JPH04293711A - Method for melting extremely low carbon steel in converter - Google Patents

Method for melting extremely low carbon steel in converter

Info

Publication number
JPH04293711A
JPH04293711A JP5745591A JP5745591A JPH04293711A JP H04293711 A JPH04293711 A JP H04293711A JP 5745591 A JP5745591 A JP 5745591A JP 5745591 A JP5745591 A JP 5745591A JP H04293711 A JPH04293711 A JP H04293711A
Authority
JP
Japan
Prior art keywords
molten steel
blowing
gas
concentration
oxygen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5745591A
Other languages
Japanese (ja)
Inventor
Naoto Tsutsumi
直人 堤
Yoshimasa Mizukami
水上 義正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP5745591A priority Critical patent/JPH04293711A/en
Publication of JPH04293711A publication Critical patent/JPH04293711A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

PURPOSE:To provide a decarburizing method, in which the refining of steel is facilitated without much difference in comparison with decarburizing treatment time by means of the ordinary vacuum degassing device in the case of executing the decarburization treatment of the molten steel. CONSTITUTION:In the case of decarburizing the molten steel by dipping a refractory-made immersion body 7 into the zone removing oxidized slag on the surface of the molten steel 5 in a converter to form a specific space and blowing inert gas on the surface of molten steel having 0.04-0.03% carbon concn. and 400-700ppm oxygen concn. in the specific space, flowing velocity of the inert gas continuously blowing on the surface of molten steel in the specific space is >=20m/sec and also oxygen concn. in the molten steel is measured at any time, and by supplying the oxidizing gas or solid-state oxidizing source while blowing it into inner part so as to maintain the oxygen in the range of 250-700ppm concn., the decarburization can stably be exerted to the extremely low carbon range. The maintenance is facilitated and the extremely low carbon steel can surely be melted inexpensively.

Description

【発明の詳細な説明】[Detailed description of the invention]

【0001】0001

【産業上の利用分野】本発明は、真空脱ガス装置を使用
することなく、転炉において極低炭素鋼を溶製する方法
に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for melting ultra-low carbon steel in a converter without using a vacuum degassing device.

【0002】0002

【従来の技術】自動車用鋼板等、プレス加工が施される
薄板用鋼板において、加工性を高めるために鋼板中の炭
素濃度を極力低下させた極低炭素鋼が知られている。従
来、この極低炭素鋼を溶製するためには、転炉等で炭素
濃度を0.04%程度まで脱炭させた溶鋼を未脱酸状態
で取鍋等の容器に受鋼した後に、RH法やDH法等のご
とく、真空脱ガス装置等の排気装置を用いるプロセスに
より溶鋼の一部分を減圧(真空)雰囲気中に曝し、気体
側の圧力を低下させることで気体と溶鋼の界面のCOガ
ス分圧を低下させる条件下において、次式に示すように
溶鋼中の炭素と酸素を反応させ、さらに脱炭した後、目
標の溶鋼成分となるように、合金を添加して調整を行う
溶製方法が広く行われている。
BACKGROUND OF THE INVENTION Ultra-low carbon steels are known in which the carbon concentration in the steel sheet is reduced as much as possible in order to improve workability in thin steel sheets that are subjected to press working, such as steel sheets for automobiles. Conventionally, in order to melt this ultra-low carbon steel, molten steel is decarburized to a carbon concentration of about 0.04% in a converter, etc., and then received in a container such as a ladle in an undeoxidized state. In the RH method, DH method, etc., a part of the molten steel is exposed to a reduced pressure (vacuum) atmosphere through a process that uses an exhaust device such as a vacuum degassing device, and by lowering the pressure on the gas side, CO at the interface between the gas and the molten steel is removed. Under conditions that reduce the gas partial pressure, the carbon and oxygen in the molten steel are reacted as shown in the following formula, and after further decarburization, the molten steel is adjusted by adding an alloy to achieve the target molten steel composition. The manufacturing method is widely used.

【0003】 C  +  O  →  CO           
               (1) 一般に溶鋼を脱炭する場合、(1)式で示したように、
溶鋼中の炭素と酸素とを反応させることでCOガスを生
成させ、このガスを気体側に除去する方法が用いられる
。この脱炭反応を進めさせるためには溶鋼中に酸素が必
要であり、このため一般的には酸素を上方や下方から、
あるいは上下方向から同時に供給する純酸素転炉方式が
採用されている。
[0003] C + O → CO
(1) Generally, when decarburizing molten steel, as shown in equation (1),
A method is used in which carbon in molten steel is reacted with oxygen to generate CO gas, and this gas is removed to the gas side. Oxygen is required in the molten steel to advance this decarburization reaction, so generally oxygen is introduced from above or below.
Alternatively, a pure oxygen converter system is adopted in which oxygen is supplied simultaneously from above and below.

【0004】しかし、この方法では溶鋼中の炭素濃度が
0.04%程度以下となると脱炭の進行が停滞し、むし
ろ鉄やマンガン等の酸化が生じ、溶鋼の歩留り低下や溶
鋼中の有効な成分であるマンガン濃度の低下を招く等の
問題がある。そこで、前記炭素濃度以下でも、鉄等が酸
化せず溶鋼中の炭素が優先的に酸化するように、気体側
の一酸化炭素の分圧を低下させることにより、(1)式
の反応を右の方向へ進行させる方法として真空脱ガス装
置が広く普及しているわけである。
However, in this method, when the carbon concentration in the molten steel becomes about 0.04% or less, the progress of decarburization is stagnant, and instead, oxidation of iron, manganese, etc. occurs, resulting in a decrease in the yield of the molten steel and the effective removal of the molten steel. There are problems such as a decrease in the concentration of manganese, which is a component. Therefore, by lowering the partial pressure of carbon monoxide on the gas side so that the carbon in the molten steel is preferentially oxidized without oxidizing iron etc. even below the above carbon concentration, the reaction in equation (1) can be controlled to the right. Vacuum degassing equipment is widely used as a method for progressing in this direction.

【0005】つまり、次に示す(2)式において、気体
側の一酸化炭素の分圧Pcoを小さくすれば、同じ溶鋼
中酸素濃度であっても、炭素濃度をより小さくすること
ができるわけである。
In other words, in equation (2) shown below, if the partial pressure Pco of carbon monoxide on the gas side is made smaller, the carbon concentration can be made smaller even if the oxygen concentration in the molten steel is the same. be.

【0006】[0006]

【数1】[Math 1]

【0007】本法によれば、減圧度を高める(真空度を
上げる)ほど(1)式で示す右方向への脱炭反応が進行
するため、現在工業的にRH法やDH法等において極力
高い真空度を維持することで、炭素濃度0.005%以
下という極低炭素鋼の溶製が可能となっている。ここで
、これら真空脱ガス装置において、脱炭速度をより短縮
するために、酸素あるいは二酸化炭素等の酸化性ガス、
ないしは、酸化鉄等の固体状酸化源を添加する方法(例
えば、特開昭49−34414号公報、特開昭51−1
51211号公報、特開昭51−151212号公報)
、反応の界面積を大きくするため大量のガスを溶鋼中に
吹き込む方法(特開昭52−5641号公報)等も開発
されている。
According to this method, the decarburization reaction progresses in the right direction as shown in equation (1) as the degree of reduced pressure (increases the degree of vacuum) is increased. By maintaining a high degree of vacuum, it is possible to produce ultra-low carbon steel with a carbon concentration of 0.005% or less. In these vacuum degassing devices, in order to further shorten the decarburization rate, oxidizing gas such as oxygen or carbon dioxide,
Alternatively, a method of adding a solid oxidation source such as iron oxide (for example, JP-A-49-34414, JP-A-51-1)
51211, JP 51-151212)
A method has also been developed in which a large amount of gas is blown into molten steel in order to increase the interfacial area of the reaction (Japanese Patent Laid-Open No. 52-5641).

【0008】[0008]

【発明が解決しようとする課題】上記真空脱ガス装置を
用いた極低炭素鋼溶製方法は、炭素濃度を低下せしめる
ために平衡論的にも非常に有効な方法であり、現在広く
普及している。しかし、前述したように溶鋼の一部分を
高い減圧雰囲気中に曝すために非常に大がかりで高価な
真空装置が必要であり、また減圧下で溶鋼を処理するこ
とから耐火物等が溶損し、さらに高温下において減圧状
態を維持するために各嵌合部の密着性を高めるための、
きめ細かなメンテナンスを要する。
[Problems to be Solved by the Invention] The ultra-low carbon steel melting method using the vacuum degassing device described above is a very effective method from an equilibrium point of view for reducing carbon concentration, and is currently widely used. ing. However, as mentioned above, exposing a portion of the molten steel to a highly reduced pressure atmosphere requires a very large-scale and expensive vacuum equipment, and since the molten steel is processed under reduced pressure, refractories etc. are melted and To increase the adhesion of each fitting part in order to maintain a reduced pressure state at the bottom,
Requires careful maintenance.

