JPH05277621A - Ti or ti alloy casting mold material and manufacture thereof - Google Patents

Ti or ti alloy casting mold material and manufacture thereof

Info

Publication number
JPH05277621A
JPH05277621A JP4081862A JP8186292A JPH05277621A JP H05277621 A JPH05277621 A JP H05277621A JP 4081862 A JP4081862 A JP 4081862A JP 8186292 A JP8186292 A JP 8186292A JP H05277621 A JPH05277621 A JP H05277621A
Authority
JP
Japan
Prior art keywords
mold material
alloy
casting mold
alloy casting
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4081862A
Other languages
Japanese (ja)
Other versions
JP2965098B2 (en
Inventor
Shiro Watakabe
壁 史 朗 渡
Kenichiro Suzuki
木 健一郎 鈴
Koji Nishikawa
川 浩 二 西
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
Kawasaki Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kawasaki Steel Corp filed Critical Kawasaki Steel Corp
Priority to JP4081862A priority Critical patent/JP2965098B2/en
Publication of JPH05277621A publication Critical patent/JPH05277621A/en
Application granted granted Critical
Publication of JP2965098B2 publication Critical patent/JP2965098B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To provide Ti or Ti alloy casting mold material, which is molten Ti that is a casting metal or whose reaction against Ti alloy is very little, and the manufacture thereof. CONSTITUTION:The material is Ti composed of a powdery yttrium oxide Y2O3-x (0.08<=X<=0.12) with semi-stoichiometry composition in which oxygen is short, or Ti alloy casting mold material. The grain diameter of Y2O3-x is appropriately 1 to 40mum. The powdery Y2O3-x is manufactured by heating powdery Y2O3 which is mixed with excess powdery Y, in the temperature range of 1830K or above and 2080K or less, and crushed by means of a crushing device made of nitride and/or carbide.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はTiまたはTi合金の鋳
造に用いる鋳型材料の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a mold material used for casting Ti or Ti alloy.

【0002】[0002]

【従来の技術】チタンまたはチタン合金は特に液体状態
で活性であり、とりわけ酸素との親和力が強いため、鋳
造が最も困難な材料の1つとされている。酸素との強い
親和力はTi酸化物が熱力学的に安定であることに加え
て、Tiへの酸素の溶解度が非常に大きいことにもよ
る。そのためTi酸化物と同程度かあるいはより安定な
Al 2O3 やZrO2もこれらがTiと共存するとTiによって
還元され、解離した酸素がTi鋳造品を汚染、硬化させ
るため、これらは鋳型材料として使用できない。酸化物
以外の耐火材、窒化物や高融点金属、硫化物などもいろ
いろ鋳型材料として試みられているが、溶融状態のTi
に対して安定な鋳型材料は得られていない。
2. Description of the Related Art Titanium or titanium alloy is particularly in a liquid state.
It is active in, and has a strong affinity with oxygen,
It is considered one of the most difficult materials to make. Strong with oxygen
Affinity is due to the fact that Ti oxide is thermodynamically stable
Also, the solubility of oxygen in Ti is very high.
It Therefore, it is as stable as Ti oxide or more stable.
Al 2O3 And ZrO2When these coexist with Ti,
The reduced and dissociated oxygen contaminates and hardens the Ti casting.
Therefore, these cannot be used as a mold material. Oxide
Other refractory materials, nitrides, refractory metals, sulfides, etc.
Although it has been tried as a color template material, molten Ti
No stable mold material has been obtained.

【0003】そのような状況下で最近注目されているも
のに、CaOとY2O3がある。いずれも熱力学的に非常に
安定で、Ti中への溶解度が小さいため鋳型材料として
用いられるようになった。TiあるいはTi合金鋳造用
鋳型材料としてY2O3を用いることは既知の技術である。
そして鋳型造型用スラリーにも反応性の低い希土類系バ
インダーを用いる技術等(特開平03−8533号、同
03−8534号)により、鋳型材料との反応層の小さ
い鋳造体を得られるようになった。
Under these circumstances, CaO and Y 2 O 3 have recently received attention. All of them are thermodynamically very stable and have low solubility in Ti, so that they have come to be used as template materials. The use of Y 2 O 3 as a casting material for casting Ti or Ti alloys is a known technique.
Then, a technique of using a rare earth-based binder having a low reactivity also in the slurry for molding a mold (Japanese Patent Laid-Open Nos. 03-8533 and 03-8534) makes it possible to obtain a cast body having a small reaction layer with the mold material. It was

