JP2006152090A - Heat-generating agent - Google Patents

Heat-generating agent Download PDF

Info

Publication number
JP2006152090A
JP2006152090A JP2004343022A JP2004343022A JP2006152090A JP 2006152090 A JP2006152090 A JP 2006152090A JP 2004343022 A JP2004343022 A JP 2004343022A JP 2004343022 A JP2004343022 A JP 2004343022A JP 2006152090 A JP2006152090 A JP 2006152090A
Authority
JP
Japan
Prior art keywords
seconds
temperature
sodium chloride
exothermic agent
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004343022A
Other languages
Japanese (ja)
Inventor
Harumi Handa
春見 半田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyodo KK
Original Assignee
Kyodo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyodo KK filed Critical Kyodo KK
Priority to JP2004343022A priority Critical patent/JP2006152090A/en
Publication of JP2006152090A publication Critical patent/JP2006152090A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To increase the amount of generated heat of a heat-generating agent consisting of powdery quicklime and powdery aluminum, and generating heat by reacting with water so as to approach the maximum temperature of generated steam to 100°C, and maintain in the vicinity of 70-85°C even at 30 min after the initiation of the reaction. <P>SOLUTION: This 35 g heat-generating agent is provided by comprising 11.35 g powdery quick lime of 100 mesh (≥90% -150 μm) -200 mesh (≥95% -75 μm) and 22.70 g powdery aluminum having particle size distribution of 40-60% -330 mesh (-45 μm), 15-30% +330 mesh (+45 μm), <15% +235 mesh (+63 μm) and <10% +200 mesh (+75 μm), blended with 7.0 g sodium chloride, reacted with 70 mL water so as to make 94.7°C maximum reached temperature of the generated steam over 1-30 min from the initiation of the reaction and 82.7°C temperature at 30 min after the initiation of measurement. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、発熱剤に関し、より詳細には、粉体生石灰と粉体アルミニウムとから成り水と反応させる化学発熱剤に、塩化ナトリウムを配合したことを特徴とする発熱剤に関する。   The present invention relates to an exothermic agent, and more particularly to an exothermic agent characterized in that sodium chloride is blended with a chemical exothermic agent composed of powdered quicklime and powdered aluminum and reacted with water.

粉体生石灰と粉体アルミニウムとから成り水と反応させる化学発熱剤は、各種のものが提案されている。然しながら、いずれの従来技術も、高温の持続時間が短く、発熱開始から30秒後の温度は50℃以下で、用途も限定されている。   Various chemical exothermic agents that consist of powdered quicklime and powdered aluminum and react with water have been proposed. However, in any of the conventional techniques, the duration of high temperature is short, the temperature 30 seconds after the start of heat generation is 50 ° C. or less, and the use is limited.

たとえば、特開平11−146835号公報は、粉体金属アルミニウム25〜85%、粉体生石灰15〜75%からなる加熱剤を開示している。然しながら、この従来技術は、80℃以上の持続時間が6〜7分であり、発生熱量が少ないという欠点がある。   For example, Japanese Patent Laid-Open No. 11-146835 discloses a heating agent composed of 25 to 85% of powdered metal aluminum and 15 to 75% of powdered quicklime. However, this conventional technique has a disadvantage that the duration of 80 ° C. or more is 6 to 7 minutes and the amount of generated heat is small.

また、特開平03−091588号公報は、粉体金属アルミニウムと粉体生石灰からなる加熱剤を開示している。然しながら、この従来技術は、100℃近傍の持続時間が17分であり、やはり総発生熱量が少ないという欠点がある。   Japanese Unexamined Patent Publication No. 03-091588 discloses a heating agent composed of powdered metal aluminum and powdered quicklime. However, this prior art has a drawback that the duration in the vicinity of 100 ° C. is 17 minutes and the total amount of generated heat is small.

特許第3467729号公報は、発熱剤の質量当たり、100メッシュ(−150・m90%以上)〜200メッシュ(−75・m95%以上)の粉体生石灰が15〜30%,及び−330メッシュ(−45・m)が40〜60%,+330メッシュ(+45・m)が15〜30%,+235メッシュ(+63・m)が15%>、+200メッシュ(+75・m)が10%>の粒度分布を有する粉体アルミニウム70〜85%から成る発熱剤を開示している。   Japanese Patent No. 3467729 discloses a powder quicklime of 100 mesh (-150 m 90% or more) to 200 mesh (-75 m 95% or more) to 15-30% and -330 mesh (- 45 · m) is 40 to 60%, +330 mesh (+ 45 · m) is 15 to 30%, +235 mesh (+ 63 · m) is 15%>, and +200 mesh (+ 75 · m) is 10%>. The exothermic agent which consists of 70-85% of powder aluminum which has is disclosed.