【0009】また、減圧雰囲気中に曝した状態の溶鋼中
にガスを吹き込むと、ガスが溶鋼表面から離脱する際に
溶鋼が周辺の密閉容器内に飛び散り付着堆積するため、
溶鋼の歩留りを低下させるばかりか、この付着地金の除
去に多大な労力を要する。上記のような問題点に鑑み、
本発明はこれら問題点を解決し、既存の設備で、従来行
われている真空脱ガス装置で溶製されるのと同等の極低
炭素鋼の溶製方法を提示するために開発されたものであ
る。
[0009] Furthermore, when gas is blown into molten steel exposed to a reduced pressure atmosphere, when the gas leaves the molten steel surface, the molten steel scatters and deposits in the surrounding closed container.
Not only does this reduce the yield of molten steel, but it also requires a great deal of effort to remove the deposited metal. In view of the above problems,
The present invention was developed to solve these problems and to present a method for producing ultra-low carbon steel using existing equipment, which is equivalent to that produced using conventional vacuum degassing equipment. It is.

【0010】0010

【課題を解決するための手段】本発明の要旨とするとこ
ろは、下記のとおりである。 (1)  上底吹き転炉の吹錬末期の溶鋼中炭素濃度が
0.04〜0.03%、酸素濃度が400〜700pp
mの時点で上部ランスからの酸素供給を中断し、炉底に
配置した底吹き羽口からの不活性ガス吹き込みにより溶
鋼表面のスラグを除去した後、この部分に耐火物製の浸
漬体を浸漬して特定空間を形成し、かつ底吹き羽口から
の不活性ガス吹き込みにより上記スラグを除去した自由
表面へ常に溶鋼を循環させつつ、該特定空間の溶鋼表面
に連続的に不活性ガスを吹き付けて溶鋼を脱炭する際に
、上記特定空間の溶鋼表面に連続的に吹き付ける不活性
ガスの流速を20m/sec以上とすると共に溶鋼中の
酸素濃度を随時測定し、その濃度を250〜700pp
mの範囲内に維持するように、かつ前記特定空間の溶鋼
表面には酸化物が蓄積しないように、酸化性のガスを溶
鋼の内部に吹き込みながら供給することを特徴とする転
炉における極低炭素鋼の溶製方法。
[Means for Solving the Problems] The gist of the present invention is as follows. (1) The carbon concentration in the molten steel at the final stage of blowing in the top-bottom blowing converter is 0.04 to 0.03%, and the oxygen concentration is 400 to 700 pp.
At point m, the oxygen supply from the upper lance is interrupted, and after removing the slag on the surface of the molten steel by blowing inert gas from the bottom blowing tuyere placed at the bottom of the furnace, a refractory immersion body is immersed in this area. to form a specific space, and while constantly circulating the molten steel to the free surface from which the slag has been removed by blowing inert gas from the bottom blowing tuyere, inert gas is continuously sprayed onto the surface of the molten steel in the specific space. When decarburizing molten steel, the flow rate of the inert gas that is continuously blown onto the molten steel surface in the specified space is set to 20 m/sec or more, and the oxygen concentration in the molten steel is measured from time to time, and the concentration is 250 to 700 pp.
In a converter, an extremely low Carbon steel melting method.

【0011】(2)  上底吹き転炉の吹錬末期の溶鋼
中炭素濃度が0.04〜0.03%、酸素濃度が400
〜700ppmの時点で上部ランスからの酸素供給を中
断し、炉底に配置した底吹き羽口からの不活性ガス吹き
込みにより溶鋼表面のスラグを除去した後、この部分に
耐火物製の浸漬体を浸漬して特定空間を形成し、かつ底
吹き羽口からの不活性ガス吹き込みにより上記スラグを
除去した自由表面へ常に溶鋼を循環させつつ、該特定空
間の溶鋼表面に連続的に不活性ガスを吹き付けて溶鋼を
脱炭する際に、上記特定空間の溶鋼表面に連続的に吹き
付ける不活性ガスの流速を20m/sec以上とすると
共に溶鋼中の酸素濃度を随時測定し、その濃度を250
〜700ppmの範囲内に維持するように、かつ前記特
定空間の溶鋼表面には酸化物が蓄積しないように、酸化
鉄等の固体状酸化源を溶鋼内部に吹き込みながら供給す
ることを特徴とする転炉における極低炭素鋼の溶製方法
(2) The carbon concentration in the molten steel at the final stage of blowing in the top-bottom blowing converter is 0.04 to 0.03%, and the oxygen concentration is 400%.
At ~700 ppm, the oxygen supply from the upper lance was interrupted, and after removing the slag on the surface of the molten steel by blowing inert gas from the bottom blowing tuyere placed at the bottom of the furnace, a refractory immersion body was placed in this area. A specific space is formed by immersion, and while the molten steel is constantly circulated to the free surface from which the slag has been removed by blowing inert gas from the bottom blowing tuyere, an inert gas is continuously supplied to the surface of the molten steel in the specific space. When decarburizing molten steel by spraying, the flow rate of the inert gas that is continuously sprayed onto the molten steel surface in the specific space is set to 20 m/sec or more, and the oxygen concentration in the molten steel is measured from time to time, and the concentration is 250 m/sec or more.
A solid oxidation source such as iron oxide is supplied while being blown into the molten steel so as to maintain the concentration within the range of ~700 ppm and to prevent oxides from accumulating on the molten steel surface in the specific space. A method for melting ultra-low carbon steel in a furnace.

【0012】0012

【作用】本発明者等は、従来の大がかりな真空脱ガス装
置を使用することなく、安定に溶鋼中の炭素濃度を0.
005%以下まで脱炭する方法について研究開発を進め
た結果、溶鋼と気体の界面の一酸化炭素ガスの分圧を低
下させるために、高価かつ大がかりな真空脱ガス装置等
を用いて溶鋼表面を減圧状態下に保たずとも、アルゴン
や窒素等の不活性ガスを溶鋼界面に吹き付け、界面の一
酸化炭素ガスを除去し、その分圧を低下させれば、大気
圧下において炭素濃度0.005%以下まで脱炭反応は
充分に進行し、極低炭素鋼の溶製が可能であることを見
出した。
[Operation] The inventors of the present invention have stably reduced the carbon concentration in molten steel to 0.00% without using a conventional large-scale vacuum degassing device.
As a result of conducting research and development on a method to decarburize the steel to 0.005% or less, in order to reduce the partial pressure of carbon monoxide gas at the interface between the molten steel and the gas, the surface of the molten steel was decarburized using expensive and large-scale vacuum degassing equipment. Even without maintaining a reduced pressure state, if an inert gas such as argon or nitrogen is sprayed onto the molten steel interface to remove carbon monoxide gas at the interface and lower its partial pressure, the carbon concentration can be reduced to 0.0 at atmospheric pressure. It was discovered that the decarburization reaction progresses sufficiently until the carbon content reaches 0.005% or less, making it possible to produce ultra-low carbon steel.

【0013】ここで、純酸素を供給する転炉方法での脱
炭反応の場合も多量の純酸素ガスを供給しており、気体
側の一酸化炭素ガスの分圧は低いと考えられる。しかし
、先にも述べたように、炭素濃度が0.04%程度以下
になると炭素よりも鉄やマンガンの酸化が優先的に生じ
て脱炭は停滞し、溶鋼歩留の低下あるいは溶鋼中の有効
な成分であるマンガン濃度の低下を招く。本発明者らは
転炉方法でのこの現象を検討し、炭素の酸化と同時にシ
リコンやりん、マンガン等が酸化し、またこれらの酸化
物を安定に固定するために、主に石灰を成分とする精錬
用のスラグを置いて処理を行っていること、また純酸素
ガスを供給していることそのものが脱炭停滞の原因であ
ることを明らかとした。
[0013] Here, even in the case of the decarburization reaction using the converter method in which pure oxygen is supplied, a large amount of pure oxygen gas is supplied, and the partial pressure of carbon monoxide gas on the gas side is considered to be low. However, as mentioned earlier, when the carbon concentration falls below about 0.04%, oxidation of iron and manganese occurs preferentially over carbon, decarburization stalls, and the yield of molten steel decreases or This leads to a decrease in the concentration of manganese, an effective ingredient. The present inventors studied this phenomenon in the converter method and found that silicon, phosphorus, manganese, etc. are oxidized at the same time as carbon oxidation, and in order to stably fix these oxides, lime is mainly used as a component. It was revealed that the fact that slag for smelting was used for processing and the supply of pure oxygen gas were the causes of stagnation in decarburization.

