガスを吹き付ける方法として
は、溶鋼の上部に配置した下向き単孔のランスが一般的
であるが、複数の孔を設けたランスでも構わない。これ
らのランスの溶鋼面上の高さは、吹き付けるガスの流量
とランスの孔の内径ならびにランスの孔数から決定され
る。
As a method of spraying an inert gas on the interface, a lance having a single downward hole arranged on the upper portion of the molten steel is generally used, but a lance having a plurality of holes may be used. The height of these lances on the molten steel surface is determined by the flow rate of the gas to be sprayed, the inner diameter of the lance holes, and the number of lance holes.

【0024】また、このように上方に配置したランスか
ら不活性ガスを吹付ける際に、前述のように、溶鋼界面
のガス流速を高めようとすると、溶鋼の自由表面を激し
く乱してしまい、溶鋼が周辺の密閉容器内に飛び散るた
め、容器内に地金が付着し、溶鋼の歩留りを低下させる
ことも考えられる。そこで、より大きなガス流速を確保
する場合には、スラグを除去するために浸漬した耐火物
製の浸漬管の内壁の、溶鋼の表面の直上部にガス吹き出
し用の羽口を数カ所設け、該羽口から90度以下の角度
で溶鋼の表面に不活性ガスを吹き付ける方法も、安定に
脱水素処理を行う点からより有効である。
Further, when the inert gas is sprayed from the lance arranged above as described above, if the gas flow velocity at the molten steel interface is increased as described above, the free surface of the molten steel is violently disturbed, Since the molten steel scatters in the airtight container around it, it is conceivable that the metal may adhere to the inside of the container and reduce the yield of the molten steel. Therefore, in order to secure a larger gas flow velocity, the inner wall of the refractory dipping pipe immersed to remove the slag, just above the surface of the molten steel, provided several tuyere for gas blowing, A method of blowing an inert gas onto the surface of the molten steel at an angle of 90 degrees or less from the mouth is also more effective from the viewpoint of performing stable dehydrogenation treatment.

【0025】こうした方法によって、脱水素の反応界面
積を確保する目的で、スラグを除去した溶鋼表面に、常
に不活性ガスを流し、界面の水素ガスを除去することに
よって、脱水素速度を高位に維持することができるわけ
である。
By such a method, in order to secure the reaction interfacial area for dehydrogenation, an inert gas is constantly flowed over the molten steel surface from which the slag has been removed, and hydrogen gas at the interface is removed, thereby increasing the dehydrogenation rate. It can be maintained.

【0026】以上のような理由から、水素濃度を1pp
m以下の極力低くまで、かつ短い時間内で進行させたい
場合には、ガスの吹付けにより脱水素が進行する反応界
面積をより大きくするために、スラグが占める溶鋼表面
積の大きさをより小さくする、また反応の界面に溶鋼中
の水素が常に供給されるように、溶鋼を強く撹拌するこ
とが効果的であることは言うまでもない。ここで溶鋼を
撹拌するためには、取鍋の底部あるいは補助的に浸漬し
た耐火物製ランスから供給するガスの量を大きくするほ
うが好ましく、またこのためのガスは、上面から吹きつ
けるガスと同様の不活性ガスが好ましい。
For the above reasons, the hydrogen concentration is set to 1 pp.
When it is desired to proceed to as low as m or less and within a short time, the size of the molten steel surface area occupied by slag is made smaller in order to increase the reaction interfacial area in which dehydrogenation proceeds by blowing gas. Needless to say, strong stirring of the molten steel is effective so that hydrogen in the molten steel is always supplied to the reaction interface. In order to stir the molten steel, it is preferable to increase the amount of gas supplied from the bottom of the ladle or the refractory lance soaked in an auxiliary manner, and the gas for this purpose is the same as the gas blown from the top surface. Inert gases are preferred.

【0027】以下、本発明例を図1〜図5を用いて詳細
に説明する。
The present invention will be described in detail below with reference to FIGS.