特許第3467729号に係わる発熱剤は、たとえば、粉体生石灰5gと粉体アルミニウム10gから成る発熱剤15gを常水30mlと、或いは粉体生石灰6.67gと粉体アルミニウム13.3gから成る発熱剤20gを常水40mlと、或いは粉体生石灰8.33gと粉体アルミニウム16.67gから成る発熱剤25gを常水50mlと、或いは粉体生石灰11.57gと粉体アルミニウム23.33gから成る発熱剤35gを常水70mlと、或いは粉体生石灰13.33gと粉体アルミニウム26.67gから成る発熱剤40gを常水80mlと、或いは粉体生石灰16.67gと粉体アルミニウム33.33gから成る発熱剤50gを常水100mlと、 或いは粉体生石灰20.00gと粉体アルミニウム40.00gから成る発熱剤60gを常水120mlと反応させると、4分24秒後に最高温度92.1℃の水蒸気を発生し、20分後には、水蒸気温度が62.4℃、30分後には、50.2℃に降下する。このような水蒸気の温度特性は、自衛隊用戦闘糧食、駅弁、各種携帯食品、非常食等を喫食可能な状態に加熱するには十分な熱量である。   The exothermic agent related to Japanese Patent No. 3467729 includes, for example, 15 g exothermic agent composed of 5 g of powdered quicklime and 10 g of powdered aluminum, or 30 ml of ordinary water, or 6.67 g of powdered quicklime and 13.3 g of powdered aluminum 20 g of normal water 40 ml or exothermic agent consisting of powdered quicklime 8.33 g and powdered aluminum 16.67 g 25 g of normal water 50 ml, or powdered lime 11.57 g and powdered aluminum 23.33 g 35 g of ordinary water 70 ml, or exothermic agent consisting of powdered lime 13.33 g and powdered aluminum 26.67 g 40 g ordinary water 80 ml, or powdered lime 16.67 g and powdered aluminum 33.33 g 50g consists of 100ml of ordinary water, or 20.00g of powdered quicklime and 40.00g of powdered aluminum. When 60 g of the exothermic agent is reacted with 120 ml of normal water, water vapor is generated at a maximum temperature of 92.1 ° C. after 4 minutes and 24 seconds, the water vapor temperature is 62.4 ° C. after 20 minutes, and 50. Drop to 2 ° C. Such a temperature characteristic of the water vapor is sufficient for heating the SDF combat food, ekiben, various portable foods, emergency foods and the like to a state where they can be eaten.

然しながら、特許第3467729号に係わる発熱剤は、自衛隊用戦闘糧食、駅弁、非常食等各種携帯食品を一度に大量に短時間で効率よく加熱する場合、或いは釣り、スキューバーダイビング等マリーンスポーツで冷え切った体を暖める用途、地震等災害時の緊急避難所での簡易沐浴設備への利用するには、熱量不足であり、使用者が一様に要望することは、蒸気の最高到達温度を、できるだけ100℃に近づけること、及び30分後でも65〜70℃、場合によっては75〜85℃を維持させて欲しいということである。
特開平11−146835号公報 特開平03−294483号公報 特許第3467729号公報
However, the exothermic agent according to Japanese Patent No. 3467729 is cooled in marine sports such as fishing and scuba diving when heating various portable foods such as combat foods, station lunches, and emergency foods for the Self-Defense Forces in a short period of time efficiently. In order to use it for warming up the cut body, it is not enough heat to use it for simple bathing facilities in emergency evacuation shelters in the event of an earthquake or other disaster. This means that the temperature should be as close to 100 ° C. as possible and that the temperature should be maintained at 65 to 70 ° C. and in some cases 75 to 85 ° C. even after 30 minutes.
JP-A-11-146835 Japanese Patent Laid-Open No. 03-294483 Japanese Patent No. 3467729

発明が解決しようとする主たる課題は、粉体生石灰と粉体アルミニウムとから成り、水と反応させる化学発熱剤の蒸気の最高到達温度を、約100℃に上げ、発熱開始から30分後でも、65〜85℃を維持させることである。   The main problem to be solved by the invention is composed of powdered quicklime and powdered aluminum. The maximum temperature of the chemical exothermic vapor that reacts with water is increased to about 100 ° C., even 30 minutes after the start of heat generation, It is to maintain 65-85 degreeC.

発明が解決しようとする別の課題は、粉体生石灰と粉体アルミニウムとから成り水と反応させる化学発熱剤の蒸気の最高到達温度を、約100℃に上げ、発熱開始から30分後でも、65〜80℃を維持することにより、自衛隊用戦闘糧食、駅弁、非常食等各種携帯食品を、一度に、大量に、短時間で、効率よく加熱することである。   Another problem to be solved by the invention is to increase the maximum temperature of the chemical exothermic vapor composed of powdered quicklime and powdered aluminum and react with water to about 100 ° C., even 30 minutes after the start of heat generation, By maintaining the temperature at 65 to 80 ° C., various portable foods such as SDF combat foods, station lunches, and emergency foods are efficiently heated in large quantities in a short time.

