JPH0527672B2 - - Google Patents

Info

Publication number
JPH0527672B2
JPH0527672B2 JP25529884A JP25529884A JPH0527672B2 JP H0527672 B2 JPH0527672 B2 JP H0527672B2 JP 25529884 A JP25529884 A JP 25529884A JP 25529884 A JP25529884 A JP 25529884A JP H0527672 B2 JPH0527672 B2 JP H0527672B2
Authority
JP
Japan
Prior art keywords
substance
chemical heating
heating element
substances
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP25529884A
Other languages
Japanese (ja)
Other versions
JPS61133284A (en
Inventor
Kenji Tsuda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iwax Inc
Original Assignee
Iwax Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iwax Inc filed Critical Iwax Inc
Priority to JP59255298A priority Critical patent/JPS61133284A/en
Publication of JPS61133284A publication Critical patent/JPS61133284A/en
Publication of JPH0527672B2 publication Critical patent/JPH0527672B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

本発明は水を添加することによつて、連鎖発熱
反応を生ずる化学発熱体に関するもので、その1
応用例として簡易湯沸器について詳述するが、無
論湯沸器の内容物は水に限定されものではない。 例えば周知の即席めん類やコーヒーあるいはカ
レー、スープ等の調理済食品等が挙げられよう。 従来から、化学発熱体を用いて食品を加熱する
方法に関しては、実開昭56−99349、特開昭55−
28436等に具体的な提案が見うけられ、又化学カ
イロを食品の加熱に応用するものとして特開昭56
−165856、同57−3637等の提案がある。 一方、金属粉末を基本構成物質の1つとする水
と反応する化学発熱体に関しては、特開昭49−
78943、同50−40477、同52−113383、同55−
99544、同55−135188等の提案があり、又熱エネ
ルギー源としての立場からは、特開昭57−
123801、米国特許3348919、同3540854等の提案が
見うけられる。 本発明者は20Kcal−これは300mlの水の温度を
約60゜上昇させ得るに十分な熱量である−の熱量
を被加熱物に与え得る化学発熱体を鋭意研究中、
逐に本発明を完成するに至つた。 以下、本発明の説明を行なうが、無論説明に誤
まりがあつても、何ら本発明の効果を減ずるもの
ではない。 本発明は3種類以上の物質の組合せに基づく2
種類以上の化学発熱反応から成り、それが次々と
連鎖発熱反応を生じる結果、単位時間の熱エネル
ギー発生量が極めて大きい事を特徴としている。 この化学発熱体を構成する物質群は、これから
述べる物質以外にも数多く存在すると考えられる
が、安全衛生、無公害という立場から、毒、劇物
に相当する物質は全て検討対象外とした。 本発明に係る化学発熱体を構成する物質につい
て、公知である基本的な水との発熱反応を次に述
べる。 1 アルカリ土類金属酸化物の反応 「CaO+H2O→Ca(OH2)」 発熱反応を生じ、生成物はアルカリ性を示
す。 2 アルカリ金属塩の無水物 「Na2SO4、Na2S2O3、Na2HPO4、Na2CO3」 これらの物質は、水和物を生ずる際に発熱す
る。 3 無水塩化第2鉄 この物質は水和物を生ずる際に発熱する。 本化学発熱体は構成する物質の公知である基本
的な反応は以上述べて来たとおりであり、従つて
各々の単物質の発熱反応を利用しても相応の効果
は期待出来よう。 しかし、本発明者の調査研究によれば、単物質
の発熱反応において最も可能性の大きいと思われ
る酸化カルシウムの発熱反応ですら、実用化段階
において幾つかの欠点が存在したのである。 酸化カルシウムの理論発熱量は下記の如く見積
られる。 CaO+H2O→Ca(OH2) △HfCaO=−635.1KJ/mol △HfH2O=−285.8KJ/mol △HfCa(OH)2=−986.1KJ/mol 従つて発熱量△Hrは次のように求められる。 △Hr=△HfCa(OH)2−(△HfCa+△HfH2O) =−65.2KJ/mol =−15.6Kcal/mol 即ち20Kcal程度の発熱量を得ようとすれば、
約71gの酸化カルシウムが必要となる。 これは化学発熱体の重量としては比較的重いと
思われる。 現在、工業的に入手可能な酸化カルシウムとし
ては見掛比重約1.2の類粒生石灰があり、従つて、
71gの理論体積は約60cm3と見積られるが、現実に
は粗大粒子も混在し、更に大きくなつた。 次に水和反応後、生石灰は消石灰となるが、こ
の際、体積膨張現象を生じた。 又、温度上昇速度および最高到達温度が予測し
ていた値よりも大幅に低い値である等の幾多の障
害が実用化を妨げたのである。 このように、簡易湯沸器を実用化するには、熱
エネルギーの高密度化および熱エネルギー発生速
度の高速化が必要条件であつた。 本発明者はこの2条件を満足し得る化学発熱体
を鋭意調査研究中、以下の実施例に述べる如く、
逐に簡易湯沸器を完成するに致つたのである。 なお、これから詳述する参考例、実施例におい
て水温測定に用いた簡易湯沸器の構造は、全て添
付図面と同じ構造の物を用いた。 参考例 簡易湯沸器のA部に化学発熱体No.1として、軽
焼ドロマイト(MgO:CaO=3:7 ワクイケ
ミカル(有)製造、以下同様)45g、No.2として上層
に軽焼ドロマイト35gと下層に200メツシユ以下
の金属アルミニウム粉末(湊アルミニウム工業所
(株)製造、以下同様、Al粉末と略す)10g、No.3
として顆粒生石灰(ワクイケミカル(有)製造、以下
同様)45g、No.4として上層に顆粒生石灰35g、
下層に200メツシユ以下の金属アルミニウム粉末
10g、No.5として上層に顆粒生石灰25g、中層に
200メツシユ以下の金属アルミニウム粉末10g、
下層に顆粒生石灰10gの化学発熱体を配合し、次
に各々の簡易湯沸器の容器1に18℃の水を330ml、
容器3に18℃の水を70ml注いだ後、直ちに上部開
口部をアルミホイルで覆い水温の変化を測定し
た。 それらの化学発熱体の配合構成を表−1に、水
温測定結果を表−1−1に示した。
The present invention relates to a chemical heating element that generates a chain exothermic reaction by adding water, part 1 of the present invention.
Although a simple water heater will be described in detail as an application example, the content of the water heater is of course not limited to water. Examples include well-known ready-to-eat noodles, coffee, curry, soup, and other cooked foods. Conventionally, methods for heating food using chemical heating elements have been disclosed in Japanese Utility Model Application Publication No. 1983-99349 and Japanese Patent Application Publication No. 1983-1999.
Specific proposals can be found in 28436, etc., and Japanese Patent Publication No. 56 (1983) proposed the application of chemical warmers to heating food.
There are proposals such as -165856 and 57-3637. On the other hand, regarding a chemical heating element that reacts with water and has metal powder as one of its basic constituents,
78943, 50-40477, 52-113383, 55-
There have been proposals such as 99544 and 55-135188, and from the standpoint of a thermal energy source, JP-A-57-
123801, US Patent No. 3348919, US Patent No. 3540854, etc. can be found. The present inventor is currently actively researching a chemical heating element that can impart 20 Kcal to a heated object, which is enough heat to raise the temperature of 300 ml of water by approximately 60 degrees.