【0028】[0028]

【実施例】【Example】

実施例−1 転炉において、溶銑から炭素0.15%、マンガン0.
30%に溶製した100tonの溶鋼1を、取鍋2に未
脱酸状態で出鋼した。出鋼後の取鍋内溶鋼の温度は16
30℃であった。
Example-1 In a converter, carbon 0.15%, manganese 0.
100 ton of molten steel 1 melted to 30% was tapped in a ladle 2 in an undeoxidized state. The temperature of molten steel in the ladle after tapping is 16
It was 30 ° C.

【0029】その後、取鍋の底部に配置した耐火物製の
ポーラスプラグ3から、Arガスを20Nm3/hrの
流量で吹き込みつつ、取鍋内の転炉から流出したスラグ
4を取鍋の内壁部へ押しやった状態で、図1に示すよう
に筒状の耐火物製の浸漬管5を浸漬し、浸漬管内にはス
ラグ4がない状態を確保した。取鍋2内の溶鋼表面の直
径が2.5m(5m2)に対して、浸漬管5の内径は
1.2m(1.1m2)で、溶鋼表面上のスラグ4は2
2%除去された。この時点で、溶鋼中にアルミならびに
シリコンを添加して脱酸処理を行い、溶鋼中の水素濃度
を測定したところ3.5ppmであった。
Thereafter, while introducing Ar gas at a flow rate of 20 Nm 3 / hr from the porous plug 3 made of refractory placed at the bottom of the ladle, the slag 4 flowing out of the converter in the ladle is taken into the inner wall of the ladle. While being pushed to the portion, a cylindrical refractory dipping pipe 5 was dipped as shown in FIG. 1 to ensure that the slag 4 was not present in the dipping pipe. The diameter of the molten steel surface in the ladle 2 is 2.5 m (5 m 2 ), whereas the inner diameter of the dip pipe 5 is 1.2 m (1.1 m 2 ) and the slag 4 on the molten steel surface is 2 m.
2% removed. At this point, aluminum and silicon were added to the molten steel for deoxidation treatment, and the hydrogen concentration in the molten steel was measured and found to be 3.5 ppm.

【0030】次に、図2に示すように、浸漬管5の内部
の溶鋼1の表面から1.5mの高さに、上吹きランス6
を配置し、Arガスを流量1000Nm3/hrで溶鋼
表面に吹きつけ、脱水素処理を15分間行った。この時
の溶鋼表面のガス流速を測定した所、約70m/sec
であった。この間、取鍋2の底部からはArガスを20
Nm3/hrの流量で吹き込み続け、撹拌を行った。こ
の脱水素処理後の水素濃度は0.9ppmとなり、また
溶鋼温度は1600℃であった。炭素濃度は0.15
%、マンガン濃度は0.30%と初期濃度と変わらず、
安定に水素濃度1ppm以下に到達した。
Next, as shown in FIG. 2, the upper blowing lance 6 is placed at a height of 1.5 m from the surface of the molten steel 1 inside the immersion pipe 5.
Was placed, Ar gas was blown onto the molten steel surface at a flow rate of 1000 Nm 3 / hr, and dehydrogenation treatment was performed for 15 minutes. When the gas velocity on the surface of the molten steel at this time was measured, it was about 70 m / sec.
Met. During this time, 20 Ar gas was introduced from the bottom of the ladle 2.
Blowing was continued at a flow rate of Nm 3 / hr and stirring was performed. The hydrogen concentration after this dehydrogenation treatment was 0.9 ppm, and the molten steel temperature was 1600 ° C. Carbon concentration is 0.15
%, Manganese concentration is 0.30%, which is the same as the initial concentration,
The hydrogen concentration reached 1 ppm or less stably.

【0031】実施例−2 転炉において、溶銑から炭素0.15%、マンガン0.
32%に溶製した80tonの溶鋼1を、取鍋2に未脱
酸状態で出鋼した。出鋼後の取鍋内溶鋼の温度は162
5℃であった。
Example-2 In a converter, carbon 0.15%, manganese 0.
80 ton of molten steel 1 melted to 32% was tapped in a ladle 2 in a non-deoxidized state. The temperature of molten steel in the ladle after tapping is 162
It was 5 ° C.