発明が解決しようとするさらに別の課題は、粉体生石灰と粉体アルミニウムとから成り水と反応させる化学発熱剤の蒸気の最高到達温度を、約100℃に上げ、発熱開始から30分後でも65〜85℃を維持することにより、釣り、スキューバーダイビング等マリーンスポーツで冷え切った体を暖めるための簡易沐浴設備や、震等災害時の緊急避難所での簡易沐浴設備等へ利用しうるようにし、新たな用途を拡大することである。   Still another problem to be solved by the invention is to raise the maximum temperature of the chemical exothermic vapor composed of powdered quicklime and powdered aluminum and react with water to about 100 ° C., even 30 minutes after the start of heat generation. By maintaining the temperature at 65 to 85 ° C., it can be used for simple bathing facilities for warming the body that has been cooled by marine sports such as fishing and scuba diving, and for simple bathing facilities in emergency shelters during earthquakes and other disasters. And to expand new applications.

前記課題を解決するための手段を策定するために、本発明者は、化学量両論から、特許第3467729号に係わる発熱剤と反応させる水の適正量を検討した。   In order to devise means for solving the above-mentioned problem, the present inventor examined an appropriate amount of water to be reacted with the exothermic agent according to Japanese Patent No. 3467729 from the stoichiometric theory.

特許第3467729号に係わる発熱剤は、粉体生石灰(CaO)と粉体アルミニウムとの特定比率の混合物であるが、先ず式(1)の反応式に従って、粉体生石灰(CaO)と水が反応して、多量の熱を発生しながら水酸化カルシウムを生成する。
CaO+H2O=Ca(OH)2+15.2Kcal (1)
発熱量をグラム当たりに換算すると、CaOの分子量は56.08であるので、271cal/gになる。
(1)の反応の結果、水溶液は生じた水酸化カルシウムの加水分解により、強いアルカリ性を呈する。
The exothermic agent related to Japanese Patent No. 3467729 is a mixture of powdered quicklime (CaO) and powdered aluminum in a specific ratio. First, according to the reaction formula (1), the powdered quicklime (CaO) reacts with water. Thus, calcium hydroxide is generated while generating a large amount of heat.
CaO + H 2 O═Ca (OH) 2 +15.2 Kcal (1)
When the calorific value is converted per gram, since the molecular weight of CaO is 56.08, it becomes 271 cal / g.
As a result of the reaction of (1), the aqueous solution exhibits strong alkalinity due to hydrolysis of the generated calcium hydroxide.

一方、アルミニウム粉末は、下記の式(2)に従って水酸化カルシウムと急激に反応し、アルミン酸カルシウムと水素を与える。
2Al+3Ca(OH)2=3CaO・Al23+3H2↑ (2)
この時発生する反応熱は約47cal/gである。Alの分子量は13であるので、約3615cal/g(3.615Kcal/g)になる。
On the other hand, the aluminum powder reacts rapidly with calcium hydroxide according to the following formula (2) to give calcium aluminate and hydrogen.
2Al + 3Ca (OH) 2 = 3CaO · Al 2 O 3 + 3H 2 ↑ (2)
The reaction heat generated at this time is about 47 cal / g. Since the molecular weight of Al is 13, it is about 3615 cal / g (3.615 Kcal / g).

従って、化学量論上は、特許第3467729号に係わる発熱剤と反応させる水の適正量は、CaOのモル数と同じモル数で十分であることが分かる。   Therefore, in terms of stoichiometry, it can be seen that an appropriate amount of water to be reacted with the heat generating agent according to Japanese Patent No. 3467729 is sufficient as the number of moles of CaO.

然しながら、実用上、粉体CaO5gと粉体アルミニウム10gから成る発熱剤15gの場合、常水30mlと反応させている。CaOの分子量は56.08であるから、CaO5gは、5/56.08=0.09モルになる。従って、この場合の水の適正量は、18g(水H2Oの分子量)・0.09=1.62mlでよいことになる。   However, practically, in the case of 15 g of exothermic agent composed of 5 g of powdered CaO and 10 g of powdered aluminum, it is reacted with 30 ml of normal water. Since the molecular weight of CaO is 56.08, 5 g of CaO is 5 / 56.08 = 0.09 mol. Accordingly, an appropriate amount of water in this case may be 18 g (molecular weight of water H 2 O) · 0.09 = 1.62 ml.

同じように、粉体CaO6.67gと粉体アルミニウム13,3gから成る発熱剤20gの場合、常水40mlと反応させている。然しながら、[0014]と同じように計算すると、この場合の水の適正量は、1.62mlでよいことになる。   Similarly, in the case of 20 g of exothermic agent composed of 6.67 g of powdered CaO and 13,3 g of powdered aluminum, it is reacted with 40 ml of normal water. However, if calculated in the same manner as in [0014], the appropriate amount of water in this case may be 1.62 ml.