The present invention was gradually completed. The present invention will be explained below, but even if there is an error in the explanation, it will not diminish the effects of the present invention in any way. The present invention is based on a combination of three or more substances.
It consists of more than one type of chemical exothermic reaction, and as a result of successive chain exothermic reactions, it is characterized by an extremely large amount of thermal energy generated per unit time. It is thought that there are many other substances that make up this chemical heating element other than those mentioned below, but from the standpoint of safety, hygiene, and non-pollution, all substances that are considered poisonous or deleterious substances were excluded from consideration. Regarding the substances constituting the chemical heating element according to the present invention, the known basic exothermic reaction with water will be described below. 1 Reaction of alkaline earth metal oxides "CaO + H 2 O → Ca (OH 2 )" An exothermic reaction occurs, and the product shows alkalinity. 2. Anhydrous alkali metal salts "Na 2 SO 4 , Na 2 S 2 O 3 , Na 2 HPO 4 , Na 2 CO 3 " These substances generate heat when forming hydrates. 3 Anhydrous ferric chloride This substance generates heat when it forms a hydrate. The known basic reactions of the constituent substances of this chemical heating element have been described above, and therefore, corresponding effects can be expected even if the exothermic reactions of each single substance are used. However, according to research conducted by the present inventors, even the exothermic reaction of calcium oxide, which is thought to have the greatest potential among exothermic reactions of a single substance, had several drawbacks at the stage of practical application. The theoretical calorific value of calcium oxide is estimated as follows. CaO+H 2 O→Ca(OH 2 ) △HfCaO=−635.1KJ/mol △HfH 2 O=−285.8KJ/mol △HfCa(OH) 2 =−986.1KJ/mol Therefore, the calorific value △Hr is as follows Desired. △Hr=△HfCa(OH) 2 −(△HfCa+△HfH 2 O) = −65.2KJ/mol = −15.6Kcal/mol In other words, if you want to obtain a calorific value of about 20Kcal,
Approximately 71g of calcium oxide is required. This seems to be relatively heavy for a chemical heating element. Currently, the industrially available calcium oxide is quicklime, which has an apparent specific gravity of approximately 1.2.
The theoretical volume of 71 g is estimated to be about 60 cm 3 , but in reality it was even larger due to the presence of coarse particles. Next, after a hydration reaction, the quicklime turned into slaked lime, but at this time, a volumetric expansion phenomenon occurred. In addition, numerous obstacles hindered its practical application, such as the rate of temperature increase and the maximum temperature that were much lower than expected. Thus, in order to put a simple water heater into practical use, it is necessary to increase the density of thermal energy and increase the rate of generation of thermal energy. The present inventor is actively investigating and researching chemical heating elements that can satisfy these two conditions, and as described in the following examples,
Little by little, they were able to complete a simple water heater. In addition, the structure of the simple water heater used for water temperature measurement in the reference examples and examples described in detail from now on was all the same structure as the attached drawing. Reference example: 45g of lightly calcined dolomite (MgO:CaO=3:7 manufactured by Wakui Chemical Co., Ltd., hereinafter the same) as chemical heating element No. 1 in part A of a simple water heater, and lightly calcined dolomite as No. 2 in the upper layer. Metal aluminum powder of 35g and 200 mesh or less in the lower layer (Minato Aluminum Industry Co., Ltd.)
Manufactured by Co., Ltd. (hereinafter referred to as Al powder) 10g, No. 3
As No. 4, 45 g of granulated quicklime (manufactured by Wakui Chemical Co., Ltd., hereinafter the same), 35 g of granulated quicklime in the upper layer as No. 4,
Metal aluminum powder of less than 200 mesh in the lower layer
10g, 25g of granulated quicklime in the upper layer as No. 5, in the middle layer
10g of metal aluminum powder of 200 mesh or less,
Mix 10g of granulated quicklime as a chemical heating element in the lower layer, then add 330ml of 18℃ water to container 1 of each simple water heater.
After pouring 70 ml of 18°C water into container 3, the upper opening was immediately covered with aluminum foil and changes in water temperature were measured. The composition of the chemical heating elements is shown in Table 1, and the water temperature measurement results are shown in Table 1-1.