【0032】その後、取鍋の底部に配置した耐火物製の
ポーラスプラグ3から、Arガスを15Nm3/hrの
流量で吹き込みつつ、取鍋内の転炉から流出したスラグ
4を取鍋の内壁部へ押しやった状態で、図1に示すよう
に筒状の耐火物製の浸漬管5を浸漬し、浸漬管内にはス
ラグ4がない状態を確保した。取鍋2内の溶鋼表面の直
径が2.0m(3.1m2)に対して、浸漬管5の内径
は1.0m(0.8m2)で、溶鋼表面上のスラグ4は
25%除去された。この時点で、溶鋼中にアルミならび
にシリコンを添加して脱酸処理を行い、溶鋼中の水素濃
度を測定したところ3.7ppmであった。
Thereafter, while introducing Ar gas at a flow rate of 15 Nm 3 / hr from the porous plug 3 made of refractory placed at the bottom of the ladle, the slag 4 flowing out of the converter in the ladle is taken into the inner wall of the ladle. While being pushed to the portion, a cylindrical refractory dipping pipe 5 was dipped as shown in FIG. 1 to ensure that the slag 4 was not present in the dipping pipe. The diameter of the molten steel surface in the ladle 2 is 2.0 m (3.1 m 2 ), whereas the inner diameter of the dipping pipe 5 is 1.0 m (0.8 m 2 ) and the slag 4 on the molten steel surface is removed by 25%. Was done. At this point, aluminum and silicon were added to the molten steel for deoxidation treatment, and the hydrogen concentration in the molten steel was measured and found to be 3.7 ppm.

【0033】次に、図3に示すように浸漬管5の内壁4
ケ所、溶鋼1の表面上0.3mの高さに設けたガス吹き
付け用の羽口7から、90度の方向にArガスを総流量
1500Nm3/hrで溶鋼の上部に吹きつけて脱水素
処理を15分間行った。この時の溶鋼表面のガス流速を
測定した所、約100m/secであった。この間、取
鍋2の底部からはArガスを20Nm3/hrの流量で
吹き込み続け、撹拌を行った。この脱水素処理後の水素
濃度は0.8ppmとなり、また溶鋼温度は1595℃
であった。炭素濃度は0.15%、マンガン濃度は0.
31%と初期濃度と変わらず、安定に水素濃度1ppm
以下に到達した。また、処理後の浸漬管5の内面の地金
付着状況を観察したが、上部ランスからガス吹き付けを
行つた場合の付着量と大差なく良好な状態であった。
Next, as shown in FIG. 3, the inner wall 4 of the immersion pipe 5 is
Degassing treatment is performed by spraying Ar gas in the direction of 90 degrees from the tuyere 7 for gas blowing provided at a height of 0.3 m on the surface of molten steel 1 at a total flow rate of 1500 Nm 3 / hr to the upper portion of the molten steel. For 15 minutes. When the gas flow velocity on the surface of the molten steel at this time was measured, it was about 100 m / sec. During this period, Ar gas was continuously blown from the bottom of the ladle 2 at a flow rate of 20 Nm 3 / hr to perform stirring. The hydrogen concentration after this dehydrogenation treatment was 0.8 ppm, and the molten steel temperature was 1595 ° C.
Met. The carbon concentration is 0.15% and the manganese concentration is 0.1.
Stable hydrogen concentration of 1ppm, unchanged from the initial concentration of 31%
I have reached the following: In addition, the state of adhesion of the metal on the inner surface of the dipping tube 5 after the treatment was observed, and it was in a good state with almost no difference from the amount of adhesion when gas was sprayed from the upper lance.

【0034】実施例−3 転炉において、溶銑から炭素0.14%、マンガン0.
30%に溶製した100tonの溶鋼1を、取鍋2に未
脱酸状態で出鋼した。出鋼後の取鍋内溶鋼の温度は16
35℃であった。
Example 3 In a converter, carbon 0.14%, manganese 0.
100 ton of molten steel 1 melted to 30% was tapped in a ladle 2 in an undeoxidized state. The temperature of molten steel in the ladle after tapping is 16
It was 35 ° C.