【0004】[0004]

【発明が解決しようとする課題】しかし、CaOは水に
対して慎重な取扱いをしなければならず、またCaO、
Y2O3はいずれも小物の鋳造品には適するが、特に大型品
の場合には冷却するまで時間がかかるため反応時間が長
くなり、健全な製品を得るには不充分である。
However, CaO must be handled carefully with water, and CaO,
All of Y 2 O 3 are suitable for small cast products, but especially for large products, it takes a long time to cool down and the reaction time becomes long, which is not sufficient for obtaining a sound product.

【0005】本発明は、さらに熱力学的に安定で、かつ
Tiへの溶解度が極めて小さい耐火材により、鋳造金属
である溶解TiまたはTi合金との反応が極めて少ない
TiまたはTi合金鋳造用鋳型材料およびその製造方法
を提供することを目的とする。
The present invention uses a refractory material that is thermodynamically stable and has a very low solubility in Ti, so that a Ti or Ti alloy casting mold material that reacts very little with molten Ti or a Ti alloy that is a casting metal. And a method for manufacturing the same.

【0006】[0006]

【課題を解決するための手段】本発明は、酸素が不足す
る準化学量論組成のイットリウム酸化物Y2O3-x(0.0
8≦x≦0.12)粉からなるTiまたはTi合金鋳造
用鋳型材料を提供するものである。このイットリウム耐
火物粉の粒径は1〜40μmの範囲に入るものが好まし
い。
SUMMARY OF THE INVENTION The present invention provides a substoichiometric oxygen-deficient yttrium oxide Y 2 O 3-x (0.0
8 ≦ x ≦ 0.12) A Ti or Ti alloy casting mold material made of powder is provided. The yttrium refractory powder preferably has a particle size in the range of 1 to 40 μm.

【0007】このようなイットリウム酸化物粉を製造す
るには、真空中または不活性雰囲気中で、1830K以
下2080K以下の温度範囲で、過剰のY粉と混合した
Y2O3粉を加熱する。この後、イットリウム酸化物粉を窒
化物製および/または炭化物製の粉砕装置を用いて真空
中または不活性雰囲気中で粉砕し、粒径を所定の範囲に
調整する。
In order to produce such yttrium oxide powder, it was mixed with an excess of Y powder in a temperature range of 1830 K or less and 2080 K or less in a vacuum or an inert atmosphere.
Heat Y 2 O 3 powder. After that, the yttrium oxide powder is pulverized in a vacuum or in an inert atmosphere using a pulverization device made of nitride and / or carbide to adjust the particle size to a predetermined range.

【0008】以下に本発明をさらに詳細に説明する。イ
ットリウム酸化物には、化学量論組成Y2O3に比べて酸素
がわずかに不足した準化学量論組成Y2O3-xが存在するこ
とが知られており、またその標準生成自由エネルギーも
与えられている。文献 R. J. Ackerman, E. G. Rauh
: J. Chem. Thermodynamics,5(1973)、331
を参照。そこで、まずこのデータと、溶融Ti(以下T
i(l)と記す)中のYとOの活量(文献 M. Hoch :
Titanium Sci. Technol., 3(1985)、143
1)から、Y2O3-xのTi(l)中の1973Kでの溶解
度を求める。なお、比較のためにY2O3、Al2O3 について
も同様に1973Kにおける溶解度を算出する。
The present invention will be described in more detail below. Yttrium oxide, the stoichiometric composition Y 2 O 3 oxygen has been known that sub-stoichiometric composition Y 2 O 3-x where insufficient slightly present in comparison with, also the standard free energy Is also given. Literature RJ Ackerman, EG Rauh
: J. Chem. Thermodynamics, 5 (1973), 331
See. Therefore, first, this data and molten Ti (hereinafter T
i (l)) Y and O activities (reference M. Hoch:
Titanium Sci. Technol., 3 (1985), 143
From 1), the solubility of Y 2 O 3-x in Ti (l) at 1973K is determined. For comparison, Y 2 O 3 and Al 2 O 3 are similarly calculated for solubility at 1973K.