【0014】すなわち、炭素濃度が0.04%以下の低
い領域まで脱炭反応を進行させようとする場合に、そも
そも溶鋼表面に酸化性のスラグが存在することは、脱炭
に有効な反応界面を減少させていることを意味する。さ
らに、炭素濃度に見合った酸素供給速度を制御すること
が必要であり、上方から純酸素ガスを供給するような状
態では酸素供給速度が大きすぎるため、鉄あるいはマン
ガンの優先的な酸化を引き起こし、これら酸化鉄ないし
酸化マンガンが既に存在するスラグと合わさり、炭素と
酸素の反応を生じさせる反応界面を減少させているわけ
である。
[0014] In other words, when attempting to advance the decarburization reaction to a low carbon concentration region of 0.04% or less, the presence of oxidizing slag on the surface of the molten steel means that the reaction interface is effective for decarburization. This means that it is decreasing. Furthermore, it is necessary to control the oxygen supply rate commensurate with the carbon concentration, and if pure oxygen gas is supplied from above, the oxygen supply rate is too high, causing preferential oxidation of iron or manganese. These iron oxides or manganese oxides combine with the already existing slag and reduce the reaction interface where carbon and oxygen reactions occur.

【0015】このような研究結果から、本発明者等は先
に、取鍋内溶鋼表面上の酸化性スラグの占める面積を2
0%以下に減少せしめた炭素濃度0.04〜0.02%
の溶鋼表面上に、酸素分圧0.5〜0.01気圧に調整
した酸化性ガスと不活性ガスの混合ガスを吹き付け、溶
鋼の酸化を抑制しつつ溶鋼を脱炭すれば、炭素濃度0.
02%以下の極低炭素鋼の溶製が可能であることを見出
し、この知見に基づいて極低炭素鋼の溶製方法を創案(
特願昭63−153454号)した。
Based on these research results, the present inventors first determined that the area occupied by the oxidizing slag on the surface of the molten steel in the ladle was reduced to 2.
Carbon concentration reduced to 0% or less 0.04-0.02%
If a mixed gas of oxidizing gas and inert gas adjusted to an oxygen partial pressure of 0.5 to 0.01 atm is sprayed onto the surface of the molten steel to decarburize the molten steel while suppressing oxidation of the molten steel, the carbon concentration can be reduced to 0. ..
Discovered that it was possible to melt ultra-low carbon steel with a carbon content of 0.2% or less, and based on this knowledge, invented a method for melting ultra-low carbon steel (
(Patent Application No. 153454/1983).

【0016】さらに本発明者等は、この転炉から溶鋼を
出鋼した取鍋における脱炭に要する時間を短縮するため
、この反応を転炉内にて行わしめることができないかと
いう点から研究開発を進め、従来の通常吹錬の末期の溶
鋼中炭素濃度が0.04〜0.03%、酸素濃度が40
0〜700ppmの時点で上部ランスからの酸素供給を
中断し、炉底に配置した底吹き羽口からの不活性ガス吹
き込みにより溶鋼表面のスラグを除去した後、この部分
に耐火物製の浸漬体を浸漬して特定空間を形成し、かつ
底吹き羽口からの不活性ガス吹き込みにより上記スラグ
を除去した自由表面へ常に溶鋼を循環させつつ、該特定
空間の溶鋼表面に連続的に不活性ガスを吹きつけて溶鋼
を脱炭する際に、上記特定空間の溶鋼表面に連続的に吹
き付ける不活性ガスの流速を20m/sec以上とする
と共に溶鋼中の酸素濃度を随時測定し、その濃度を25
0〜700ppmの範囲内に維持するように、かつ前記
特定空間の溶鋼表面には酸化物が蓄積しないように酸素
の濃度を制御することによって、短時間で安定に炭素濃
度0.005%以下の極低炭素領域まで脱炭が進行する
ことを確認した。
[0016] Furthermore, the present inventors conducted research on whether it is possible to carry out this reaction within the converter in order to shorten the time required for decarburization in the ladle from which molten steel is tapped from the converter. We are progressing with development and have achieved a carbon concentration of 0.04 to 0.03% and an oxygen concentration of 40% in molten steel at the final stage of conventional normal blowing.
At the point of 0 to 700 ppm, the oxygen supply from the upper lance is interrupted, and after removing the slag on the surface of the molten steel by blowing inert gas from the bottom blowing tuyeres placed at the bottom of the furnace, a refractory immersion body is placed in this area. is immersed in the molten steel to form a specific space, and while the molten steel is constantly circulated to the free surface from which the slag has been removed by blowing inert gas from the bottom blowing tuyere, inert gas is continuously applied to the surface of the molten steel in the specific space. When decarburizing the molten steel by spraying it, the flow rate of the inert gas that is continuously sprayed onto the surface of the molten steel in the specific space is set to 20 m/sec or more, and the oxygen concentration in the molten steel is measured from time to time.
By controlling the oxygen concentration to maintain it within the range of 0 to 700 ppm and to prevent oxides from accumulating on the surface of the molten steel in the specific space, the carbon concentration can be stably reduced to 0.005% or less in a short period of time. It was confirmed that decarburization progressed to the extremely low carbon region.

【0017】ここで、本発明の要件である吹錬末期の溶
鋼中炭素濃度が0.04〜0.03%、酸素濃度が40
0〜700ppmの時点で上吹きランスからの酸素供給
を中断する理由は、前述のように純酸素を供給する場合
、炭素濃度が0.03%よりも低い領域になると、脱炭
反応よりも鉄ないしマンガンの酸化反応が優先的に進む
状況に到るからである。
Here, the carbon concentration in the molten steel at the final stage of blowing, which is the requirement of the present invention, is 0.04 to 0.03%, and the oxygen concentration is 40%.
The reason why the oxygen supply from the top blowing lance is interrupted at the point of 0 to 700 ppm is that when pure oxygen is supplied as mentioned above, when the carbon concentration is lower than 0.03%, the iron This is because a situation is reached in which the oxidation reaction of manganese proceeds preferentially.

【0018】なお、転炉内の溶鋼表面上の酸化性スラグ
を除去する面積については、溶鋼表面積に対して20%
未満の面積では吹き付ける不活性ガスの反応界面への供
給が阻害され、脱炭に有効な反応界面積の確保が難しく
なる点から、20%以上除去することが望ましい。この
酸化性スラグが存在しない溶鋼表面積を20%以上確保
する方法としては、底吹きガスのみによって上部のスラ
グを除去する方法が最も簡単であるが、より確実にスラ
グの存在しない溶鋼表面を確保するため、前述のように
底吹きガスによる攪拌を行い、上部のスラグが取り除か
れた溶鋼表面に、事前に炉内上部に吊り下げたリング状
の耐火物製の浸漬体を下降、浸漬させ、スラグのない溶
鋼表面を露呈する方法、あるいは上記リング状の耐火物
製の浸漬体の下端部に鉄板製のキャップ(陣笠状キャッ
プ)を装着し、この浸漬体を底吹きガスによる攪拌で上
部のスラグが取り除かれた、あるいは減少させた溶鋼表
面に浸漬させ、スラグのない溶鋼表面を露呈する方法等
が有効である。
[0018] The area for removing oxidizing slag on the surface of the molten steel in the converter is 20% of the surface area of the molten steel.
If the area is less than 20%, the supply of the inert gas to be blown to the reaction interface will be inhibited and it will be difficult to secure a reaction interface area effective for decarburization, so it is desirable to remove 20% or more. The easiest way to ensure 20% or more of the molten steel surface area free of this oxidizing slag is to remove the upper slag using only bottom blowing gas, but this method more reliably ensures a molten steel surface free of slag. Therefore, as mentioned above, stirring is performed using bottom-blown gas, and a ring-shaped refractory immersion body suspended above the furnace is lowered and immersed in the molten steel surface from which the upper slag has been removed. A method of exposing the molten steel surface free from molten steel, or attaching an iron plate cap (jinkasa-shaped cap) to the lower end of the ring-shaped immersed body made of refractory material, and stirring the immersed body with bottom-blown gas to remove the slag from the upper part. An effective method is to immerse the molten steel into the molten steel surface from which slag has been removed or reduced to expose the molten steel surface free of slag.