【0035】その後、取鍋の底部に配置した耐火物製の
ポーラスプラグ3から、Arガスを20Nm3/hrの
流量で吹き込みつつ、取鍋内の転炉から流出したスラグ
4を取鍋の内壁部へ押しやった状態で、図1に示すよう
に筒状の耐火物製の浸漬管5を浸漬し、浸漬管内にはス
ラグ4がない状態を確保した。取鍋2内の溶鋼表面の直
径が2.5m(5m2)に対して、浸漬管5の内径は
0.9m(0.6m2)で、溶鋼表面上のスラグ4は1
2%しか除去されなかった。この時点で、溶鋼中にアル
ミならびにシリコンを添加して脱酸処理を行い、溶鋼中
の水素濃度を測定したところ3.6ppmであった。
Then, while introducing Ar gas at a flow rate of 20 Nm 3 / hr from the refractory porous plug 3 arranged at the bottom of the ladle, the slag 4 flowing out of the converter in the ladle is taken into the inner wall of the ladle. While being pushed to the portion, a cylindrical refractory dipping pipe 5 was dipped as shown in FIG. 1 to ensure that the slag 4 was not present in the dipping pipe. The diameter of the molten steel surface in the ladle 2 is 2.5 m (5 m 2 ), whereas the inner diameter of the dipping pipe 5 is 0.9 m (0.6 m 2 ), and the slag 4 on the molten steel surface is 1
Only 2% was removed. At this point, aluminum and silicon were added to the molten steel for deoxidation treatment, and the hydrogen concentration in the molten steel was measured and found to be 3.6 ppm.

【0036】次に、図2に示すように、浸漬管5の内部
の溶鋼1の表面から1.5mの高さに、上吹きランス6
を配置し、Arガスを流量800Nm3/hrで溶鋼表
面に吹きつけ、脱水素処理を行った。この時の溶鋼表面
のガス流速を測定した所、約60m/secであった。
この間、取鍋2の底部からはArガスを20Nm3/h
rの流量で吹き込み続け、撹拌を行った。15分の脱水
素処理後に水素濃度を測定したところ1.5ppmであ
ったため、さらに10分間脱水素処理を延長したとこ
ろ、脱水素処理後の水素濃度は0.9ppmであった。
脱水素処理後の炭素濃度は0.14%、マンガン濃度は
0.30%と初期濃度と変化しなかったが、溶鋼温度は
1580℃であった。
Next, as shown in FIG. 2, the upper blowing lance 6 is placed at a height of 1.5 m from the surface of the molten steel 1 inside the immersion pipe 5.
Was placed and Ar gas was blown onto the surface of the molten steel at a flow rate of 800 Nm 3 / hr to perform dehydrogenation treatment. When the gas flow velocity on the surface of the molten steel at this time was measured, it was about 60 m / sec.
During this time, Ar gas from the bottom of the ladle 2 was 20 Nm 3 / h.
Blowing was continued at a flow rate of r and stirring was performed. When the hydrogen concentration was measured after 15 minutes of dehydrogenation and found to be 1.5 ppm, when the dehydrogenation treatment was extended for another 10 minutes, the hydrogen concentration after dehydrogenation was 0.9 ppm.
The carbon concentration after dehydrogenation treatment was 0.14% and the manganese concentration was 0.30%, which was unchanged from the initial concentration, but the molten steel temperature was 1580 ° C.

【0037】実施例−4 転炉において、溶銑から炭素0.15%、マンガン0.
35%に溶製した100tonの溶鋼1を、取鍋2に未
脱酸状態で出鋼した。出鋼後の取鍋内溶鋼の温度は16
32℃であった。
Example-4 In a converter, carbon 0.15%, manganese 0.
100 ton of molten steel 1 melted to 35% was tapped in a ladle 2 in an undeoxidized state. The temperature of molten steel in the ladle after tapping is 16
It was 32 ° C.