【表】【table】

【表】 表−1−1の測定結果から明らかな如く、No.5
の化学発熱体の発生した熱量が最も大きかつた
が、しかし簡易湯沸器としては未だ不十分であつ
た。 ただし、少なくともAl粉末を何らかの物質で
包むような配合構成が、より大きな発熱量を得る
には適していると考えられた。 本発明者は第1類の物質として軽焼ドロマイト
又は顆粒生石灰、第2類の物質としてAl粉末と
いう物質構成において、参考例以上の高い発熱体
反応性を付与する第3類の物質の調査研究を進め
た結果、先ず過炭酸ナトリウム(Na2CO3
1.5H2O)と過ホウ酸ナトリウム(NaBO2
H2O)(何れも三菱ガス化学(株)製造)という物質
が極めて有効であることを発見した。 そして次に塩化ナトリウム(NaCl)と炭酸ナ
トリウム(Na2CO3)(何れも和光純薬工業(株)製
造)の有効性が確認された。 実施例 1 簡易湯沸器のA部に、上層に軽焼ドロマイト25
g、中層に200メツシユ以下のAl粉末10gを共通
成分とし、下層に化学発熱体No.6として
Na2CO3・1.5H2O5g、No.7としてNaBO2
H2O5g、No.8としてNaCl10g、No.9として
Na2CO310gを各々配合した化学発熱体を配合
し、次に各々の容器1に18℃の水を330ml、容器
3に18℃の水を70ml注いだ後、直ちに上部開口部
をアルミホイルで覆い水温の変化を測定した。 これらの化学発熱体の配合構成を表−2に、水
温測定結果を表−2−1に示した。
[Table] As is clear from the measurement results in Table-1-1, No.5
The amount of heat generated by the chemical heating element was the largest, but it was still insufficient for a simple water heater. However, it was thought that a composition in which at least the Al powder is wrapped in some kind of substance would be suitable for obtaining a larger calorific value. The present inventor has researched and researched a 3rd class substance that has a material composition of lightly calcined dolomite or granulated quicklime as a 1st class substance and Al powder as a 2nd class substance, and that provides higher heating element reactivity than the reference example. As a result of proceeding with the process, firstly, sodium percarbonate (Na 2 CO 3
1.5H 2 O) and sodium perborate (NaBO 2
They discovered that a substance called H 2 O) (both manufactured by Mitsubishi Gas Chemical Co., Ltd.) was extremely effective. Next, the effectiveness of sodium chloride (NaCl) and sodium carbonate (Na 2 CO 3 ) (both manufactured by Wako Pure Chemical Industries, Ltd.) was confirmed. Example 1 Lightly calcined dolomite 25 is used as the upper layer in part A of a simple water heater.
g, 10g of Al powder of 200 mesh or less is used as a common component in the middle layer, and chemical heating element No. 6 is used in the lower layer.
Na 2 CO 3・1.5H 2 O5g, NaBO 2・ as No.7
5g of H 2 O, as No. 8 NaCl 10g, as No. 9
Mix chemical heating elements each containing 10g of Na 2 CO 3 , then pour 330ml of 18°C water into each container 1 and 70ml of 18°C water into container 3, then immediately cover the top opening with aluminum foil. The water temperature was measured by covering it with water. The composition of these chemical heating elements is shown in Table 2, and the water temperature measurement results are shown in Table 2-1.

【表】【table】

【表】 前記参考例とこの実施例1を比較すれば、第3
類の物質配合による発生熱量の増大は明白であ
る。 その結果から他にも有効な物質が存在する可能
性が確かなものとなつたが、それらの物質の広範
囲な探索を開始する前に、基本的な問題である各
層の配合比率および各層の構成物質と水温変化の
相関性について調査を行なつた。 実施例 2 上層の軽焼ドロマイトの量を15g、25g、35
g、中層の200メツシユ以下のAl粉末の量を5
g、10g、15g、下層のNa2CO3・1.5H2Oの量を
5g、10g、15gと変えて、化学発熱体を配合
し、実施例1と同様な方法で水温の変化を測定し
た。 これらの化学発熱体のNo.と配合比率の関係を表
−3に、水温測定結果を表−3−1に示した。
[Table] Comparing the above reference example and this Example 1, the third
It is obvious that the amount of heat generated is increased by mixing similar substances. The results confirmed the possibility that other effective substances exist, but before starting a wide-ranging search for these substances, it is important to consider the basic issues of the blending ratio of each layer and the composition of each layer. We investigated the correlation between substances and water temperature changes. Example 2 The amount of lightly calcined dolomite in the upper layer was 15g, 25g, and 35g.
g, the amount of Al powder of 200 mesh or less in the middle layer is 5
The amount of Na2CO31.5H2O in the lower layer was changed to 5g, 10g, and 15g, and a chemical heating element was added, and the change in water temperature was measured in the same manner as in Example 1. . The relationship between the numbers of these chemical heating elements and their blending ratios is shown in Table 3, and the water temperature measurement results are shown in Table 3-1.