【0019】次に溶鋼の表面に吹き付けるガスとして不
活性ガスを用いる理由は、吹き付けるガス中の酸素濃度
が5%を越えると鉄および溶鋼中のマンガンの酸化が同
時に起こり、界面に溶融状態の酸化物が生成し、これら
の酸化物が脱炭に有効な界面積を減少させるため、脱炭
の速度が減少して炭素濃度0.005%以下まで脱炭さ
せるのに、より長時間を要してしまうことが判明したた
めである。ここで用いる不活性ガスとしては、アルゴン
ガスが一般的であるが、ヘリウムガス等の使用も可能で
あるし、鋼の材質上問題がなければ窒素ガスの使用も可
能であり、これらのガスを混合して使用することもでき
る。
Next, the reason why an inert gas is used as the gas to be blown onto the surface of molten steel is that if the oxygen concentration in the blown gas exceeds 5%, oxidation of iron and manganese in molten steel will occur at the same time, causing oxidation in the molten state at the interface. Since these oxides reduce the effective interfacial area for decarburization, the rate of decarburization decreases and it takes longer to decarburize to a carbon concentration of 0.005% or less. This is because it has become clear that The inert gas used here is generally argon gas, but it is also possible to use helium gas, and if there is no problem with the steel material, nitrogen gas can also be used. They can also be used in combination.

【0020】一方、脱炭反応を進めるには、(1)式で
示したように、炭素を酸化させる酸素が必要である。そ
こで、脱炭を開始する前の溶鋼の酸素の濃度としては、
通常の転炉吹錬で炭素濃度0.04〜0.03%で吹き
止めた際に得られる400〜700ppmの範囲とし、
この溶鋼中の酸素を用いて炭素を酸化しつつ、脱炭の進
行に伴い減少していく酸素については、公知の測定手段
である例えば酸素濃淡電池等を用いてその濃度を随時測
定しながら、酸素濃度が減少した場合には、最初に酸化
性スラグを除去した溶鋼表面に新たに酸化物が蓄積して
脱炭の反応界面積を減少することがないように、その濃
度を250〜700ppmに維持する必要がある。
On the other hand, in order to proceed with the decarburization reaction, oxygen is required to oxidize carbon, as shown in equation (1). Therefore, the oxygen concentration in molten steel before starting decarburization is:
The range is 400 to 700 ppm obtained when blowing is stopped at a carbon concentration of 0.04 to 0.03% in normal converter blowing,
While oxidizing carbon using the oxygen in the molten steel, the concentration of oxygen, which decreases as decarburization progresses, is measured at any time using known measuring means such as an oxygen concentration battery. If the oxygen concentration decreases, increase the concentration to 250 to 700 ppm to prevent new oxides from accumulating on the surface of the molten steel from which oxidizing slag was first removed and reducing the decarburization reaction interfacial area. need to be maintained.

【0021】前記の如く酸化性スラグを除去した溶鋼表
面に新たに酸化物が蓄積しないように溶鋼中の酸素濃度
を調整する方法としては、下記の手段が使用できる。 (1)純酸素ガス、空気、二酸化炭素ガス、水蒸気等を
単独で、あるいはこれらの酸化性ガス同士の混合ガス、
あるいはこれらの酸化性ガスと一酸化炭素ガスの混合ガ
ス、ないしはこれらの酸化性ガスと不活性ガスの混合ガ
スを、底吹き羽口ないしは耐火物製の浸漬ランス等を介
して溶鋼内部に吹き込みながら供給する方法。
The following means can be used to adjust the oxygen concentration in molten steel so that oxides are not newly accumulated on the surface of molten steel from which oxidizing slag has been removed as described above. (1) Pure oxygen gas, air, carbon dioxide gas, water vapor, etc. alone or a mixture of these oxidizing gases,
Alternatively, a mixed gas of these oxidizing gases and carbon monoxide gas, or a mixed gas of these oxidizing gases and inert gas, is blown into the molten steel through a bottom blowing tuyere or a refractory immersion lance, etc. How to supply.

【0022】(2)底吹き羽口等を介して、酸化鉄や酸
化マンガン等の固体状酸化物の単体または混合物を溶鋼
の内部に供給するか、あるいはこれらの成分を含む鉱石
等を不活性ガス等を用いて底吹き羽口ないしは耐火物製
の浸漬ランス等を介して溶鋼の内部に供給する方法。こ
こで、酸化性ガスないしは酸化性ガスと不活性ガスの混
合ガスを溶鋼の内部に供給するか、あるいは酸化鉄等の
固体状酸化源を溶鋼の内部に供給する場合、酸素濃度を
ほぼ一定に制御できるように、少しずつ連続的に供給し
てもよいし、また短時間にある程度の酸素量分を一括的
に供給しても構わない。
(2) Either a single substance or a mixture of solid oxides such as iron oxide or manganese oxide is supplied into the molten steel through a bottom blowing tuyere or the like, or ores containing these components are inactivated. A method in which gas, etc. is used to supply the inside of molten steel through a bottom blowing tuyere or a refractory immersion lance. When supplying an oxidizing gas or a mixed gas of an oxidizing gas and an inert gas to the inside of the molten steel, or when supplying a solid oxidation source such as iron oxide to the inside of the molten steel, the oxygen concentration must be kept almost constant. Oxygen may be supplied continuously little by little so that it can be controlled, or a certain amount of oxygen may be supplied all at once in a short period of time.

【0023】酸化性スラグを除去した溶鋼の表面に吹き
付ける不活性ガスの流速を20m/sec以上に確保す
る理由は、20m/sec未満であると、そもそも脱炭
によって発生する一酸化炭素ガスの分圧を脱炭が進行す
るための低位に維持できないからである。界面の流速を
20m/sec以上確保することによって、大気圧下に
おいても界面に充分に減圧下と同様の状態が確保され、
この流速が大きければ大きいほどその効果は大きい。
The reason why the flow velocity of the inert gas sprayed onto the surface of the molten steel from which oxidizing slag has been removed is ensured at 20 m/sec or more is that if it is less than 20 m/sec, the amount of carbon monoxide gas generated by decarburization will be reduced. This is because the pressure cannot be maintained at a low level for decarburization to proceed. By ensuring the flow velocity at the interface is 20 m/sec or more, a state similar to that under reduced pressure is ensured at the interface even under atmospheric pressure.
The greater the flow velocity, the greater the effect.

【0024】溶鋼中の酸素濃度を250ppm以上に制
御する必要性があるのは、この濃度未満になると脱炭速
度が低下する傾向があるためであり、また700ppm
以下に制御する理由は、この濃度を超えると、脱炭速度
に酸素濃度の影響がもはや見られず、また後にこの酸素
を脱酸した場合に生成する微小な介在物量が増加するた
め、品質上も好ましくないことによる。
The reason why it is necessary to control the oxygen concentration in molten steel to 250 ppm or more is because the decarburization rate tends to decrease when the concentration is less than 700 ppm.
The reason for controlling the following is that once this concentration is exceeded, the effect of oxygen concentration on the decarburization rate is no longer observed, and the amount of minute inclusions that are generated when this oxygen is deoxidized later increases. Also due to unfavorable things.