【0038】その後、取鍋の底部に配置した耐火物製の
ポーラスプラグ3から、Arガスを20Nm3/hrの
流量で吹き込みつつ、取鍋内の転炉から流出したスラグ
4を取鍋の内壁部へ押しやった状態で、図1に示すよう
に筒状の耐火物製の浸漬管5を浸漬し、浸漬管内にはス
ラグ4がない状態を確保した。取鍋2内の溶鋼表面の直
径が2.5m(5m2)に対して、浸漬管5の内径は
1.2m(1.1m2)で、溶鋼表面上のスラグ4は2
2%除去された。この時点で、溶鋼中にアルミならびに
シリコンを添加して脱酸処理を行い、溶鋼中の水素濃度
を測定したところ3.5ppmであった。
Thereafter, while introducing Ar gas at a flow rate of 20 Nm 3 / hr from the porous plug 3 made of refractory placed at the bottom of the ladle, the slag 4 flowing out from the converter in the ladle is taken into the inner wall of the ladle. While being pushed to the portion, a cylindrical refractory dipping pipe 5 was dipped as shown in FIG. 1 to ensure that the slag 4 was not present in the dipping pipe. The diameter of the molten steel surface in the ladle 2 is 2.5 m (5 m 2 ), whereas the inner diameter of the dipping pipe 5 is 1.2 m (1.1 m 2 ) and the slag 4 on the molten steel surface is 2 m.
2% removed. At this point, aluminum and silicon were added to the molten steel for deoxidation treatment, and the hydrogen concentration in the molten steel was measured and found to be 3.5 ppm.

【0039】次に、図2に示すように、浸漬管5の内部
の溶鋼1の表面から1.5mの高さに、上吹きランス6
を配置し、Arガスを流量200Nm3/hrで溶鋼表
面に吹きつけ、脱水素処理を行った。この時の溶鋼表面
のガス流速を測定した所、約15m/secであった。
この間、取鍋2の底部からはArガスを20Nm3/h
rの流量で吹き込み続け、撹拌を行った。20分の脱水
素処理後に水素濃度を測定したところ1.2ppmであ
ったため、さらに5分間脱水素処理を延長したところ、
脱水素処理後の水素濃度は0.9ppmであつた。脱水
素処理後の炭素濃度は0.14%、マンガン濃度は0.
34%と初期濃度と変化しなかったが、溶鋼温度は15
82℃であった。
Next, as shown in FIG. 2, the upper blowing lance 6 is placed at a height of 1.5 m from the surface of the molten steel 1 inside the immersion pipe 5.
Was placed and Ar gas was blown onto the surface of the molten steel at a flow rate of 200 Nm 3 / hr to perform dehydrogenation treatment. When the gas flow velocity on the surface of the molten steel at this time was measured, it was about 15 m / sec.
During this time, Ar gas from the bottom of the ladle 2 was 20 Nm 3 / h.
Blowing was continued at a flow rate of r and stirring was performed. The hydrogen concentration measured after 20 minutes of dehydrogenation was 1.2 ppm, so when the dehydrogenation treatment was extended for another 5 minutes,
The hydrogen concentration after the dehydrogenation treatment was 0.9 ppm. After the dehydrogenation treatment, the carbon concentration was 0.14% and the manganese concentration was 0.
The initial concentration was unchanged at 34%, but the molten steel temperature was 15
It was 82 ° C.

【0040】比較例−1 転炉において、溶銑から炭素0.18%、マンガン0.
28%に溶製した100tonの溶鋼1を、取鍋2に未
脱酸状態で出鋼した。出鋼後の取鍋内溶鋼の温度は16
30℃であった。
Comparative Example-1 In a converter, 0.18% of carbon, 0.
100 ton of molten steel 1 melted to 28% was tapped in a ladle 2 in an undeoxidized state. The temperature of molten steel in the ladle after tapping is 16
It was 30 ° C.