【表】【table】

【表】【table】

【表】 この結果から、3種類の同一物質の配合比率を
種々変えることにより、水温上昇速度と最高到達
温度を自由に制御することが可能なことが理解し
得る。 又、次のような一般的特徴が読みとれる。 イ 軽焼ドロマイト量と発熱反応の相関性 No.15、17、18を比較すれば、軽焼ドロマイト
量が最も少ないNo.17の初期温度上昇速度がやや
遅い程度で、最高到達温度は何れも、ほぼ同一
水準に達している。 すなわち、軽焼ドロマイト量は初期温度上昇
速度を規定していると思われる。 ロ 200メツシユAl粉末量と発熱反応の相関性 No.10、11、12で比較すれば、Al粉末量の多
い方が最高到達温度が高くなつているが、逆に
初期温度上昇速度は遅くなつている。 ハ Na2CO3・1.5H2O量と発熱反応の相関性 Al粉末量が5gのNo.10、15、16で比較すれ
ばNa2CO3・1.5H2O量の多い方向に、初期温度
上昇速度および最高到達温度の一次相関が見ら
れるが、Al粉末量が10gのNo.11、13、14で比
較すれば、No.13が初期温度上昇速度、最高到達
温度において最も高い発熱反応活性を示すとい
う特異な相関性が見られる。 今後の調査研究を化学発熱体No.13と同じ量的比
率で行なうことにし、次の実施例では、軽焼ドロ
マイト、Al粉末、Na2CO3・1.5H2Oの3物質の
各配合層位置と発熱反応の相関性を調査した。 実施例 3 軽焼ドロマイト25g、200メツシユ以下のAl粉
末10g、Na2CO3・1.5H2O10gを各々秤量し、表
−4の配合層位置関係で化学発熱体を製造し、実
施例1と同様な方法で水温の変化を測定した。 これらの化学発熱体のNo.と配合層位置の関係を
表−4に、水温測定結果を表−4−1に示した。
[Table] From this result, it can be understood that by varying the blending ratio of the three types of the same substances, it is possible to freely control the water temperature increase rate and the maximum temperature reached. Additionally, the following general characteristics can be discerned. B Correlation between the amount of lightly calcined dolomite and exothermic reaction Comparing Nos. 15, 17, and 18, the initial temperature rise rate of No. 17, which has the least amount of lightly calcined dolomite, is a little slow, but the maximum temperature reached for all of them is , have reached almost the same level. In other words, the amount of lightly calcined dolomite seems to regulate the initial temperature rise rate. (b) Correlation between the amount of 200 mesh Al powder and exothermic reaction Comparing Nos. 10, 11, and 12, the highest temperature reached is higher with a larger amount of Al powder, but conversely, the initial temperature rise rate is slower. ing. (c) Correlation between the amount of Na 2 CO 3・1.5H 2 O and the exothermic reaction When comparing Nos. 10, 15, and 16 with 5 g of Al powder, the amount of Na 2 CO 3・1.5H 2 O is higher in the initial There is a linear correlation between the temperature increase rate and the maximum temperature reached, but when comparing Nos. 11, 13, and 14 with an Al powder amount of 10 g, No. 13 has the highest exothermic reaction in terms of initial temperature rise rate and maximum temperature. A unique correlation can be seen in that it shows activity. We decided to conduct future research and research using the same quantitative ratio as chemical heating element No. 13, and in the next example, we will investigate the composition of each layer of the three substances: light calcined dolomite, Al powder, and Na 2 CO 3・1.5H 2 O. The correlation between position and exothermic reaction was investigated. Example 3 Weighed 25 g of lightly calcined dolomite, 10 g of Al powder of 200 mesh or less, and 10 g of Na 2 CO 3 .1.5H 2 O, and produced a chemical heating element according to the layer position relationship shown in Table 4. Changes in water temperature were measured using a similar method. The relationship between the number of these chemical heating elements and the position of the blended layer is shown in Table 4, and the water temperature measurement results are shown in Table 4-1.

【表】【table】

【表】 その結果No.20の配合層位置の化学発熱体の初期
温度上昇速度がやや遅いということを除けば、最
高到達温度も含めて、何れもほぼ同じ発熱活性を
示しており、各物質の配合層位置が特に限定され
ることはない。 発熱反応終了後の簡易湯沸器のA部を点検して
みると、各物質とも急激な発熱反応による水蒸気
ガスの噴出によつて、自然に混合された状態にな
つており、その為に配合層位置と発熱反応に相関
性がないものと思われる。 実施例1で明らかになつた如く、中性塩である
NaClが発熱反応を活性化するという事実に基づ
き、先ず第1に広範囲な物質の調査研究を行な
い、次の段階で、調査範囲を絞り、反応を活性化
する全ての物質を選出する作業を行なつた。 実施例 4 上層に顆粒生石灰25g、中層に200メツシユ以
下のAl粉末10gまでも共通配合とし、下層の配
合物質(和光純薬工業(株)製造)10gの種類につい
ては下記表−5記載の配合の各化学発熱体を製造
し、実施例1と同様な方法で水温の変化を測定
し、その結果を表−5−1に示した。 但し、表−5記載の物質の中LiClは日本化学工
業(株)製造、過硫酸塩は三菱ガス化学(株)製造の製品
を使用した。
[Table] As a result, except for the fact that the initial temperature rise rate of the chemical heating element at the compound layer position in No. 20 was slightly slower, all of them showed almost the same exothermic activity, including the maximum temperature reached, and each substance The position of the compound layer is not particularly limited. When we inspected part A of the simple water heater after the exothermic reaction was completed, we found that the various substances were naturally mixed together due to the rapid exothermic reaction and the ejection of steam gas. There appears to be no correlation between layer position and exothermic reaction. As clarified in Example 1, it is a neutral salt.
Based on the fact that NaCl activates an exothermic reaction, we first conducted a wide range of research on substances, and in the next step we narrowed down the research area and selected all the substances that activate the reaction. Summer. Example 4 25g of granulated quicklime was used in the upper layer, and up to 10g of Al powder of 200 mesh or less was used in the middle layer.For the 10g of compounded material (manufactured by Wako Pure Chemical Industries, Ltd.) in the lower layer, the mixture was as shown in Table 5 below. Chemical heating elements were manufactured, and changes in water temperature were measured in the same manner as in Example 1, and the results are shown in Table 5-1. However, among the substances listed in Table 5, LiCl was manufactured by Nippon Chemical Industry Co., Ltd., and persulfate was manufactured by Mitsubishi Gas Chemical Co., Ltd.