【0009】各物質の1973Kにおける標準生成自由
エネルギーは以下の通りである。
The standard free energies of formation of each substance at 1973K are as follows.

【数1】 ただし、1973KではY2O3-xはY2O2.888(x=0.1
12)である。
[Equation 1] However, at 1973K, Y 2 O 3-x becomes Y 2 O 2.888 (x = 0.1
12).

【0010】Ti(l)中に固溶しているYおよびOの
活量として文献 ( R. J. Ackermanet al. : J. Chem. T
hermodynamics, 5(1973)、331)中の値を、
またAlの活量は Racult 基準から1wt%基準への変
換により求め、これらからTi(l)中への平衡溶解度
を求めると次のようになる。
The activity of Y and O in solid solution in Ti (l) is reported in the literature (RJ Ackerman et al .: J. Chem. T.
hermodynamics, 5 (1973), 331),
Further, the activity of Al is obtained by converting from the Racult standard to the 1 wt% standard, and the equilibrium solubility in Ti (l) is calculated from these as follows.

【数2】 [Equation 2]

【0011】以上より、Ti(l)中への平衡溶解度は
Y2O3-x(1973KではY2O2.888)が圧倒的に小さく、
安定であることがわかる。特に大型の製品を鋳造する際
には熱容量が大きく、冷却速度が小さいためY2O3でもO
が鋳造品表面に入り込む可能性があるが、Y2O3-xならば
還元されることはほとんどないと結論される。
From the above, the equilibrium solubility in Ti (l) is
Y 2 O 3-x (Y 2 O 2.888 at 1973K ) is overwhelmingly small,
It turns out that it is stable. Especially when casting large products, the heat capacity is large and the cooling rate is small, so even if Y 2 O 3 is used,
It is concluded that Y 2 O 3 -x is hardly reduced, although it may enter the casting surface.

【0012】このようなY2O3に比して酸素がわずかに不
足する準化学量論組成のY2O3-xをTiまたはTi合金鋳
造用の鋳型材料として用いることは、Ti(l)と鋳型
材料のY2O3-xとが反応しないため、TiまたはTi合金
の鋳造製品の鋳肌を美麗に仕上げることができるため、
製品表面仕上げ工程を大幅に省略することができ、極め
て有用である。
[0012] be used as a mold material for such Y 2 O 3 substoichiometric composition of oxygen is insufficient slightly compared to Y 2 O 3-x Ti or Ti alloy casting, Ti (l ) Does not react with Y 2 O 3-x of the mold material, so that the casting surface of the cast product of Ti or Ti alloy can be finished beautifully,
The product surface finishing step can be largely omitted, which is extremely useful.

【0013】このY2O3-xは次のようにして製造すること
ができる。すなわち、まずY2O3粉を過剰のY粉とともに
Arなどの不活性雰囲気中または真空中で1830K以
上2080K以下の温度に保持し、好ましくは10時間
以上20時間以下加熱する。温度時間の上限はそれより
も大きいと焼結が進行しすぎて粉砕が困難となる傾向が
あるためであり、下限はそれよりも小さいとY2O3-xにま
で還元されないためである。不活性雰囲気または真空中
で熱処理を行うのは、雰囲気が還元性であるとY2O3が優
先的に分解・蒸発してしまうからである。
This Y 2 O 3-x can be manufactured as follows. That is, first, Y 2 O 3 powder is held together with excess Y powder at a temperature of 1830 K or more and 2080 K or less in an inert atmosphere such as Ar or in a vacuum, and preferably heated for 10 hours or more and 20 hours or less. This is because if the upper limit of the temperature time is larger than that, sintering tends to proceed excessively, and pulverization tends to be difficult, and if the lower limit is smaller than that, Y 2 O 3-x is not reduced. The heat treatment is performed in an inert atmosphere or vacuum because Y 2 O 3 is preferentially decomposed and evaporated if the atmosphere is reducing.

【0014】加熱後は室温まで充分冷した後、不活性雰
囲気中または真空中でBN,Si3N4,WCなどの窒化物
および/または炭化物製の乳鉢やボールミル等で所要の
粒度になるまで粉砕する。
After heating, after sufficiently cooling to room temperature, in an inert atmosphere or in a vacuum, a mortar or ball mill made of a nitride and / or a carbide such as BN, Si 3 N 4 , WC, etc. until the desired particle size is obtained. Smash.