【0041】その後、図4のように取鍋2内に30mm
厚みのスラグを残留させた状態で、取鍋の邸部に配置し
た耐火物製のポーラスプラグ3から、Arガスを20N
3/hrの流量で吹き込みヽこの時点で、溶鋼中にア
ルミならびにシリコンを添加して脱酸処理を行い、溶鋼
中の水素濃度を測定したところ3.9ppmであった。
After that, as shown in FIG. 4, 30 mm in the ladle 2.
With the thick slag remaining, Ar gas of 20N was supplied from the refractory porous plug 3 placed in the ladle's residence.
Blowing at a flow rate of m 3 / hr ヽ At this point, aluminum and silicon were added to the molten steel for deoxidation treatment, and the hydrogen concentration in the molten steel was measured and found to be 3.9 ppm.

【0042】次に、図5に示すように、溶鋼1の表面か
ら1.5mの高さに、上吹きランス6を配置し、Arガ
スを流量1000Nm3/hrで吹きつけて脱水素処理
を30分間行った。この時のスラグ表面のガス流速を測
定した所、約60m/secであった。この間、取鍋2
の底部からはArガスを20Nm3/hrの流量で吹き
込み続け、撹拌を行った。この脱水素処理後の溶鋼温度
は1600℃と良好であったが、水素濃度は3.5pp
mとほとんど変化せず、また炭素濃度は0.14%、マ
ンガン濃度は0.25%と溶鋼成分も幾分酸化してい
た。このように、スラグを除去しない状態では脱水素は
ほとんど進行せず、水素濃度1ppm以下には到達しな
かった。
Next, as shown in FIG. 5, an upper blowing lance 6 is arranged at a height of 1.5 m from the surface of the molten steel 1, and Ar gas is blown at a flow rate of 1000 Nm 3 / hr to perform dehydrogenation treatment. It went for 30 minutes. When the gas flow velocity on the surface of the slag at this time was measured, it was about 60 m / sec. During this time, ladle 2
Ar gas was continuously blown in from the bottom of the reactor at a flow rate of 20 Nm 3 / hr to perform stirring. The molten steel temperature after this dehydrogenation treatment was as good as 1600 ° C, but the hydrogen concentration was 3.5 pp.
m was almost unchanged, the carbon concentration was 0.14%, and the manganese concentration was 0.25%, indicating that some of the molten steel components were also oxidized. Thus, dehydrogenation hardly proceeded without removing the slag, and the hydrogen concentration did not reach 1 ppm or less.

【0043】[0043]

【発明の効果】本発明によれば、従来の高価かつ大がか
りで、きめ細かなメンテナンスが必要な、真空脱ガス装
置を用いた低水素鋼の溶製方法に比較して、このような
脱ガス設備等の改造や新設等なく、単に溶鋼表面のスラ
グを減少せしめ、かつ不活性ガスを吹付けることによっ
て、通常の真空脱ガス装置を用いた場合と同様に、30
分程度の精錬時間で、水素濃度1ppm以下の低水素鋼
の溶製が可能となった。本発明によれば、従来の真空脱
ガス装置を用いた方法に比較して、溶鋼の温度降下も少
ないため、溶鋼量が少ない条件でも十分な精錬処理の対
応が可能である。さらに、地金付着等も少なく、かっ地
金除去の処理も浸漬管内に付着したもののみを除去すれ
ばよく、メンテナンスが非常に容易となり、処理コスト
の低下が享受できる。
According to the present invention, such degassing equipment is used in comparison with the conventional expensive and large-scale, low-hydrogen steel melting method using a vacuum degassing apparatus which requires detailed maintenance. By simply reducing the slag on the molten steel surface and spraying an inert gas without modifying or newly installing the
With a refining time of about a minute, it became possible to produce low hydrogen steel with a hydrogen concentration of 1 ppm or less. According to the present invention, the temperature drop of the molten steel is small as compared with the conventional method using the vacuum degassing apparatus, and therefore, sufficient refining treatment can be performed even under the condition that the molten steel amount is small. Further, there is little adhesion of metal and the like, and it is sufficient to remove only the metal adhered in the dip tube for the removal of the metal. Therefore, maintenance becomes very easy and the processing cost can be reduced.

【0044】また、水素濃度が1ppm以上の範囲にお
いても、品質上要求される水素濃度以上の溶鋼に対し
て、従来のような真空脱ガス装置をもちいることなく脱
水素ができることはいうまでもない。
Even if the hydrogen concentration is in the range of 1 ppm or more, it is needless to say that demolition can be performed on molten steel having a hydrogen concentration higher than required for quality without using a conventional vacuum degassing device. Absent.