【0025】こうした方法によって、脱炭の反応界面積
を確保する目的で酸化性スラグを除去した溶鋼表面に、
さらに酸化物が生成し、かつ蓄積していくことをなくし
、ガス吹き付けにより界面の一酸化炭素ガスを除去する
ことによって、常に脱炭速度を高位に維持することがで
きるわけである。以上のような理由から、炭素濃度を0
.005%以下の極力低くまで、かつ短い時間内で進行
させたい場合には、ガスの吹き付けにより脱炭が進行す
る反応界面積をより大きくするために酸化性スラグが占
める溶鋼表面積の大きさをより小さくし、また反応の界
面に溶鋼中の炭素が常に供給されるように溶鋼を強く攪
拌することが効果的であることは言うまでもない。ここ
で溶鋼を攪拌するためには転炉の底吹き羽口等から供給
するガスの量を大きくするほうが好ましく、またこのた
めのガスは上面から吹き付けるガスと同様の不活性ガス
が好ましいが、前記した酸素濃度を制御するための純酸
素ガス、空気、二酸化炭素ガス、水蒸気等の単独あるい
はこれらの混合ガス、またはこれらの酸化性ガスと一酸
化炭素ガスの混合ガス、ないしはこれらの酸化性ガスと
不活性ガスの混合ガスを用いても構わないし、また酸化
鉄等の固体状酸化源を溶鋼の内部に供給するための不活
性ガスを兼用して用いても構わない。この溶鋼攪拌用ガ
スとして酸化性ガスを混合したガスを使用する場合には
、前記した溶鋼中の酸素濃度を調整するための、底吹き
羽口や耐火物製の浸漬ランス等を介して溶鋼の内部に吹
き込む酸化性ガスの一部あるいは全部と代替することが
できる。
[0025] By this method, the molten steel surface from which oxidizing slag has been removed for the purpose of securing the reaction interface area for decarburization,
Furthermore, by eliminating the generation and accumulation of oxides and removing carbon monoxide gas at the interface by gas blowing, the decarburization rate can always be maintained at a high level. For the above reasons, the carbon concentration is set to 0.
.. If you want the decarburization to proceed as low as 0.005% or less and in a short time, the surface area of the molten steel occupied by the oxidizing slag should be increased by blowing gas to increase the reaction interface area where the decarburization proceeds. Needless to say, it is effective to make the molten steel small and to stir the molten steel strongly so that carbon in the molten steel is constantly supplied to the reaction interface. In order to stir the molten steel here, it is preferable to increase the amount of gas supplied from the bottom blowing tuyeres of the converter, and the gas for this purpose is preferably an inert gas similar to the gas blown from the top. Pure oxygen gas, air, carbon dioxide gas, water vapor, etc. alone or a mixture of these gases, a mixture of these oxidizing gases and carbon monoxide gas, or a mixture of these oxidizing gases and carbon monoxide gas to control the oxygen concentration. A mixed gas of an inert gas may be used, or an inert gas for supplying a solid oxidation source such as iron oxide to the inside of the molten steel may also be used. When using a gas mixed with an oxidizing gas as the molten steel stirring gas, the molten steel is heated through a bottom blowing tuyere or a refractory immersion lance to adjust the oxygen concentration in the molten steel. It can replace part or all of the oxidizing gas that is blown into the interior.

【0026】[0026]