同じように、粉体CaO8.33gと粉体アルミニウム16.67gから成る発熱剤25gの場合、常水50mlと反応させている。然しながら、[0014]と同じように計算すると、この場合の水の適正量は、2.7mlでよいことになる。   Similarly, in the case of 25 g of exothermic agent composed of 8.33 g of powdered CaO and 16.67 g of powdered aluminum, it is reacted with 50 ml of normal water. However, when calculated in the same manner as in [0014], the appropriate amount of water in this case is 2.7 ml.

同じように、粉体CaO11.67gと粉体アルミニウム23.33gから成る発熱剤35gの場合、常水70mlと反応させている。然しながら、[0014]と同じように計算すると、この場合の水の適正量は、3.78mlでよいことになる。   Similarly, in the case of 35 g of exothermic agent composed of 11.67 g of powdered CaO and 23.33 g of powdered aluminum, it is reacted with 70 ml of normal water. However, when calculated in the same manner as in [0014], the appropriate amount of water in this case is 3.78 ml.

同じように、粉体CaO13.33gと粉体アルミニウム26.67gから成る発熱剤40gの場合、常水80mlと反応させている。然しながら、[0014]と同じように計算すると、この場合の水の適正量は、4.32mlでよいことになる。   Similarly, in the case of 40 g of exothermic agent composed of 13.33 g of powdered CaO and 26.67 g of powdered aluminum, it is reacted with 80 ml of normal water. However, if calculated in the same manner as [0014], the appropriate amount of water in this case may be 4.32 ml.

同じように、粉体CaO16.67gと粉体アルミニウム33.33gから成る発熱剤50gの場合、常水100mlと反応させている。然しながら、[0014]と同じように計算すると、この場合の水の適正量は、5.4mlでよいことになる。   Similarly, in the case of 50 g of exothermic agent composed of 16.67 g of powdered CaO and 33.33 g of powdered aluminum, it is reacted with 100 ml of normal water. However, if calculated in the same manner as in [0014], the appropriate amount of water in this case may be 5.4 ml.

同じように、粉体CaO20gと粉体アルミニウム40gから成る発熱剤60gの場合、常水120mlと反応させている。然しながら、[0014]と同じように計算すると、この場合の水の適正量は、6.58mlでよいことになる。   Similarly, in the case of 60 g of exothermic agent composed of 20 g of powdered CaO and 40 g of powdered aluminum, it is reacted with 120 ml of normal water. However, if calculated in the same way as in [0014], the appropriate amount of water in this case may be 6.58 ml.

このように、化学量論から算出すると、大過剰量の水を使用する第1の理由は、
(イ)CaO+H2O=Ca(OH)2+15.2Kcalの第1次反応により水が逐次的に蒸発して失われるが、その蒸発により失われる水の量を正確に理論計算することが不可能であるため、敢えて大過剰量を使用していること、(ロ)第2の理由は、水を添加した途端、発熱剤を充填している不織布に吸収されるため、それを見越して過剰量を使用していること、(ハ)第3の理由は、水は粉体CaO及び粉体アルミニウムに比べて安価であるため、厳密な原価計算をしなかったこと等である。
Thus, when calculated from stoichiometry, the first reason for using a large excess of water is:
(A) Water is sequentially evaporated and lost by the first reaction of CaO + H 2 O = Ca (OH) 2 +15.2 Kcal, but it is impossible to accurately theoretically calculate the amount of water lost by the evaporation. Because it is possible, dare to use a large excess, (b) The second reason is that as soon as water is added, it will be absorbed by the non-woven fabric filled with the exothermic agent, so in anticipation of it (C) The third reason is that water is less expensive than powdered CaO and powdered aluminum, so that it was not subjected to strict cost calculation.

本発明者は、本発明者保有の特許第3467729号に係わる発熱剤の発熱量を大きくして、発生蒸気の最高温度を、より100℃に近づけ、30分後でも、70〜75℃近傍を維持する方法を策定するために、上述した粉体CaOとの反応に関与しない余剰水を有効利用することを検討した。   The inventor increases the calorific value of the exothermic agent related to the patent No. 3467729 owned by the inventor, and brings the maximum temperature of the generated steam closer to 100 ° C., and even after 30 minutes, the vicinity of 70 to 75 ° C. is maintained. In order to devise a method of maintaining, it was studied to effectively use surplus water not involved in the reaction with the powder CaO described above.

そのために、先ず、本発明者の特許第3467729号に係わる発熱剤に、無機化合物を第3成分として添加し、本発明者の特許第3467729号に係わる発熱剤の反応式(1)及び(2)によって発生する発熱量で反応系において転移(解離)させ、余剰水を水和反応を起こさせ溶解熱を発生させ、それらの総和を、前記反応式(1)及び(2)で発生する熱量と合わせて利用することを検討した。   For this purpose, first, an inorganic compound is added as a third component to the exothermic agent according to the inventor's patent 3467729, and the exothermic reaction formulas (1) and (2) of the inventor's patent 3467729 are added. ) Is transferred (dissociated) in the reaction system with the calorific value generated by (3), the excess water undergoes a hydration reaction to generate heat of dissolution, and the sum of these is calculated as the amount of heat generated in the reaction formulas (1) and (2). We considered using together.