【0045】このように、本発明によれば、工業的規模
において、容易かつ確実、安価に低水素鋼が溶製できる
等の優れた効果が得られる。
As described above, according to the present invention, on an industrial scale, excellent effects such as easy, reliable and inexpensive production of low hydrogen steel can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施方法の一例を示す説明図。FIG. 1 is an explanatory diagram showing an example of a method of implementing the present invention.

【図2】本発明の実施方法の一例を示す説明図。FIG. 2 is an explanatory diagram showing an example of a method of implementing the present invention.

【図3】本発明の実施方法の一例を示す説明図。FIG. 3 is an explanatory diagram showing an example of a method of implementing the present invention.

【図4】本発明に対する比較例の一例を示す説明図。FIG. 4 is an explanatory diagram showing an example of a comparative example with respect to the present invention.

【図4】本発明に対する比較例の一例を示す説明図。FIG. 4 is an explanatory diagram showing an example of a comparative example with respect to the present invention.

【符号の簡単な説明】[Simple explanation of symbols]

1…溶鋼 2…取鍋 3…ポーラスプラグ 4…取鍋内
スラ 5…浸漬管 6…上吹き
ランス 7…浸漬管に設けた羽口
1 ... Molten steel 2 ... Ladle 3 ... Porous plug 4 ... Ladle inner slurry 5 ... Immersion pipe 6 ... Top blowing lance 7 ... Tuyere provided in dipping pipe

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成4年12月18日[Submission date] December 18, 1992

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】図面の簡単な説明[Name of item to be corrected] Brief description of the drawing

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施方法の一例を示す説明図。FIG. 1 is an explanatory diagram showing an example of a method of implementing the present invention.

【図2】本発明の実施方法の一例を示す説明図。FIG. 2 is an explanatory diagram showing an example of a method of implementing the present invention.

【図3】本発明の実施方法の一例を示す説明図。FIG. 3 is an explanatory diagram showing an example of a method of implementing the present invention.

【図4】本発明に対する比較例の一例を示す説明図。FIG. 4 is an explanatory diagram showing an example of a comparative example with respect to the present invention.

【図】本発明に対する比較例の一例を示す説明図。FIG. 5 is an explanatory diagram showing an example of a comparative example with respect to the present invention.

【符号の簡単な説明】 1…溶鋼 2…取鍋 3…ポーラスプラグ 4…取鍋内ス
ラ 5…浸漬管 6…上吹きラ
ンス 7…浸漬管に設けた羽口
[Short description of reference symbols] 1 ... Molten steel 2 ... Ladle 3 ... Porous plug 4 ... Ladle inner slurry 5 ... Immersion pipe 6 ... Top blowing lance 7 ... Tuyere provided on the immersion pipe