【表】【table】

【表】【table】

【表】【table】

【表】 参考例の化学発熱体No.4又はNo.5と比較した場
合、第3類の物質を配合することによつて、発熱
反応特性を高活性化した物質に順位づけを行なう
と次のように整理出来る。 第1位の物質群 「K2CO3、KHCO3、K2SO3」 初期温度上昇速度において、5分値が70℃を越
え、かつ最高到達温度が80℃を越える、最も高活
性を付与した物質。 第2位の物質群 「Na2SO4、K2SO4」 最高到達温度が80℃を越えた物質。 第3の物質群 「KCl、NaNO3、KNO3、KH2PO4、K3PO4」 最高到達温度が70〜80℃に達した物質。 第4位の物質群 「K2HPO4、FeCl3」 最高到達温度が60〜70℃に達した物質。 第5位の物質 「K(CH3COO)」 最高到達温度が50〜60℃に達した物質。 第6位の物質群 「Li2CO3、LiCl、(NH42S2O8、Na2S2O8
MgCl2、MgSO4、CaCl2、Al2(SO43、AlK
(SO42」 全く活性を付与しないか、逆に低下せしめた物
質。 実施例4の結果から、第3類の物質の探索範囲
をNaとKの化合物に絞つて、更に調査研究を進
めた。 実施例 5 実施例4と同じ方法に従い、表−6記載配合の
化学発熱体を用いて水温測定を行ない、その結果
を表−6−1に示した。
[Table] When compared with reference example chemical heating element No. 4 or No. 5, the ranking of substances with highly activated exothermic reaction characteristics by blending with Class 3 substances is as follows: It can be organized like this. 1st place substance group “K 2 CO 3 , KHCO 3 , K 2 SO 3 ” Gives the highest activity in terms of initial temperature increase rate, with a 5 minute value exceeding 70℃ and a maximum temperature exceeding 80℃ substance. 2nd place substance group ``Na 2 SO 4 , K 2 SO 4 '' Substances whose maximum temperature exceeds 80℃. Third substance group "KCl, NaNO3 , KNO3 , KH2PO4 , K3PO4 " Substances with a maximum temperature of 70 to 80 °C. 4th place substance group "K 2 HPO 4 , FeCl 3 " Substances with maximum temperature reaching 60-70℃. 5th place substance "K (CH 3 COO)" A substance with a maximum temperature of 50-60℃. The 6th substance group “Li 2 CO 3 , LiCl, (NH 4 ) 2 S 2 O 8 , Na 2 S 2 O 8 ,
MgCl 2 , MgSO 4 , CaCl 2 , Al 2 (SO 4 ) 3 , AlK
(SO 4 ) 2 ” A substance that does not impart activity at all, or on the contrary, has decreased activity. Based on the results of Example 4, we narrowed down the search range for Class 3 substances to compounds of Na and K, and conducted further research. Example 5 According to the same method as in Example 4, water temperature was measured using a chemical heating element having the formulation shown in Table 6, and the results are shown in Table 6-1.

【表】【table】

【表】 この結果を実施例4と同様に整理した。 第1位の物質 「これに該当する物質はない。」 第2位の物質群 「NaHSO3、Na2S2O5」 第3位の物質群 「NaHCO3、Na2SO3、Na2S2O3、K2S2O5」 第4位の物質群 「これに該当する物質はない。」 第5位の物質群 「NaBr、NaBrO3、Na2SiO3、Na2B4O7、KBr、
K2S2O8」 第6位の物質 「K2S2O7、KHSO4」 ピロ硫酸カリウムが全く活性を付与しなかつた
のは、物質の形状が固形の塊であつた為と思われ
る。 実施例4、5の結果に、実施例1の結果を併せ
整理すると次のようになると思われる。 第1位の物質群:最も活性 「Na2CO3、Na2CO3・1.5H2O、K2CO3
KHCO3、K2SO3」 第2位の物質群:80℃以上 「Na2SO4、NaHSO3、Na2S2O5、NaBO2
H2O、K2SO4」 第3位の物質群:70〜80℃ 「NaSO3、NaHCO3、Na2SO3、Na2S2O3
KCl、KNO3、K2S2O5、KH2PO4、K3PO4」 第4位の物質群:60〜70℃ 「NaCl、K2HPO4、FeCl3」 第5位の物質群:60〜60℃ 「NaBr、NaBrO3、Na2SiO3、Na2B4O7、KBr、
K2S2O8、K(CH3COO)」 第6位の物質群:効果なし 「Na2S2O8、KHSO4、K2S2O7、Li2CO3、LiCl、
(NH42S2O8、MgCl2、MgSO4、CaCl2、Al2
(SO43、AlK(SO42」 実施例5まではAl粉末の粒径を200メツシユ以
下の物質に固定して調査研究を行なつて来たが、
実施例6ではAl粉末の粒径と発熱反応の相関性
を調査した。 実施例 6 上層に顆粒生石灰25g、中層にAl粉末10g、
下層にNa2CO3・1.5H2Oの基本配合で、Al粉末
の粒径を5種類変えて、表−7記載の化学発熱体
を製造し、実施例1と同様な方法で水温の変化を
測定し、表−7−1の結果を得た。
[Table] The results were summarized in the same manner as in Example 4. 1st place substance: “There are no substances that correspond to this.” 2nd place: substance group: “NaHSO 3 , Na 2 S 2 O 5 ” 3rd place: substance group: “NaHCO 3 , Na 2 SO 3 , Na 2 S 2 O 3 , K 2 S 2 O 5 ” 4th place substance group ``There are no substances that correspond to this.'' 5th place substance group ``NaBr, NaBrO 3 , Na 2 SiO 3 , Na 2 B 4 O 7 ,KBr,
K 2 S 2 O 8 ” 6th place substance `` K 2 S 2 O 7 , KHSO 4 '' The reason why potassium pyrosulfate did not impart any activity is thought to be because the substance was in the form of a solid lump. It will be done. When the results of Examples 4 and 5 are combined with the results of Example 1, the results appear to be as follows. Number 1 substance group: Most active “Na 2 CO 3 , Na 2 CO 3・1.5H 2 O, K 2 CO 3 ,
KHCO 3 , K 2 SO 3 ” 2nd substance group: Above 80℃ “Na 2 SO 4 , NaHSO 3 , Na 2 S 2 O 5 , NaBO 2
H 2 O, K 2 SO 4 3rd place substance group: 70-80℃ ``NaSO 3 , NaHCO 3 , Na 2 SO 3 , Na 2 S 2 O 3 ,
KCl, KNO 3 , K 2 S 2 O 5 , KH 2 PO 4 , K 3 PO 4 4th place substance group: 60-70℃ ``NaCl, K 2 HPO 4 , FeCl 3 5th place substance group :60 ~ 60 "NaBr, NaBrO3 , Na2SiO3 , Na2B4O7 , KBr,
K 2 S 2 O 8 , K (CH 3 COO)” 6th substance group: No effect “Na 2 S 2 O 8 , KHSO 4 , K 2 S 2 O 7 , Li 2 CO 3 , LiCl,
( NH4 ) 2S2O8 , MgCl2 , MgSO4 , CaCl2 , Al2
(SO 4 ) 3 , AlK(SO 4 ) 2 ” Up to Example 5, research had been conducted with the particle size of Al powder fixed at 200 mesh or less.
In Example 6, the correlation between the particle size of Al powder and the exothermic reaction was investigated. Example 6 25g of granulated quicklime in the upper layer, 10g of Al powder in the middle layer,
The chemical heating elements shown in Table 7 were manufactured using the basic composition of Na 2 CO 3 and 1.5H 2 O in the lower layer and five different particle sizes of Al powder, and the changes in water temperature were performed in the same manner as in Example 1. was measured, and the results shown in Table 7-1 were obtained.