【0015】本発明で用いるY2O3-xのxの範囲と限定理
由は以下の通りである。すなわち、熱力学的に安定なY2
O3-xは温度毎に決まっており、前述の加熱温度1830
≦T≦2080に相当する組成範囲が0.08≦x≦
0.12であるためである。
The range of x of Y 2 O 3-x used in the present invention and the reasons for limitation are as follows. That is, thermodynamically stable Y 2
O 3-x is determined for each temperature, and the above-mentioned heating temperature 1830
The composition range corresponding to ≦ T ≦ 2080 is 0.08 ≦ x ≦
This is because it is 0.12.

【0016】また、真空中あるいは不活性ガス雰囲気中
で、BN,Si3N4 ,WCなどの非酸化物粉砕装置を用い
て粉砕する理由は、粉砕中に試料が酸化してY2O3になる
ことを防ぐためであり、粒径を1〜40μmに調整する
のが好適である理由は、1μmよりも細かいと鋳型材と
して造型した時に割れが入るためであり、40μmより
も粗いと鋳造製品の鋳肌性状が悪化するためである。
The reason for crushing using a non-oxide crusher such as BN, Si 3 N 4 or WC in vacuum or in an inert gas atmosphere is that the sample is oxidized during crushing and Y 2 O 3 is used. The reason why it is preferable to adjust the particle size to 1 to 40 μm is that if it is finer than 1 μm, cracks will be generated when molding as a mold material, and if it is rougher than 40 μm, it will be cast. This is because the casting surface properties of the product deteriorate.

【0017】[0017]

【実施例】以下に本発明を実施例に基づいて具体的に説
明する。
EXAMPLES The present invention will be specifically described below based on examples.

【0018】(実施例1)粒径2〜10μmのY2O3粉を
Ar雰囲気中で過剰金属Y粉と混合して1830K〜2
080Kで20時間加熱した後、Arガスを充填したグ
ローブボックス内で乳鉢を用いて粉砕してY2O3-x粉を作
製した。組成の同定は二重収束型高分解能質量分析装置
によった。粉砕後の粉から粒径1〜40μmのものを選
別して、質量比で5%になるようにSiO2ゾルを主成分と
するバインダーを混合し、撹拌し、精密鋳造スラリーを
作製した。これを30×30×150mmの直方体の製
品部12個をツリー状にした鋳型のフェースコートとし
て、厚さ2mmにコーティングし、その外層を厚さ5m
mになるまでジルコン+モロカイト+SiO2ゾルスラリー
でコーティングし、充分乾燥した後1573Kで3時間
焼成した。鋳造した合金はTi−6Al−4V合金(主
な成分は、Al 6.50%、V 4.08%、O
0.12%、Fe 0.20%)であり、電子ビーム溶
解炉で溶解した。溶解条件は100KW×10分で、出
場前に純Al塊を200g添加して成分を調整した。鋳
造重量は10kgで、鋳造後の製品の冷却速度をW−5
Re/W−26Re熱電対で測定した結果0.2℃/s
ec(真空炉冷)であった。
(Example 1) Y 2 O 3 powder having a particle size of 2 to 10 μm was mixed with excess metal Y powder in an Ar atmosphere to obtain 1830K to 2K.
After heating at 080 K for 20 hours, the powder was crushed using a mortar in a glove box filled with Ar gas to prepare Y 2 O 3 -x powder. The composition was identified by a double-focusing high-resolution mass spectrometer. A powder having a particle size of 1 to 40 μm was selected from the pulverized powder, and a binder containing SiO 2 sol as a main component was mixed so as to have a mass ratio of 5% and stirred to prepare a precision casting slurry. 12 pieces of 30 × 30 × 150 mm rectangular parallelepiped product are used as a tree face-shaped mold face coat to a thickness of 2 mm, and the outer layer is 5 m thick.
It was coated with zircon + morokite + SiO 2 sol slurry until the thickness became m, sufficiently dried and then baked at 1573K for 3 hours. The cast alloy is a Ti-6Al-4V alloy (main components are Al 6.50%, V 4.08%, O
0.12%, Fe 0.20%) and melted in an electron beam melting furnace. The dissolution conditions were 100 KW × 10 minutes, and 200 g of pure Al lumps were added before the appearance to adjust the components. The casting weight is 10 kg, and the cooling rate of the product after casting is W-5.
As measured by Re / W-26Re thermocouple, 0.2 ° C / s
It was ec (vacuum furnace cooling).