さらに、添加すべき無機化合物を策定する条件として、安全に保管でき、かつ使用し易いこと、及び低価格であること等も考慮した。   Furthermore, as conditions for formulating the inorganic compound to be added, consideration was given to the fact that it can be safely stored and easy to use, and that it is inexpensive.

このような点から、先ず周期律表1(IA族)のアルカリ金属(Li、Na、K、Rb、Cs)について検討した。   From such a point, first, alkali metals (Li, Na, K, Rb, Cs) of the periodic table 1 (Group IA) were examined.

アルカリ金属のLiの第一次イオン化エンタルピー(イオン化エネルギー)を計算すると、520.1kJmol−1(0.52503MJmol−1)、及び第二次イオン化エンタルピー(イオン化エネルギー)は、7296kJmol−1(7.2981MJmol−1)である。 When the primary ionization enthalpy (ionization energy) of alkali metal Li is calculated, 520.1 kJmol- 1 (0.52503 MJmol- 1 ) and the secondary ionization enthalpy (ionization energy) are 7296 kJmol- 1 (7.22981 MJmol). -1 ).

Naの第一次イオン化エンタルピー(イオン化エネルギー)を計算すると、495.7kJmol−1(0.4958MJmol−1)、及び第二次イオン化エンタルピー(イオン化エネルギー)は、4563kJmol−1(4.5624MJmol−1)である。 When the primary ionization enthalpy (ionization energy) of Na is calculated, 495.7 kJmol- 1 (0.4958 MJmol- 1 ), and the secondary ionization enthalpy (ionization energy) is 4563 kJmol- 1 (4.5624 MJmol- 1 ). It is.

Kの第一次イオン化エンタルピー(イオン化エネルギー)を計算すると、418.7kJmol−1(0.4189MJmol−1)、及び第二次イオン化エンタルピー(イオン化エネルギー)は、3069kJmol−1(3.0514MJmol−1)である。 When calculating the primary ionization enthalpy (ionization energy) of K, 418.7 kJmol- 1 (0.4189 MJmol- 1 ), and the secondary ionization enthalpy (ionization energy) is 3069 kJmol- 1 (3.0514 MJmol- 1 ). It is.

Rbの第一次イオン化エンタルピー(イオン化エネルギー)を計算すると、402.9kJmol−1(0.4030MJmol−1)、及び第二次イオン化エンタルピー(イオン化エネルギー)は、2640kJmol−1(2.633MJmol−1)である。 When the primary ionization enthalpy (ionization energy) of Rb is calculated, 402.9 kJmol- 1 (0.4030 MJmol- 1 ) and the secondary ionization enthalpy (ionization energy) are 2640 kJmol- 1 (2.633 MJmol- 1 ). It is.

Csの第一次イオン化エンタルピー(イオン化エネルギー)を計算すると、375.6kJmol−1(0.3757MJmol−1)、及び第二次イオン化エンタルピー(イオン化エネルギー)は、2260kJmol−1(2.23MJmol−1)である。 When the primary ionization enthalpy (ionization energy) of Cs is calculated, 375.6 kJmol- 1 (0.3757 MJmol- 1 ) and the secondary ionization enthalpy (ionization energy) is 2260 kJmol- 1 (2.23 MJmol- 1 ). It is.

このように、いずれのアルカリ金属(Li、Na、K、Rb、Cs)も、第二次イオン化エンタルピー(イオン化エネルギー)は、第一次イオン化エンタルピー(イオン化エネルギー)より一桁ほど大きく、+1の酸化数をもつイオンが安定であることが分かる。また、アルカリ金属原子の格子エネルギーは比較的小さいから、水溶性の塩を形成し易い。また、イオン間の引力が小さいから、アルカリ金属の塩は水溶液で完全に解離する。   Thus, for any alkali metal (Li, Na, K, Rb, Cs), the secondary ionization enthalpy (ionization energy) is an order of magnitude greater than the primary ionization enthalpy (ionization energy), and +1 oxidation It can be seen that ions with numbers are stable. Further, since the lattice energy of the alkali metal atom is relatively small, it is easy to form a water-soluble salt. In addition, since the attractive force between ions is small, the alkali metal salt is completely dissociated in an aqueous solution.

従って、理論上は、いずれのアルカリ金属(Li、Na、K、Rb、Cs)も、前記の条件に適合するが、開放状態で安全に使用できること、安全に保管できること、低価格であること、そして最も使用し易いことを考慮して、添加すべき成分として塩化ナトリウムを選択した。   Therefore, in theory, any alkali metal (Li, Na, K, Rb, Cs) conforms to the above conditions, but can be used safely in an open state, can be safely stored, is inexpensive, In consideration of the ease of use, sodium chloride was selected as a component to be added.