【実施例】実施例1 炉容250tの上底吹き転炉1において、溶銑から炭素
0.038%、マンガン0.34%、酸素470ppm
まで吹錬した時点で、図1に示すように、上吹きランス
2からの酸素供給を停止し、炉底に設置した6本のガス
吹き込み羽口3からアルゴンガス4を300Nm3 /
hrの流量で吹き込み、このガスによって溶鋼5の表面
のスラグ6を転炉内壁部へ押しやった状態で、事前に炉
内に設置したリング状の耐火物製浸漬管7を浸漬し、浸
漬管内のスラグ6を浸漬管外に排出した。転炉1の内径
が5m(面積約20m2 )であるのに対して、浸漬管
7の内径は2.5m(面積5m2 )であり、溶鋼表面
上の酸化性スラグは25%除去された。次に上吹きラン
ス2からアルゴンガス8を流量5000Nm3 /hr
で溶鋼表面に吹き付け、脱炭処理を12分行った。この
時の溶鋼表面のガス流速を測定したところ、約70m/
secであった。この間、炉底の羽口3からアルゴンガ
ス4を300Nm3/hrの流量で吹き込み続け、攪拌
を行った。上記脱炭処理から3分経過後に酸素濃度を測
定したところ、250ppmを示したため、炉底の吹き
込み羽口3からのアルゴンガス4に純酸素ガスを50N
m3 /hr混合し、5分間吹き込んで酸素濃度を35
0ppmまで上昇させた。この脱炭処理後の溶鋼の炭素
濃度は0.003%、マンガン濃度は0.30%となり
、わずかにマンガンが酸化したが、安定に炭素濃度は0
.005%以下に到達した。 実施例2 炉容250tの上底吹き転炉1において、溶銑から炭素
0.036%、マンガン0.32%、酸素500ppm
まで吹錬した時点で、図1に示すように、上吹きランス
2からの酸素供給を停止し、炉底に設置した4本のガス
吹き込み羽口3からアルゴンガス4を200Nm3 /
hrの流量で吹き込み、このガスによって溶鋼5の表面
のスラグ6を転炉内壁部へ押しやった状態で、事前に炉
内に設置したリング状の耐火物製浸漬管7を浸漬し、浸
漬管内のスラグ6を浸漬管外に排出した。転炉1の内径
が5m(面積約20m2 )あるのに対して、浸漬管7
の内径は2.5m(面積5m2 )であり、溶鋼表面上
の酸化性スラグは25%除去された。次に上吹きランス
2からアルゴンガスと窒素ガスの混合ガス8を流量60
00Nm3 /hrで溶鋼表面に吹き付け、脱炭処理を
10分行った。この時の溶鋼表面のガス流速を測定した
ところ、約70m/secであった。この間、炉底の羽
口3から、アルゴンガス4を200Nm3 /hrの流
量で吹き込み続け、攪拌を行った。上記脱炭処理から3
分経過後に酸素濃度を測定したところ、280ppmを
示したため、炉底の吹き込み羽口3からのガス4を純酸
素と二酸化炭素の混合ガスに切り換え、200Nm3 
/hrの流量で5分間吹き込み、酸素濃度を350pp
mに制御した。この脱炭処理後の溶鋼の炭素濃度は0.
004%、マンガン濃度は0.30%となり、わずかに
マンガンが酸化したが、安定に炭素濃度は0.005%
以下に到達した。 実施例3 炉容250tの上底吹き転炉1において、溶銑から炭素
0.040%、マンガン0.36%、酸素400ppm
まで吹錬した時点で、図1に示すように、上吹きランス
2からの酸素供給を停止し、炉底に設置した4本のガス
吹き込み羽口3からアルゴンガス4を200Nm3 /
hrの流量で吹き込み、このガスによって溶鋼5の表面
のスラグ6を転炉内壁部へ押しやった状態で、事前に炉
内に設置したリング状の耐火物製浸漬管7を浸漬し、浸
漬管内のスラグ6を浸漬管外に排出した。転炉1の内径
が5m(面積約20m2 )であるのに対して、浸漬管
7の内径は2.5m(面積5m2 )であり、溶鋼表面
上の酸化性スラグは25%除去された。次に上吹きラン
ス2からアルゴンガス8を流量6000Nm3 /hr
で溶鋼表面に吹きつけ、脱炭処理を12分行った。この
時の溶鋼表面のガス流速を測定したところ、約75m/
secであった。この間、炉底の羽口3からアルゴンガ
ス4を200Nm3/hrの流量で吹き込み続け、攪拌
を行った。上記脱炭処理から3分経過後に酸素濃度を測
定したところ、260ppmを示したため、図2に示す
ように、補助の耐火物製浸漬ランス9を浸漬し、酸素ガ
スとアルゴンガスの混合ガスを100Nm3 /hrの
流量で5分間吹き込み、酸素濃度を300ppmに制御
した。 この脱炭処理後の溶鋼の炭素濃度は0.003%、マン
ガン濃度は0.30%となり、わずかにマンガンが酸化
したが、安定に炭素濃度は0.005%以下に到達した
。 実施例4 炉容250tの上底吹き転炉1において、溶銑から炭素
0.035%、マンガン0.31%、酸素520ppm
まで吹錬した時点で、図1に示すように、上吹きランス
2からの酸素供給を停止し、炉底に設置した4本のガス
吹き込み羽口3からアルゴンガス4を250Nm3 /
hrの流量で吹き込み、このガスによって溶鋼5の表面
のスラグ6を転炉内壁部へ押しやった状態で、事前に炉
内に設置したリング状の耐火物製浸漬管7を浸漬し、浸
漬管内のスラグ6を浸漬管外に排出した。転炉1の内径
が5m(面積約20m2 )であるのに対して、浸漬管
7の内径は2.5m(面積5m2 )であり、溶鋼表面
上の酸化性スラグは25%除去された。次に上吹きラン
ス2からアルゴンガス8を流量6000Nm3 /hr
で溶鋼表面に吹き付け、脱炭処理を13分行った。この
時の溶鋼表面のガス流速を測定したところ、約70m/
secであった。この間、炉底の羽口3からアルゴンガ
ス4を200Nm3/hrの流量で吹き込み続け、攪拌
を行った。上記脱炭処理から3分経過後に酸素濃度を測
定したところ、290ppmを示したため、図3に示す
ように、補助の耐火物製浸漬ランス9を浸漬し、アルゴ
ンガス100Nm3 /hrをキャリアーガスとして酸
化鉄10を20kg/minずつ5分間(酸化鉄計10
0kg)吹き込み、酸素濃度を420ppmに制御した
。この脱炭処理後の溶鋼の炭素濃度は0.004%、マ
ンガン濃度は0.30%となり、わずかにマンガンが酸
化したが、安定に炭素濃度は0.005%以下に到達し
た。 比較例1 同じく炉容250tの上底吹き転炉1において、溶銑か
ら炭素0.034%、マンガン0.29%、酸素580
ppmまで吹錬した時点で、図1に示すように、上吹き
ランス2からの酸素供給を停止し、炉底に設置した4本
のガス吹き込み羽口3から、アルゴンガス4を200N
m3 /hrの流量で吹き込み、このガスによって溶鋼
5の表面のスラグ6を転炉内壁部へ押しやった状態で、
事前に炉内に設置したリング状の耐火物製浸漬管7を浸
漬し、浸漬管内のスラグ6を浸漬管外に排出した。転炉
1の内径が5m(面積約20m2 )であるのに対して
、浸漬管7の内径は2.5m(面積5m2 )であり、
溶鋼表面上の酸化性スラグは25%除去された。次に上
吹きランス2からアルゴンガス8を流量8000Nm3
 /hrで溶鋼表面に吹き付け、脱炭処理を10分行っ
た。この時の溶鋼表面のガス流速を測定したところ、約
80m/secであった。この間、炉底の羽口3からア
ルゴンガス4を200Nm3 /hrの流量で吹き込み
続け、攪拌を行った。上記脱炭処理から3分経過後に酸
素濃度を測定したが、300ppmを示したため、その
まま上吹きランス2からアルゴンガスのみを吹き続けた
。脱炭終了後、再度溶鋼の酸素濃度を測定すると200
ppmを示し、また炭素濃度は0.007%、マンガン
濃度は0.27%となり、炭素濃度0.005%以下に
は本時間内では到達しなかった。 比較例2 炉容250tの上底吹き転炉1において、溶銑から炭素
0.039%、マンガン0.31%、酸素520ppm
まで吹錬した時点で、図1に示すように、上吹きランス
2からの酸素供給を停止し、炉底に設置した4本のガス
吹き込み羽口3からアルゴンガス4を200Nm3 /
hrの流量で吹き込み、このガスによって溶鋼5の表面
のスラグ6を転炉内壁部へ押しやった状態で、事前に炉
内に設置したリング状の耐火物製浸漬管7を浸漬し、浸
漬管内のスラグ6を浸漬管外に排出した。転炉1の内径
が5m(面積約20m2 )であるのに対して、浸漬管
7の内径は2.5m(面積5m2 )であり、溶鋼表面
上の酸化性スラグは25%除去された。次に上吹きラン
ス2からアルゴンガス8を流量5000Nm3 /hr
で溶鋼表面に吹き付け、脱炭処理を10分行った。この
時の溶鋼表面のガス流速を測定したところ、約60m/
secであった。この間、炉底の羽口3からアルゴンガ
ス4を200Nm3/hrの流量で吹き込み続け、攪拌
を行った。上記脱炭処理から3分経過後に酸素濃度を測
定したところ、300ppmを示したため、上吹きラン
ス2からのアルゴンガスに純酸素ガスを500Nm3 
/hr混合し(酸素ガス濃度10%)、残りの5分間吹
き続けた。最終的に溶鋼中の酸素濃度は750ppmま
で上昇した。この脱炭処理後の溶鋼の炭素濃度は0.0
10%、マンガン濃度は0.21%となり、マンガンが
酸化し、また炭素濃度0.005%以下には到達しなか
った。
[Example] Example 1 In a top-bottom blowing converter 1 with a furnace capacity of 250 tons, 0.038% carbon, 0.34% manganese, and 470 ppm oxygen were extracted from hot metal.
As shown in Fig. 1, the oxygen supply from the top blowing lance 2 is stopped, and argon gas 4 is injected at a rate of 300 Nm3 /
hr flow rate, and with this gas pushing the slag 6 on the surface of the molten steel 5 towards the inner wall of the converter, a ring-shaped refractory immersion tube 7 installed in the furnace in advance is immersed, and the inside of the immersion tube is immersed. The slag 6 was discharged out of the dipping tube. The inner diameter of the converter 1 was 5 m (area: about 20 m2), whereas the inner diameter of the immersion tube 7 was 2.5 m (area: 5 m2), and 25% of the oxidizing slag on the surface of the molten steel was removed. Next, argon gas 8 is supplied from the top blow lance 2 at a flow rate of 5000Nm3/hr.
was sprayed onto the surface of the molten steel to perform decarburization treatment for 12 minutes. When we measured the gas flow velocity on the surface of the molten steel at this time, it was approximately 70m/
It was sec. During this time, argon gas 4 was continuously blown in from the tuyere 3 at the bottom of the furnace at a flow rate of 300 Nm<3>/hr to perform stirring. When the oxygen concentration was measured 3 minutes after the decarburization process, it showed 250 ppm, so 50 N of pure oxygen gas was added to the argon gas 4 from the blowing tuyere 3 at the bottom of the furnace.
m3/hr mixed and blown in for 5 minutes to bring the oxygen concentration to 35
It was raised to 0 ppm. After this decarburization treatment, the carbon concentration of the molten steel was 0.003%, and the manganese concentration was 0.30%. Although the manganese was slightly oxidized, the carbon concentration remained stable at 0.
.. It reached 0.005% or less. Example 2 In a top-bottom blowing converter 1 with a furnace capacity of 250 tons, 0.036% carbon, 0.32% manganese, and 500 ppm oxygen were extracted from hot metal.
As shown in Fig. 1, the oxygen supply from the top blowing lance 2 is stopped, and argon gas 4 is injected at a rate of 200 Nm3 /
hr flow rate, and with this gas pushing the slag 6 on the surface of the molten steel 5 towards the inner wall of the converter, a ring-shaped refractory immersion tube 7 installed in the furnace in advance is immersed, and the inside of the immersion tube is immersed. The slag 6 was discharged out of the dipping tube. While the inner diameter of the converter 1 is 5 m (area approximately 20 m2), the immersion tube 7
The inner diameter of the molten steel was 2.5 m (area: 5 m2), and 25% of the oxidizing slag on the surface of the molten steel was removed. Next, a mixed gas 8 of argon gas and nitrogen gas is supplied from the top blow lance 2 at a flow rate of 60.
It was sprayed onto the surface of the molten steel at a rate of 00 Nm3/hr to perform decarburization treatment for 10 minutes. The gas flow velocity on the surface of the molten steel at this time was measured and was approximately 70 m/sec. During this time, argon gas 4 was continuously blown into the furnace from the tuyere 3 at the bottom of the furnace at a flow rate of 200 Nm3/hr to perform stirring. 3 from the above decarburization process
When the oxygen concentration was measured after a minute had passed, it showed 280 ppm, so the gas 4 from the blowing tuyere 3 at the bottom of the furnace was changed to a mixed gas of pure oxygen and carbon dioxide, and the oxygen concentration was 200 Nm3.
Blow for 5 minutes at a flow rate of /hr to bring the oxygen concentration to 350pp.
It was controlled to m. The carbon concentration of the molten steel after this decarburization treatment is 0.
004%, the manganese concentration was 0.30%, and although the manganese was slightly oxidized, the carbon concentration remained stable at 0.005%.
The following has been reached. Example 3 In a top-bottom blowing converter 1 with a furnace capacity of 250 tons, 0.040% carbon, 0.36% manganese, and 400 ppm oxygen were extracted from hot metal.
As shown in Fig. 1, the oxygen supply from the top blowing lance 2 is stopped, and argon gas 4 is injected at a rate of 200 Nm3 /
hr flow rate, and with this gas pushing the slag 6 on the surface of the molten steel 5 towards the inner wall of the converter, a ring-shaped refractory immersion tube 7 installed in the furnace in advance is immersed, and the inside of the immersion tube is immersed. The slag 6 was discharged out of the dipping tube. The inner diameter of the converter 1 was 5 m (area: about 20 m2), whereas the inner diameter of the immersion tube 7 was 2.5 m (area: 5 m2), and 25% of the oxidizing slag on the surface of the molten steel was removed. Next, argon gas 8 is supplied from the top blow lance 2 at a flow rate of 6000Nm3/hr.
was sprayed onto the surface of the molten steel to perform decarburization treatment for 12 minutes. When we measured the gas flow velocity on the surface of the molten steel at this time, it was approximately 75 m/
It was sec. During this time, argon gas 4 was continuously blown in from the tuyere 3 at the bottom of the furnace at a flow rate of 200 Nm3/hr to perform stirring. When the oxygen concentration was measured 3 minutes after the decarburization process, it was found to be 260 ppm. Therefore, as shown in FIG. The oxygen concentration was controlled at 300 ppm by blowing at a flow rate of /hr for 5 minutes. After this decarburization treatment, the carbon concentration of the molten steel was 0.003%, and the manganese concentration was 0.30%, and although manganese was slightly oxidized, the carbon concentration stably reached 0.005% or less. Example 4 In a top-bottom blowing converter 1 with a furnace capacity of 250 tons, 0.035% carbon, 0.31% manganese, and 520 ppm oxygen were extracted from hot metal.
As shown in Fig. 1, the oxygen supply from the top blowing lance 2 is stopped, and argon gas 4 is injected at 250 Nm3 /
hr flow rate, and with this gas pushing the slag 6 on the surface of the molten steel 5 towards the inner wall of the converter, a ring-shaped refractory immersion tube 7 installed in the furnace in advance is immersed, and the inside of the immersion tube is immersed. The slag 6 was discharged out of the dipping tube. The inner diameter of the converter 1 was 5 m (area: about 20 m2), whereas the inner diameter of the immersion tube 7 was 2.5 m (area: 5 m2), and 25% of the oxidizing slag on the surface of the molten steel was removed. Next, argon gas 8 is supplied from the top blow lance 2 at a flow rate of 6000Nm3/hr.
was sprayed onto the surface of the molten steel to perform decarburization treatment for 13 minutes. When we measured the gas flow velocity on the surface of the molten steel at this time, it was approximately 70m/
It was sec. During this time, argon gas 4 was continuously blown in from the tuyere 3 at the bottom of the furnace at a flow rate of 200 Nm3/hr to perform stirring. When the oxygen concentration was measured 3 minutes after the decarburization process, it was found to be 290 ppm. Therefore, as shown in Figure 3, an auxiliary refractory immersion lance 9 was immersed, and argon gas 100 Nm3/hr was used as a carrier gas for oxidation. Iron 10 at 20 kg/min for 5 minutes (iron oxide total 10
0 kg) and controlled the oxygen concentration to 420 ppm. After this decarburization treatment, the carbon concentration of the molten steel was 0.004%, and the manganese concentration was 0.30%, and although manganese was slightly oxidized, the carbon concentration stably reached 0.005% or less. Comparative Example 1 In the same top-bottom blowing converter 1 with a furnace capacity of 250 tons, hot metal contains 0.034% carbon, 0.29% manganese, and 580% oxygen.
When the blowing reaches ppm, as shown in Fig. 1, the oxygen supply from the top blowing lance 2 is stopped, and 200N of argon gas 4 is introduced from the four gas blowing tuyeres 3 installed at the bottom of the furnace.
The gas was blown at a flow rate of m3/hr, and the slag 6 on the surface of the molten steel 5 was pushed toward the inner wall of the converter.
A ring-shaped refractory immersion tube 7 previously installed in the furnace was immersed, and the slag 6 inside the immersion tube was discharged to the outside of the immersion tube. The inner diameter of the converter 1 is 5 m (area approximately 20 m2), while the inner diameter of the immersion tube 7 is 2.5 m (area 5 m2).
25% of the oxidizing slag on the surface of the molten steel was removed. Next, argon gas 8 is supplied from the top blow lance 2 at a flow rate of 8000 Nm3.
/hr to perform decarburization treatment on the surface of the molten steel for 10 minutes. The gas flow velocity on the surface of the molten steel at this time was measured and was approximately 80 m/sec. During this time, argon gas 4 was continuously blown in from the tuyere 3 at the bottom of the furnace at a flow rate of 200 Nm3/hr to perform stirring. Three minutes after the decarburization process, the oxygen concentration was measured and showed 300 ppm, so only argon gas was continued to be blown from the top blowing lance 2. After the decarburization was completed, the oxygen concentration of the molten steel was measured again and it was 200.
ppm, and the carbon concentration was 0.007% and the manganese concentration was 0.27%, and the carbon concentration did not reach 0.005% or less within this time. Comparative Example 2 In a top-bottom blowing converter 1 with a furnace capacity of 250 tons, 0.039% carbon, 0.31% manganese, and 520 ppm oxygen were extracted from hot metal.
As shown in Fig. 1, the oxygen supply from the top blowing lance 2 is stopped, and argon gas 4 is injected at a rate of 200 Nm3 /
hr flow rate, and with this gas pushing the slag 6 on the surface of the molten steel 5 towards the inner wall of the converter, a ring-shaped refractory immersion tube 7 installed in the furnace in advance is immersed, and the inside of the immersion tube is immersed. The slag 6 was discharged out of the dipping tube. The inner diameter of the converter 1 was 5 m (area: about 20 m2), whereas the inner diameter of the immersion tube 7 was 2.5 m (area: 5 m2), and 25% of the oxidizing slag on the surface of the molten steel was removed. Next, argon gas 8 is supplied from the top blow lance 2 at a flow rate of 5000Nm3/hr.
was sprayed onto the surface of the molten steel to perform decarburization treatment for 10 minutes. When we measured the gas flow velocity on the surface of the molten steel at this time, it was approximately 60m/
It was sec. During this time, argon gas 4 was continuously blown in from the tuyere 3 at the bottom of the furnace at a flow rate of 200 Nm<3>/hr to perform stirring. When the oxygen concentration was measured 3 minutes after the decarburization process, it showed 300 ppm, so 500 Nm3 of pure oxygen gas was added to the argon gas from the top blowing lance 2.
/hr mixing (oxygen gas concentration 10%) and continued blowing for the remaining 5 minutes. Finally, the oxygen concentration in the molten steel rose to 750 ppm. The carbon concentration of molten steel after this decarburization treatment is 0.0
10%, the manganese concentration was 0.21%, the manganese was oxidized, and the carbon concentration did not reach 0.005% or less.