【0019】573Kで炉内から取り出し、製品部の断
面のビッカース硬度、およびEPMA分析から求めた酸
素濃化層の厚みと、最高濃度とを、比較のために行った
Y2O3,Al2O3 粉スラリーをフェースコートとした鋳型を
用いた場合の結果とともに表1に示す。ただし、バルク
よりも酸素量が多い部分を濃化層とした。これより、Y2
O3-xを用いた鋳型はTi合金溶湯とこれに接触していた
Y2O3-xとが反応せず、健全な表面の鋳物を得ることがで
きることがわかった。
The product was taken out of the furnace at 573 K, and the Vickers hardness of the cross section of the product portion, the thickness of the oxygen enriched layer obtained by EPMA analysis, and the maximum concentration were compared for comparison.
Table 1 shows the results when a mold having a face coat of Y 2 O 3 and Al 2 O 3 powder slurry was used. However, a portion where the amount of oxygen was larger than that of the bulk was used as the concentrated layer. From this, Y 2
The mold using O 3-x was in contact with the molten Ti alloy
It was found that Y 2 O 3-x did not react and a casting with a sound surface could be obtained.

【0020】(実施例2)実施例1と同様にして作成し
たY2O3-x(x=0.112)粒のうち、粒度分布を変化させた
ものを用いて鋳型を造型し、鋳造実験を行った。粒度分
布は、1μm以下、1〜40μm、40μm〜100μ
mの3条件とした。結果を表2に示す。これから、本発
明の請求範囲である1〜40μmの粒度分布が鋳型造型
条件として最適であることがわかる。
(Example 2) Of the Y 2 O 3-x (x = 0.112) grains prepared in the same manner as in Example 1, those having a changed grain size distribution were used to mold a mold, and casting experiments were conducted. went. Particle size distribution is 1 μm or less, 1 to 40 μm, 40 μm to 100 μ
3 conditions of m. The results are shown in Table 2. From this, it is understood that the particle size distribution of 1 to 40 μm, which is the claimed range of the present invention, is the most suitable as the molding condition for the mold.

【0021】 [0021]

【0022】 [0022]

【0023】[0023]

【発明の効果】Y2O3-xを鋳型のフェースコート材料とし
て用いた鋳型は大型で冷却速度が非常に遅い場合でもT
i合金溶湯と反応しないため、健全な表面の鋳物を得る
ことができる。これにより、反応層除去のための後工程
が省略できるためコスト低下が見込まれ、さらに寸法精
度も向上する。
EFFECT OF THE INVENTION A mold using Y 2 O 3 -x as a face coat material for the mold has a large size and a T ratio even if the cooling rate is very slow.
Since it does not react with the molten i alloy, a casting with a sound surface can be obtained. This can reduce the cost because the post-process for removing the reaction layer can be omitted, and the dimensional accuracy is further improved.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】酸素が不足する準化学量論組成のイットリ
ウム酸化物Y2O3-x(0.08≦x≦0.12)粉からな
るTiまたはTi合金鋳造用鋳型材料。
1. A Ti or Ti alloy casting mold material made of Y 2 O 3 -x (0.08 ≦ x ≦ 0.12) powder having a quasi-stoichiometric composition and lacking oxygen.
【請求項2】イットリウム酸化物粉の粒径は1〜40μ
mである請求項1に記載のTiまたはTi合金鋳造用鋳
型材料。
2. The particle size of yttrium oxide powder is 1 to 40 μm.
The mold material for casting Ti or Ti alloy according to claim 1, wherein m is m.
【請求項3】請求項1または2に記載のイットリウム酸
化物粉を製造するに際し、真空中または不活性雰囲気中
で、1830K以下2080K以下の温度範囲で、過剰
のY粉と混合したY2O3粉を加熱することを特徴とするT
iまたはTi合金鋳造用鋳型材料の製造方法。
3. The method for producing the yttrium oxide powder according to claim 1 or 2, wherein Y 2 O mixed with an excess of Y powder in a temperature range of 1830 K or less and 2080 K or less in a vacuum or an inert atmosphere. T characterized by heating 3 powders
The manufacturing method of the i or Ti alloy casting mold material.
【請求項4】請求項1または2に記載のイットリウム酸
化物粉を製造するに際し、請求項3で得られたイットリ
ウム酸化物粉を窒化物製および/または炭化物製の粉砕
装置を用いて真空中または不活性雰囲気中で粉砕し、粒
径を所定の範囲に調整する請求項3に記載のTiまたは
Ti合金鋳造用鋳型材料の製造方法。
4. When producing the yttrium oxide powder according to claim 1 or 2, the yttrium oxide powder obtained in claim 3 is vacuumed using a crushing device made of nitride and / or carbide. Alternatively, the method for producing a Ti or Ti alloy casting mold material according to claim 3, wherein the grain size is adjusted within a predetermined range by pulverizing in an inert atmosphere.
JP4081862A 1992-04-03 1992-04-03 Mold material for casting Ti or Ti alloy and method for producing the same Expired - Fee Related JP2965098B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4081862A JP2965098B2 (en) 1992-04-03 1992-04-03 Mold material for casting Ti or Ti alloy and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4081862A JP2965098B2 (en) 1992-04-03 1992-04-03 Mold material for casting Ti or Ti alloy and method for producing the same