そこで、次ぎに塩化ナトリウムが転移(融解)するときの融解(解離)エンタルピ−を求めると、28.16(トH/kJmol−1)である。これにより、塩化ナトリウムは、本発明者の特許第3467729号に係わる発熱剤の反応式(1)及び(2)によって発生する発熱量で十分解離することが理解される。 Then, next, the melting (dissociation) enthalpy when sodium chloride is transferred (melted) is 28.16 (tH / kJmol- 1 ). Accordingly, it is understood that sodium chloride is sufficiently dissociated by the calorific value generated by the reaction formulas (1) and (2) of the exothermic agent according to the inventor's Patent No. 3467729.

このように、本発明者の特許第3467729号に係わる発熱剤の反応式(1)及び(2)によって発生する発熱量で解離した塩化ナトリウムは、式(3)に従って、反応系内の余剰水と水和反応をして、141kJ/mol(33.7kcal/mol)を水和エネルギ−を発生するものと考えられる。
Na+H2・℃・・OH+1/2H2+141kJ/mol(33.7kcal/mol) (3)
Thus, the sodium chloride dissociated with the calorific value generated by the reaction formulas (1) and (2) of the exothermic agent according to the inventor's Patent No. 3467729 is the surplus water in the reaction system according to the formula (3). It is considered that 141 kJ / mol (33.7 kcal / mol) generates hydration energy by hydration reaction.
Na + H 2・ ℃ ・ ・ OH + 1 / 2H 2 + 141kJ / mol (33.7kcal / mol) (3)

通常、陽イオン或いは陰イオンの大きさが小さいほど、水和エネルギ−は大きい。Naのイオン半径は、1.02℃と小さいので、この点からも水和エネルギ−が大きいことが理解される。   Usually, the smaller the size of the cation or anion, the greater the hydration energy. Since the ionic radius of Na is as small as 1.02 ° C., it is understood from this point that the hydration energy is large.

上述した理論的考察をもとに、本発明者は、本発明者の特許第3467729号に係わる発熱剤の発熱量を大きくして、発生蒸気の最高温度を一層100℃に近づけること、及び30分後でも、70〜75℃近傍を維持させる手段として、塩化ナトリウムを添加することとし、さらにその添加範囲を検討した。   Based on the above theoretical considerations, the present inventor increases the heat generation amount of the exothermic agent according to the inventor's patent No. 3467729 to bring the maximum temperature of the generated steam closer to 100 ° C., and 30 Even after a minute, sodium chloride was added as a means for maintaining the vicinity of 70 to 75 ° C., and the addition range was further examined.

塩化ナトリウムの配合量は、発熱剤の質量当たり0.5〜25%が好ましい。塩化ナトリウムの配合量が発熱剤の質量当たり0.5%以下の場合、所要の発熱量を得ることができないので好ましくない。塩化ナトリウムの配合量が発熱剤の質量当たり20〜25%の場合、最高到達温度は95℃であるが、発熱開始から1730秒後の温度が、75〜85℃なので、熱源がない場合の簡易沐浴設備用等新たな用途に拡大される。塩化ナトリウムの配合量が発熱剤の質量当たり25%以上の場合、発熱状態にバラツキがあり、一端温度降下すると谷の幅が広く、降下前の温度にまで復元する時間が長く、温度管理が難しく、安定した温度降下状態が要求される商品には適さない。   The blending amount of sodium chloride is preferably 0.5 to 25% per mass of the exothermic agent. When the amount of sodium chloride is 0.5% or less per mass of the exothermic agent, the required calorific value cannot be obtained, which is not preferable. When the blending amount of sodium chloride is 20 to 25% per mass of the heat generating agent, the maximum temperature reached is 95 ° C., but the temperature after 1730 seconds from the start of heat generation is 75 to 85 ° C., so there is no heat source It will be expanded to new applications such as bathing facilities. When the amount of sodium chloride is 25% or more per mass of the heat generating agent, the exothermic state varies, and once the temperature falls, the valley width is wide, the time to restore to the temperature before dropping is long, and temperature management is difficult It is not suitable for products that require a stable temperature drop.

塩化ナトリウムは、発熱剤に配合しても、或いは水に配合してもほぼ同じ発熱効果を得ることができる。   Sodium chloride can obtain almost the same exothermic effect even if it is blended with a heat generating agent or water.

請求項1に記載した発明によると、粉体生石灰と粉体アルミニウムとから成り水と反応させる化学発熱剤に、塩化ナトリウムを添加したことにより、塩化ナトリウム無添加の場合に比べて、到達最高温度を引き上げ、総発熱量を増加することができる。   According to the invention described in claim 1, the highest temperature reached by adding sodium chloride to the chemical exothermic agent composed of powdered quicklime and powdered aluminum and reacting with water, compared to the case of no addition of sodium chloride. To increase the total calorific value.