【表】【table】

【表】 実施例6の結果から30〜100メツシユ以下の粒
径のAl粉末が、実用的にも高い発熱反応活性を
示すことが明らかとなつた。 次に第1類の物質として軽焼ドロマイトと顆粒
生石灰を重点的に採り上げて調査研究を進めて来
たが、次の実施例7では酸化マグネシウムと水酸
化カルシウムについて、発熱反応活性を調査し
た。 実施例 7 上層に化学発熱体No.66として酸化マグネシウム
(和光純薬工業(株)製造)25g、No.67として顆粒消
石灰(ワクイケミカル(有)製造)25gの配合で、中
層の200メツシユ以下のAl粉末10g、下層の
Na2CO3・1.5H2O10gを共通配合として化学発熱
体を製造し、実施例1と同様な方法で水温の変化
を測定し、表−8−1の結果を得た。
[Table] From the results of Example 6, it became clear that Al powder with a particle size of 30 to 100 mesh or less showed a practically high exothermic reaction activity. Next, research has focused on lightly calcined dolomite and granulated quicklime as Class 1 substances, and in the following Example 7, the exothermic reaction activity of magnesium oxide and calcium hydroxide was investigated. Example 7 The upper layer contains 25 g of magnesium oxide (manufactured by Wako Pure Chemical Industries, Ltd.) as chemical heating element No. 66, and 25 g of granulated slaked lime (manufactured by Wakui Chemical Co., Ltd.) as No. 67, and the middle layer contains 200 mesh or less. 10g of Al powder, lower layer of
A chemical heating element was manufactured using 10 g of Na 2 CO 3 .1.5H 2 O as a common composition, and changes in water temperature were measured in the same manner as in Example 1, and the results shown in Table 8-1 were obtained.

【表】【table】

【表】 この結果と軽焼ドロマイトを用いた化学発熱体
の高活性を照合すれば、活性を付与しているの
が、カルシウム化合物であることが理解出来、従
つて軽焼ドロマイト中の酸化マグネシウム成分は
余り増加しない方が好ましい。 次に第2類の物質としてアルミニウム金属粉末
以外の物質について調査研究を行なつた。 その物質として金属マグネシウム粉末(純度97
%、粒径40〜50メツシユ)、金属亜鉛粉末(純度
85%、粒径300メツシユ)、金属シリコン粉末(純
度98%、粒径100メツシユ)、金属スズ粉末(純度
95%、粒径200メツシユ)(以上全て和光純薬工業
(株)製造)を、第1類の物質として軽焼ドロマイ
ト、第3類の物質としてNa2CO3・1.5H2Oを各々
配合して調査した結果では全く発熱反応活性を示
さなかつた。 更に純度を上げた金属亜鉛粉末(純度99.8%、
粒径200メツシユ、三井金属工業(株)製造)、金属シ
リコン粉末(純度99.9%、粒径200メツシユ、レ
アメタリツク(株)製造)、金属鉄粉末(純度99.9%、
粒径200メツシユ、昭和電工(株)製造)を、第1類
の物質として顆粒生石灰、第3類の物質として
Na2CO3、Na2S2O8、KCl、(NH42S2O8を各々
用いて調査した結果においても全く発熱反応活性
を示さなかつた。 以上の実施例においては、化学発熱体を製造し
て直ちにその基礎特性を調査研究して来たが、簡
易湯沸器に応用した場合、特に問題となるのは環
境雰囲気による発熱反応活性の低下が生じる可能
性である。 そこで、環境試験条件として、乾球温度60℃、
湿球温度58℃の高温高湿試験機に化学発熱体を内
封した簡易湯沸器を24時間保存して、発熱反応特
性の変動を調査した。 実施例 8 簡易湯沸器の容器1,2,3全体を市販家庭用
アルミホイル覆い、その端を粘着テープで容器3
の外側に巻きつけて留め、次に簡易湯沸器全体を
ポリエチレンの袋に入れ、その口を輪ゴムで閉じ
た。 このようにして製造した簡易湯沸器を24時間、
前述の条件で高温加湿試験に付した後、20℃の水
を用いて実施例1と同様な方法で水温の変化を測
定した。 これに用いた化学発熱体の配合構成を表−9
に、得られた結果を表−9−1に示した。
[Table] Comparing this result with the high activity of the chemical heating element using lightly calcined dolomite, it can be understood that it is the calcium compound that provides the activity, and therefore the magnesium oxide in the lightly calcined dolomite. It is preferable that the components do not increase too much. Next, we conducted research on substances other than aluminum metal powder as Class 2 substances. Its substance is metallic magnesium powder (purity 97
%, particle size 40-50 mesh), metallic zinc powder (purity
85%, particle size 300 mesh), metal silicon powder (98% purity, particle size 100 mesh), metal tin powder (purity
95%, particle size 200 mesh) (all of the above are from Wako Pure Chemical Industries)
Co., Ltd.) was mixed with light calcined dolomite as the 1st class substance and Na 2 CO 3 .1.5H 2 O as the 3rd class substance, and the results showed no exothermic reaction activity at all. Metallic zinc powder with even higher purity (99.8% purity,
Particle size: 200 mesh, manufactured by Mitsui Kinzoku Kogyo Co., Ltd.) Metallic silicon powder (purity: 99.9%, particle size: 200 mesh, manufactured by Rare Metallic Co., Ltd.), Metallic iron powder (purity: 99.9%,
Particle size: 200 mesh, manufactured by Showa Denko Co., Ltd.), granulated quicklime as a Class 1 substance, and granulated quicklime as a Class 3 substance.
The results of investigations using Na 2 CO 3 , Na 2 S 2 O 8 , KCl, and (NH 4 ) 2 S 2 O 8 showed no exothermic reaction activity at all. In the above examples, we investigated and researched the basic characteristics of chemical heating elements immediately after manufacturing them, but when applied to simple water heaters, a particular problem is the decrease in exothermic reaction activity due to the environmental atmosphere. This is the possibility of occurrence. Therefore, the environmental test conditions were a dry bulb temperature of 60℃,
A simple water heater containing a chemical heating element was stored in a high-temperature, high-humidity tester with a wet bulb temperature of 58°C for 24 hours to investigate changes in exothermic reaction characteristics. Example 8 The entire containers 1, 2, and 3 of a simple water heater were covered with commercially available household aluminum foil, and the edges of the container 3 were wrapped with adhesive tape.
Then, the entire portable water heater was placed in a polyethylene bag and the opening was closed with a rubber band. The simple water heater manufactured in this way can be used for 24 hours.
After being subjected to a high temperature humidification test under the conditions described above, changes in water temperature were measured in the same manner as in Example 1 using 20°C water. Table 9 shows the composition of the chemical heating element used for this.
The results obtained are shown in Table 9-1.