【0027】[0027]

【発明の効果】以上のように、本発明によれば、従来の
高価かつ大がかりで、きめ細かなメンテナンスが必要な
真空脱ガス装置を用いた極低炭素鋼の溶製方法に比較し
て、このような脱ガス設備等の改造や新設等を必要とす
ることなしに、通常の転炉吹錬の末期において単に溶鋼
表面のスラグを減少せしめ、さらに上部ランスから不活
性ガスを吹き付けながら、溶鋼中の酸素濃度を制御する
ことによって、通常の転炉吹錬にわずかの処理時間を付
加するだけで、真空脱ガス装置を用いた場合と同様に、
30分程度の脱炭時間で炭素濃度0.005%以下の極
低炭素鋼の溶製が可能となった。また、本発明によれば
、従来の真空脱ガス装置を用いた方法に比較して、転炉
という一つの反応容器だけで極低炭素鋼が溶製でき、溶
鋼の温度降下も少なく、また地金除去等による次の吹錬
への悪影響も殆どなく、メンテナンスが非常に容易とな
り、処理コストの低下が享受できる。また、炭素濃度が
0.005%以上、0.03%以下の濃度への脱炭も、
マンガン等の酸化もなく、当然のことながら従来のよう
な真空脱ガス装置を用いることなく溶製ができるのはい
うまでもない。
[Effects of the Invention] As described above, according to the present invention, compared to the conventional method for producing ultra-low carbon steel using a vacuum degassing device that is expensive, large-scale, and requires careful maintenance, this method is more effective. It is possible to simply reduce the slag on the surface of the molten steel at the final stage of normal converter blowing, without having to modify or install new degassing equipment, etc. By controlling the oxygen concentration of
It has become possible to produce ultra-low carbon steel with a carbon concentration of 0.005% or less in a decarburization time of about 30 minutes. Furthermore, according to the present invention, compared to the conventional method using a vacuum degassing device, ultra-low carbon steel can be produced using only one reaction vessel called a converter, the temperature drop of the molten steel is small, and There is almost no adverse effect on the next blowing due to gold removal, etc., maintenance is extremely easy, and processing costs can be reduced. In addition, decarburization to a carbon concentration of 0.005% or more and 0.03% or less is also possible.
It goes without saying that there is no oxidation of manganese, etc., and that it can be melted without using a conventional vacuum degassing device.