Publications (2)

Publication Number Publication Date
JPH05277621A true JPH05277621A (en) 1993-10-26
JP2965098B2 JP2965098B2 (en) 1999-10-18

Family

ID=13758294

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4081862A Expired - Fee Related JP2965098B2 (en) 1992-04-03 1992-04-03 Mold material for casting Ti or Ti alloy and method for producing the same

Country Status (1)

Country Link
JP (1) JP2965098B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015205325A (en) * 2014-04-22 2015-11-19 株式会社Ihi CASTING METHOD OF TiAl ALLOY

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015205325A (en) * 2014-04-22 2015-11-19 株式会社Ihi CASTING METHOD OF TiAl ALLOY

Also Published As

Publication number Publication date
JP2965098B2 (en) 1999-10-18

Similar Documents

Publication Publication Date Title
CA1174083A (en) Process for the preparation of alloy powders which can be sintered and which are based on titanium
USRE40100E1 (en) Fabrication of B/C/N/O/Si doped sputtering targets
Das et al. A review on the various synthesis routes of TiC reinforced ferrous based composites
US4040845A (en) Ceramic composition and crucibles and molds formed therefrom
CN108374113A (en) A kind of preparation method of TaTiZrAlSi high-entropy alloys and its powder
JPH03115535A (en) Method for decreasing oxygen in rare earth metal
IE60082B1 (en) Method for producing self-supporting ceramic bodies with graded properties
JPH0122221B2 (en)
JPH07172932A (en) Preparation of silicon nitride base material, material prepared by this method and its use
JPH07233434A (en) Corrosion resistant material and its production
JPH05277621A (en) Ti or ti alloy casting mold material and manufacture thereof
JP3793813B2 (en) High strength titanium alloy and method for producing the same
JPH03193623A (en) Production of conjugated boride powder in as mo2feb2-base
Ahn et al. Cu-based cermets prepared by mechanical alloying
JPH0254760A (en) Manufacture of target
JPH0742530B2 (en) Manufacturing method of low oxygen alloy compact
JPS6317210A (en) Production of aluminum nitride powder
US5896784A (en) Die for superplastic forming of titanium-based alloy
JPH04371536A (en) Production of tial intermetallic compound powder
JPS61227908A (en) Preparation of raw material powder for sintered silicon nitride
JPH0791637B2 (en) Sputtering alloy target and manufacturing method thereof
Yankee et al. Transient liquid-phase sintering of ceramic-reinforced Fe-based composites
JP3413921B2 (en) Method for producing Ti-Al based intermetallic compound sintered body
Itin Reaction of stomatological porcelain with titanium and titanium nickelide during sintering
Selchert et al. Reaction Synthesis of Refractory Metal‐Ceramic Composites

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19990706

LAPS Cancellation because of no payment of annual fees