【表】【table】

【表】 化学発熱体No.68〜No.70の中でNo.69の初期温度上
昇速度がNo.13又は23と比較してやや低下してはい
るが、最高到達温度はほとんど変化しておらず、
何れも優れた耐環境性を示した。 一方、Al粉末とナトリウムの炭酸塩類で構成
された化学発熱体No.71および72は何れも全く発熱
反応活性を示さなかつた。 本発明は以上述べて来たように、軽焼ドロマイ
ト、生石灰、消石灰を第1類の物質とし、30〜
100メツシユ以下の粒径のAl粉末を第2類の物質
とし、ナトリウム又はカリウムの臭酸塩、臭素酸
塩、塩酸塩、硫酸塩類、硝酸塩、炭酸塩類、ホウ
酸塩類、リン酸塩類、ケイ酸塩、酢酸塩の無水塩
もしくは塩化第2鉄無水塩を第3類の物質とし
て、かつ各々の物質を必須成分とする3種類以上
の物質で構成される事を必要条件とし、同時に
各々の物質に毒、劇物性が悪く、無公害であり、
又湯沸器としてみても安全性が高い等を特徴とし
ている。 本発明に基づくところの最も高活性である化学
発熱体は、例えば顆粒生石灰−200メツシユ以下
のAl粉末−炭酸ナトリウムで構成されるが、こ
れらの物質組成と水との極めて高い発熱反応性は
次のように理解される。 先ず第一の発熱反応として、顆粒生石灰および
炭酸ナトリウムが水と水和して発熱し、化学発熱
体全体が予熱される。 第二にアルカリによつてAl粉末表面の酸化層
が溶出する。 第三にAl粉末による水の分解反応が生じる。
この時、第二、第三の反応は第一の反応で予熱さ
れている為に、極めて短かい時間内に生じるもの
と思われる。 このように本化学発熱体は、従来の化学発熱体
の反応と異なり、配合した物質が全て発熱反応を
生じ、かつそれが連鎖的である事に特徴を持つて
いる。 本発明は以上詳述して来たように、何時何如な
る場合においても、水さえあれば、直ちに熱湯を
得ることを可能ならしめるものであり、従つて地
震、火事等の緊急時、ガス爆発の可能性のある鉱
山内、船上、車上、野外等の国民の食生活におい
て、貢献絶大なるものである。 参考図書 1 化学便覧基礎編、(丸善(株)出版) 2 新版無機化学 上、中、下巻(千谷利三
著)
[Table] Among chemical heating elements No. 68 to No. 70, the initial temperature increase rate of No. 69 is slightly lower than that of No. 13 or 23, but the maximum temperature has hardly changed. figure,
All exhibited excellent environmental resistance. On the other hand, chemical heating elements No. 71 and 72, which were composed of Al powder and sodium carbonate, showed no exothermic reaction activity at all. As described above, the present invention uses lightly calcined dolomite, quicklime, and slaked lime as the first class substances, and
Al powder with a particle size of 100 mesh or less is classified as a Class 2 substance, and sodium or potassium bromate, bromate, hydrochloride, sulfate, nitrate, carbonate, borate, phosphate, silicic acid Salt, anhydrous acetate salt, or ferric chloride anhydrous salt is a Class 3 substance, and it is a necessary condition that it is composed of three or more substances with each substance as an essential component, and at the same time, each substance It is non-poisonous, non-polluting, and has no harmful properties.
Also, it is characterized by high safety when viewed as a water heater. The most active chemical heating element according to the present invention is composed of, for example, granulated quicklime, Al powder of less than 200 mesh, and sodium carbonate, but the composition of these materials and the extremely high exothermic reactivity with water are as follows. It is understood as follows. First, as a first exothermic reaction, granulated quicklime and sodium carbonate are hydrated with water and generate heat, preheating the entire chemical heating element. Second, the oxidized layer on the surface of the Al powder is eluted by the alkali. Thirdly, a water decomposition reaction occurs due to the Al powder.
At this time, since the second and third reactions are preheated by the first reaction, it is thought that they occur within an extremely short period of time. As described above, the present chemical heating element is characterized in that, unlike the reaction of conventional chemical heating elements, all of the blended substances cause an exothermic reaction, and the reaction is chain-like. As described in detail above, the present invention makes it possible to obtain hot water immediately at any time and in any situation as long as there is water. It makes a huge contribution to the diet of the people in mines, on ships, in cars, outdoors, etc., where there is a possibility of food loss. Reference book 1 Chemistry Handbook Basic Edition, (published by Maruzen Co., Ltd.) 2 New edition of Inorganic Chemistry Volumes 1, 2, 2 (Toshizo Chiya)
Author)

【図面の簡単な説明】[Brief explanation of the drawing]

本図面は簡易湯沸器の中央縦断面図を示すもの
である。 1……金属製の内側容器、2……紙製の中間容
器、3……紙製の外側容器、4,5,6……化学
発熱体、7……連続気泡のプラスチツク発泡体、
8……水浸入孔、9……水浸入孔と透水性膜。
This drawing shows a central vertical sectional view of a simple water heater. 1... Inner container made of metal, 2... Intermediate container made of paper, 3... Outer container made of paper, 4, 5, 6... Chemical heating element, 7... Open cell plastic foam,
8...Water infiltration hole, 9...Water infiltration hole and water permeable membrane.