請求項2に記載した発明によると、100メッシュ(−150・m90%以上)〜200メッシュ(−75・m95%以上)の粉体生石灰が15〜30質量%,及び−330メッシュ(−45・m)が40〜60%,+330メッシュ(+45・m)が15〜3質量0%,+235メッシュ(+63・m)が15%>、+200メッシュ(+75・m)が10%>の粒度分布を有する粉体アルミニウム70〜85質量%から成る発熱剤の発熱量を大きくして、発生蒸気の最高温度を100℃に近づけ、且つ反応開始から30分後でも、60〜85℃を維持することができるので、自衛隊用戦闘糧食、駅弁、各種携帯食品、非常食等を一度に大量に短時間で効率よく加熱する以外に、別の用途、たとえば登山、釣り、スキューバーダイビング等マリーンスポーツで冷えきった体を現場で暖めるための、或いは地震等災害時の緊急避難所の屋内外で簡易沐浴設備を作るのに役立てさせるか、新たな用途を拡大することができる。   According to the second aspect of the present invention, the powdered quicklime of 100 mesh (-150 m 90% or more) to 200 mesh (-75 m 95% or more) is 15 to 30% by mass, and -330 mesh (-45. m) is 40 to 60%, +330 mesh (+ 45 · m) is 15 to 3 mass 0%, +235 mesh (+ 63 · m) is 15%>, +200 mesh (+ 75 · m) is 10%>. The calorific value of the exothermic agent composed of 70 to 85% by mass of powdered aluminum is increased, the maximum temperature of the generated steam is brought close to 100 ° C, and 60 to 85 ° C can be maintained even after 30 minutes from the start of the reaction. It can be used for other purposes such as mountain climbing, fishing, scuba diving, etc. in addition to heating large numbers of SDF combat foods, ekiben, portable foods, emergency food, etc. in a short time and efficiently. For warming the body is cold in the lean sport in the field, or whether the cause help to make a simple bathing facilities indoor and outdoor emergency shelter at the time of earthquakes and other disasters, it is possible to expand the new applications.

請求項3に記載した発明によると、塩化ナトリウムの配合量が、発熱剤の質量当たり0.5〜25%であるので、経済量であり、使用者が安全に使用でき、発熱剤を充填している不織布にダメージを与えることがない。   According to the invention described in claim 3, since the blending amount of sodium chloride is 0.5 to 25% per mass of the exothermic agent, it is an economic amount, can be used safely by the user, and is filled with the exothermic agent. The nonwoven fabric is not damaged.

請求項4に記載した発明によると、塩化ナトリウムを発熱剤に配合したので、特定の水を使用する必要がなく、常水他あらゆる水を使用するこよができ、必ずしも水とセットにする必要がない。   According to the invention described in claim 4, since sodium chloride is blended in the exothermic agent, it is not necessary to use specific water, and any water other than normal water can be used, and it is not always necessary to set with water. Absent.

請求項5に記載した発明によると、塩化ナトリウムを水に配合し、塩化ナトリウム水溶液としたので、発熱剤との反応が均一に行うことができる。   According to the invention described in claim 5, since sodium chloride is blended with water to form an aqueous sodium chloride solution, the reaction with the exothermic agent can be performed uniformly.

以下、発明を実施する好ましい形態を、実施例および比較例を参照して説明する。以下の各実施例では、発熱剤に塩化ナトリウムに配合する量を変化させて配合し、常水と反応させ、発生する蒸気の時間に対する温度変化と、塩化ナトリウムの配合量による発生熱量の増加分を確認した。また、各比較例では、発熱剤に塩化ナトリウムを配合せずに常水と反応させ、発生する蒸気の時間に対する温度変化を確認した。   Hereinafter, preferred embodiments for carrying out the invention will be described with reference to Examples and Comparative Examples. In each of the following examples, the amount of exothermic agent to be mixed with sodium chloride is changed, reacted with normal water, the temperature change with respect to the time of generated steam, and the amount of heat generated due to the amount of sodium chloride added. It was confirmed. Moreover, in each comparative example, it was made to react with normal water, without mix | blending sodium chloride with an exothermic agent, and the temperature change with respect to the time of the vapor | steam generated was confirmed.

[実施例、比較例]
使用した塩化ナトリウム

塩化ナトリウムとして、塩化ナトリム99.7質量%にリン酸三カルシウム0.3質量%を添加して使用した。この塩試験法による分析値は、水分0.016質量%、Cl(K、Ca、Mg結合)0.001質量%、SO20.016質量%、Ca0.001質量%、Mg0.000質量%、K0.002質量%、Na(SO4結合4)0.006質量%、塩化ナトリウム99.656質量%,及びリン酸三カルシウム0.3質量%である。なお、リン酸三カルシウムは、砂糖、塩化ナトリウムの凝固防止剤として通常配合されているものである。
[Examples and Comparative Examples]
Sodium chloride used

Sodium chloride was used by adding 0.3% by mass of tricalcium phosphate to 99.7% by mass of sodium chloride. Analyzed values by this salt test method were as follows: moisture 0.016% by mass, Cl (K, Ca, Mg bond) 0.001% by mass, SO20.16% by mass, Ca 0.001% by mass, Mg 0.000% by mass, K0. 0.002% by weight, 0.006% by weight of Na (SO4 bond 4), 99.656% by weight of sodium chloride, and 0.3% by weight of tricalcium phosphate. Tricalcium phosphate is usually blended as an anticoagulant for sugar and sodium chloride.