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 取鍋の底部もしくは補助浸漬ランスから
不活性ガスを吹き込み、溶鋼表面のスラグを取鍋の壁側
に押しやった状態で、取鍋内に耐火物製の浸漬体を浸漬
して該浸漬管内のスラグを除去した、脱酸された溶鋼の
表面に浸漬体内部の上方から不活性ガスを吹付けて溶鋼
表面の気体を更新しながら脱水素させることを特徴とす
る低水素鋼の溶製方法。
1. A refractory dip is immersed in a ladle in a state where an inert gas is blown from the bottom of the ladle or an auxiliary dipping lance to push the slag on the molten steel surface toward the wall of the ladle. The slag in the immersion pipe is removed, and the surface of the deoxidized molten steel is sprayed with an inert gas from above the inside of the immersion body to dehydrogenate while renewing the gas on the surface of the molten steel. Melting method.
【請求項2】 耐火物製浸漬体でスラグを排除する溶鋼
面積が取鍋内溶鋼表面積の20%以上であることを特徴
とする請求項1記載の低水素鋼の溶製方法。
2. The method for smelting low-hydrogen steel according to claim 1, wherein the molten steel area in which the slag is removed by the refractory-made immersion body is 20% or more of the molten steel surface area in the ladle.
【請求項3】 耐火物製浸漬体内部の上方から吹き付け
る不活性ガスの条件として、溶鋼表面のガス流速を20
m/sec以上とすることを特徴とする請求項1または
2記載の低水素鋼の溶製方法。
3. A gas flow velocity on the surface of molten steel is set to 20 as a condition of the inert gas blown from above inside the refractory immersion body.
The method for melting low hydrogen steel according to claim 1 or 2, wherein the melting rate is set to m / sec or more.
【請求項4】 耐火物製浸漬体内部の上方から不活性ガ
スを吹付ける方法として、耐火物製の浸漬体の側部に設
けたガス吹き出し口から90度以下の角度で溶鋼表面ヘ
該ガスを吹付けることを特徴とする請求項1または2ま
たは3記載の低水素鋼の溶製方法。
4. A method of spraying an inert gas from above the inside of a refractory immersion body, wherein the gas is blown to the molten steel surface at an angle of 90 degrees or less from a gas outlet provided on the side of the refractory immersion body. The method for smelting low-hydrogen steel according to claim 1, 2 or 3, characterized by spraying.
JP7772892A 1992-03-31 1992-03-31 Method for melting low hydrogen steel Withdrawn JPH05279723A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7772892A JPH05279723A (en) 1992-03-31 1992-03-31 Method for melting low hydrogen steel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7772892A JPH05279723A (en) 1992-03-31 1992-03-31 Method for melting low hydrogen steel

Publications (1)

Publication Number Publication Date
JPH05279723A true JPH05279723A (en) 1993-10-26

Family

ID=13641964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7772892A Withdrawn JPH05279723A (en) 1992-03-31 1992-03-31 Method for melting low hydrogen steel

Country Status (1)

Country Link
JP (1) JPH05279723A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544435B1 (en) * 2001-06-20 2006-01-24 주식회사 포스코 A Method for Manufacturing Steel Containing Extremely Low Hydrogen

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100544435B1 (en) * 2001-06-20 2006-01-24 주식회사 포스코 A Method for Manufacturing Steel Containing Extremely Low Hydrogen

Similar Documents

Publication Publication Date Title
JPH0510406B2 (en)
US4170467A (en) Method for producing high chromium steels having extremely low carbon and nitrogen contents
JPH05279723A (en) Method for melting low hydrogen steel
JP2008169407A (en) Method for desulfurizing molten steel
JP7480751B2 (en) METHOD FOR DENITRATION OF MOLTEN STEEL AND METHOD FOR PRODUCING STEEL
JP2000212641A (en) High speed vacuum refining of molten steel
JPH05311228A (en) Method for melting ultralow carbon steel
JP7235070B2 (en) Method for secondary refining of molten steel and method for manufacturing steel
JPH02209414A (en) Method for producing dead soft steel under atmosphere
JPH06228629A (en) Method for refining high purity stainless steel
JPS61235506A (en) Heating up method for molten steel in ladle
JPS63143216A (en) Melting method for extremely low carbon and low nitrogen steel
JPH0565521A (en) Production of extremely low carbon steel
JPH10204521A (en) Vessel for vacuum-refining molten steel
JPH11140534A (en) Method for decarburizing molten steel by blowing oxygen under vacuum
JPH0565525A (en) Production of extremely low carbon steel
JP2897647B2 (en) Melting method of low hydrogen extremely low sulfur steel
JPH0565526A (en) Production of extremely low carbon steel
JPH04254511A (en) Method for refining extremely low carbon steel
JPH04254513A (en) Method for refining extremely low carbon steel
TW202313996A (en) Molten steel denitrification method, simultaneous denitrification and desulfurization treatment method, and steel production method
JPH04293711A (en) Method for melting extremely low carbon steel in converter
US4780133A (en) Process to improve the refining of liquid metals by natural gas injection
JPH04246117A (en) Method for melting extra-low carbon steel
JP2001172715A (en) Method of manufacturing molten ultra-low carbon stainless steel

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608