Claims (1)

【特許請求の範囲】 1 30%以下の酸化マグネシウムと70%以上の酸
化カルシウムの混焼体、酸化カルシウム、水酸化
カルシウムからなるアルカリ土類金属元素化合物
を第1類の物質とし、金属アルミニウム粉末を第
2類の物質とし、アルカリ金属元素化合物又は金
属元素化合物を第3類の物質とし、夫々の物質を
必須成分とする3種類以上の物資で構成されてい
ることを特徴とした化学発熱体。 2 金属アルミニウム粉末が粒径30〜100メツシ
ユ以下の粉末である特許請求の範囲第1項記載の
化学発熱体。 3 アルカリ金属元素化合物がナトリウム又はカ
リウムの臭酸塩、臭素酸塩、塩酸塩、硫酸塩類、
硝酸塩、炭酸塩類、ホウ酸塩類、リン酸塩類、ケ
イ酸塩、酢酸塩の粉末又は粒子状の無水塩であ
り、金属元素化合物が塩化第2鉄の粉末又は粒子
状無水塩である特許請求の範囲第1項記載の化学
発熱体。 4 硫酸塩類がピロ亜硫酸塩、チオ硫酸塩、硫酸
塩、亜硫酸塩、亜硫酸水素塩であり、炭酸塩類が
炭酸塩、炭酸水素塩、過炭酸塩であり、ホウ酸塩
類がホウ酸塩、過ホウ酸塩であり、リン酸塩類が
リン酸3塩、リン酸2塩、リン酸1塩である特許
請求の範囲第3項記載の化学発熱体。
[Scope of Claims] 1. A co-fired product of 30% or less magnesium oxide and 70% or more calcium oxide, an alkaline earth metal element compound consisting of calcium oxide and calcium hydroxide as the first class substance, and metallic aluminum powder A chemical heating element characterized in that it is composed of three or more kinds of substances, each of which is a Class 2 substance and an alkali metal element compound or a metal element compound is a Class 3 substance, each of which is an essential component. 2. The chemical heating element according to claim 1, wherein the metal aluminum powder has a particle size of 30 to 100 mesh. 3 bromate, bromate, hydrochloride, sulfate of sodium or potassium alkali metal element compound;
Powdered or particulate anhydrous salts of nitrates, carbonates, borates, phosphates, silicates, acetates, and the metal element compound is a powdered or particulate anhydrous salt of ferric chloride. A chemical heating element according to scope 1. 4 Sulfates are pyrosulfites, thiosulfates, sulfates, sulfites, and bisulfites, carbonates are carbonates, hydrogen carbonates, and percarbonates, and borates are borates and perborates. 4. The chemical heating element according to claim 3, which is an acid salt, and the phosphates are phosphate trisalt, phosphate disalt, or phosphate monosalt.
JP59255298A 1984-12-03 1984-12-03 Chemically heating medium Granted JPS61133284A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59255298A JPS61133284A (en) 1984-12-03 1984-12-03 Chemically heating medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59255298A JPS61133284A (en) 1984-12-03 1984-12-03 Chemically heating medium

Publications (2)

Publication Number Publication Date
JPS61133284A JPS61133284A (en) 1986-06-20
JPH0527672B2 true JPH0527672B2 (en) 1993-04-21

Family

ID=17276826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59255298A Granted JPS61133284A (en) 1984-12-03 1984-12-03 Chemically heating medium

Country Status (1)

Country Link
JP (1) JPS61133284A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019038940A (en) * 2017-08-25 2019-03-14 株式会社 グリーンケミー Aluminum-calcium oxide mixed exothermic agent

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS649280A (en) * 1987-03-31 1989-01-12 Tamehiko Ikeda Chemical body warmer and heat generating composition therefor
JP2006152090A (en) * 2004-11-26 2006-06-15 Harumi Handa Heat-generating agent
US8556108B2 (en) 2007-09-26 2013-10-15 Heat Wave Technologies, Llc Self-heating systems and methods for rapidly heating a comestible substance
CN110770523B (en) * 2017-06-30 2021-12-28 达泰豪化学工业株式会社 Chemical heat storage material and method for producing same, and chemical heat pump and method for operating same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019038940A (en) * 2017-08-25 2019-03-14 株式会社 グリーンケミー Aluminum-calcium oxide mixed exothermic agent

Also Published As

Publication number Publication date
JPS61133284A (en) 1986-06-20

Similar Documents

Publication Publication Date Title
US5483949A (en) Exothermic compositions and container for heating food
US5542418A (en) Acid-base fuels for self heating food containers
US4255157A (en) Thermogenic compositions
CN102827588A (en) Energy-saving temperature-control phase-change material
CN102071002A (en) Self-heated dehydrogenation heating mantle
KR100442560B1 (en) A heating meterial for heating food packed in a package
JPH0527672B2 (en)
CN103205245B (en) A kind of Fe-KMnO4-MnO2The preparation method of spontaneous heating material
CN101019614A (en) Food self-heating agent
JP2005528465A (en) Orthophosphoric acid-based self-heating composition infiltrated into highly porous inorganic oxide, its production method and its use
KR100740783B1 (en) Heating composition for food
CN109021938A (en) A kind of efficient self-heating material and its reaction unit and application method
CN103756648A (en) Application of hydrogen inhibitor in self-heating food heating agent
CN1648197A (en) Self heating agent for new food and its using method
JP2001089757A (en) Heat-generating composition and heating tool
CN107384331B (en) Spontaneous heating material for non-combustion type cigarette, and method and application thereof
JP7223407B2 (en) heating agent
KR101043260B1 (en) Portable heating composition for dual airtight container
CN105854214B (en) Anti- re-ignition dry powder fire extinguishing agent and its preparation method
US4203418A (en) Exothermic composition and hot pack
SU768450A1 (en) Potassium chloride granulating method
WO1996009503A1 (en) Acid-base fuels for self-heating food containers
KR102237429B1 (en) Foamable heating composition and maunfacturing method thereof
JP2018168225A (en) Chemical thermal storage medium and method for producing the same
CN107162543A (en) A kind of inorganic compounding phase-transition heat-storage plate material and preparation method thereof