【0028】以上のように、本発明によれば、工業的規
模において、容易かつ確実、安価に極低炭素鋼が溶製で
きる等の優れた効果が得られる。
As described above, according to the present invention, excellent effects such as the ability to easily, reliably, and inexpensively produce ultra-low carbon steel on an industrial scale can be obtained.

【図面の簡単な説明】[Brief explanation of drawings]

【図1】図1は本発明および比較例の実施の態様を示す
説明図である。
FIG. 1 is an explanatory diagram showing embodiments of the present invention and a comparative example.

【図2】図2は本発明および比較例の他の実施の態様を
示す説明図である。
FIG. 2 is an explanatory diagram showing another embodiment of the present invention and a comparative example.

【図3】図3は本発明および比較例のさらに他の実施の
態様を示す説明図である。
FIG. 3 is an explanatory diagram showing still another embodiment of the present invention and a comparative example.

【符号の説明】[Explanation of symbols]

1    上底吹き転炉 2    上吹きランス 3    底吹き羽口 4    吹き込みガス 5    溶鋼 6    転炉スラグ 7    耐火物製浸漬体 8    吹き付けガス 9    耐火物製の浸漬ランス 10    固体状の酸化源 1 Top-bottom blowing converter 2 Top blow lance 3 Bottom-blown tuyere 4 Blowing gas 5 Molten steel 6 Converter slag 7 Immersed refractory body 8. Blowing gas 9 Immersion lance made of refractory material 10 Solid oxidation source

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】  上底吹き転炉の吹錬末期の溶鋼中炭素
濃度が0.04〜0.03%、酸素濃度が400〜70
0ppmの時点で上部ランスからの酸素供給を中断し、
炉底に配置した底吹き羽口からの不活性ガス吹き込みに
より溶鋼表面のスラグを除去した後、この部分に耐火物
製の浸漬体を浸漬して特定空間を形成し、かつ底吹き羽
口からの不活性ガス吹き込みにより上記スラグを除去し
た自由表面へ常に溶鋼を循環させつつ、該特定空間の溶
鋼表面に連続的に不活性ガスを吹き付けて溶鋼を脱炭す
る際に、上記特定空間の溶鋼表面に連続的に吹き付ける
不活性ガスの流速を20m/sec以上とすると共に溶
鋼中の酸素濃度を随時測定し、その濃度を250〜70
0ppmの範囲内に維持するように、かつ前記特定空間
の溶鋼表面には酸化物が蓄積しないように、酸化性のガ
スを溶鋼の内部に吹き込みながら供給することを特徴と
する転炉における極低炭素鋼の溶製方法。
Claim 1: The carbon concentration in the molten steel at the final stage of blowing in a top-bottom blowing converter is 0.04 to 0.03%, and the oxygen concentration is 400 to 70%.
At 0 ppm, the oxygen supply from the upper lance is interrupted,
After removing the slag on the surface of the molten steel by blowing inert gas from the bottom blowing tuyere located at the bottom of the furnace, a refractory immersion body is immersed in this area to form a specific space, and When decarburizing the molten steel by continuously blowing inert gas onto the surface of the molten steel in the specific space while constantly circulating the molten steel to the free surface from which the slag has been removed by blowing inert gas, the molten steel in the specific space is decarburized. The flow rate of the inert gas that is continuously blown onto the surface is set to 20 m/sec or more, and the oxygen concentration in the molten steel is measured from time to time, and the concentration is 250 to 70 m/sec.
The extremely low temperature in a converter is characterized by supplying an oxidizing gas while blowing it into the molten steel so as to maintain it within a range of 0 ppm and to prevent oxides from accumulating on the surface of the molten steel in the specific space. Carbon steel melting method.
【請求項2】  上底吹き転炉の吹錬末期の溶鋼中炭素
濃度が0.04〜0.03%、酸素濃度が400〜70
0ppmの時点で上部ランスからの酸素供給を中断し、
炉底に配置した底吹き羽口からの不活性ガス吹き込みに
より溶鋼表面のスラグを除去した後、この部分に耐火物
製の浸漬体を浸漬して特定空間を形成し、かつ底吹き羽
口からの不活性ガス吹き込みにより上記スラグを除去し
た自由表面へ常に溶鋼を循環させつつ、該特定空間の溶
鋼表面に連続的に不活性ガスを吹き付けて溶鋼を脱炭す
る際に、上記特定空間の溶鋼表面に連続的に吹き付ける
不活性ガスの流速を20m/sec以上とすると共に溶
鋼中の酸素濃度を随時測定し、その濃度を250〜70
0ppmの範囲内に維持するように、かつ前記特定空間
の溶鋼表面には酸化物が蓄積しないように、酸化鉄等の
固体状酸化源を溶鋼内部に吹き込みながら供給すること
を特徴とする転炉における極低炭素鋼の溶製方法。
2. The carbon concentration in the molten steel at the final stage of blowing in the top-bottom blowing converter is 0.04 to 0.03%, and the oxygen concentration is 400 to 70%.
At 0 ppm, the oxygen supply from the upper lance is interrupted,
After removing the slag on the surface of the molten steel by blowing inert gas from the bottom blowing tuyere located at the bottom of the furnace, a refractory immersion body is immersed in this area to form a specific space, and When decarburizing the molten steel by continuously blowing inert gas onto the surface of the molten steel in the specific space while constantly circulating the molten steel to the free surface from which the slag has been removed by blowing inert gas, the molten steel in the specific space is decarburized. The flow rate of the inert gas that is continuously blown onto the surface is set to 20 m/sec or more, and the oxygen concentration in the molten steel is measured from time to time, and the concentration is 250 to 70 m/sec.
A converter characterized in that a solid oxidation source such as iron oxide is supplied while being blown into the inside of the molten steel so as to maintain the concentration within the range of 0 ppm and to prevent oxides from accumulating on the surface of the molten steel in the specific space. A method for producing ultra-low carbon steel.
JP5745591A 1991-03-20 1991-03-20 Method for melting extremely low carbon steel in converter Withdrawn JPH04293711A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5745591A JPH04293711A (en) 1991-03-20 1991-03-20 Method for melting extremely low carbon steel in converter

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5745591A JPH04293711A (en) 1991-03-20 1991-03-20 Method for melting extremely low carbon steel in converter

Publications (1)

Publication Number Publication Date
JPH04293711A true JPH04293711A (en) 1992-10-19

Family

ID=13056145

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5745591A Withdrawn JPH04293711A (en) 1991-03-20 1991-03-20 Method for melting extremely low carbon steel in converter

Country Status (1)

Country Link
JP (1) JPH04293711A (en)

Similar Documents

Publication Publication Date Title
WO1997005291A1 (en) Process for vacuum refining of molten steel
US4001009A (en) Process for the manufacture of steels with a high chromium content
JP3214730B2 (en) Refining method of high purity steel using reflux type vacuum degasser
JPH04293711A (en) Method for melting extremely low carbon steel in converter
JPH09235611A (en) Production of extra-low sulfur pure iron having high cleanliness
JPH0153329B2 (en)
JP4419594B2 (en) Hot metal refining method
JPH04293712A (en) Method for melting extremely low carbon steel in converter
JPH04293710A (en) Method for melting extremely low carbon steel in converter
JPH02209414A (en) Method for producing dead soft steel under atmosphere
JPH05311228A (en) Method for melting ultralow carbon steel
JP2000212641A (en) High speed vacuum refining of molten steel
JPS5834527B2 (en) Teirinyousennoseizohouhou
JPH04254513A (en) Method for refining extremely low carbon steel
JPS63143216A (en) Melting method for extremely low carbon and low nitrogen steel
JPH04246118A (en) Method for melting extra-low carbon steel
JPH04254511A (en) Method for refining extremely low carbon steel
JPH04246117A (en) Method for melting extra-low carbon steel
JPH04254512A (en) Method for refining extremely low carbon steel
JPH0565525A (en) Production of extremely low carbon steel
JP2746630B2 (en) Melting method of ultra low carbon steel by vacuum degassing
JPH042712A (en) Method for producing dead soft steel in converter
JPH0565526A (en) Production of extremely low carbon steel
JPH0565521A (en) Production of extremely low carbon steel
JP3127733B2 (en) Manufacturing method of ultra clean ultra low carbon steel

Legal Events

Date Code Title Description
A300 Application deemed to be withdrawn because no request for examination was validly filed

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19980514