使用した塩化ナトリウムの140℃、90分間加熱法による乾燥減量は0.1質量%以下、純度は99.5%以上、硫化ナトリウム比色法による重金属は10ppm以下、フルイ分け法による粒度は、150・m(100メッシュ)以下が90%以上、異物はゼロである。   The used sodium chloride has a drying loss of 0.1% by mass or less by a heating method at 140 ° C. for 90 minutes, a purity of 99.5% or more, a heavy metal by a sodium sulfide colorimetric method of 10 ppm or less, and a particle size by a sieve separation method of 150%. -M (100 mesh) or less is 90% or more, and foreign matter is zero.

140℃、90分間加熱法による乾燥減量は0.1質量%以下、純度は99.5%以上、硫化ナトリウム比色法による重金属は10ppm以下、フルイ分け法による粒度は、150・m(100メッシュ)以下が90%以上、異物はゼロである。   Loss on drying by heating method at 140 ° C. for 90 minutes is 0.1% by mass or less, purity is 99.5% or more, heavy metal by sodium sulfide colorimetric method is 10 ppm or less, particle size by fluid division method is 150 m (100 mesh) ) The following is 90% or more, and foreign matter is zero.

使用した蒸気温度測定装置

厚さ2mmのステンレススティールで、100mm(W)・200mm(L)・200mm(H)の容積3700mLの完全密閉式の蓋付き反応容器を作成した。容器の蓋には、直径2mmの蒸気排出口を設けた。さらに、容器の蓋に直径10mmの開口を設け、水が入ったビ−カ−を密閉状態で挿入固定し、水が滴下できるようにした。(株)キーエンス社の温度センサーの先端を容器の底面から45mmの位置にセットした。反応容器に発熱剤を置き、蓋をして水を滴下して反応させた。蒸気温度の測定は、センサーをパソコンと連動させて、5秒〜1800秒まで連続して自動測定して得たアナログデータをグラフで記録し、同時に5秒〜1800秒まで5秒間隔でディジタルデータとして記録した。
Used steam temperature measuring device

Using a stainless steel with a thickness of 2 mm, a reaction vessel with a completely sealed lid with a volume of 3700 mL of 100 mm (W), 200 mm (L), and 200 mm (H) was prepared. The container lid was provided with a steam discharge port having a diameter of 2 mm. Furthermore, an opening having a diameter of 10 mm was provided in the lid of the container, and a beaker containing water was inserted and fixed in a sealed state so that water could be dropped. The tip of a temperature sensor manufactured by Keyence Corporation was set at a position 45 mm from the bottom of the container. An exothermic agent was placed in the reaction vessel, covered, and water was added dropwise to react. The steam temperature is measured by recording the analog data obtained by continuous automatic measurement from 5 seconds to 1800 seconds in conjunction with a personal computer in the form of a graph. At the same time, the digital data is recorded every 5 seconds from 5 seconds to 1800 seconds. Recorded as.

デ−タの処理に関して
5秒〜1800秒まで連続して自動作成したアナログデータは、連続した値である。従って、時間の変化に対する温度変化を全体として観察したり、温度の微妙な昇温、降温状態を観察するには都合がよいが、正確な時間当たりの正確な温度を確認することができない。一方、5秒〜1800秒まで5秒間隔で得たディジタルデータは、5秒毎の温度をほぼ正確に表示しているが、測定時間と測定時間の間の温度変化を読みとることはできない。
Regarding the data processing, the analog data automatically created continuously from 5 seconds to 1800 seconds is a continuous value. Therefore, it is convenient to observe the temperature change with respect to the change of time as a whole, or to observe the subtle temperature rise / fall state, but it is impossible to confirm the exact temperature per time. On the other hand, the digital data obtained at intervals of 5 seconds from 5 seconds to 1800 seconds almost accurately displays the temperature every 5 seconds, but the temperature change between the measurement times cannot be read.

従って、以下に記載する[実施例]及び[比較例]では、5秒〜1800秒まで連続して自動測定して得たアナログデータを表示するグラフを図1〜図15として示し、同時に、表1〜15で、5〜1800秒まで5秒間隔で得たディジタルデータを、分単位(1〜30分)で圧縮して表記した。[考察]においては、両方のデータを利用して説明した。また、表1〜15は、5〜1800秒まで5秒間隔で得たディジタルデータを、分単位で圧縮して表記してあるので、微妙な温度変化は、5秒間隔で得た元のデータを使用して説明した。実験は、全て室温(18〜22℃)で行った。   Therefore, in [Example] and [Comparative Example] described below, graphs displaying analog data obtained by continuous automatic measurement from 5 seconds to 1800 seconds are shown as FIG. 1 to FIG. 1 to 15 and the digital data obtained at intervals of 5 seconds from 5 to 1800 seconds are expressed by compressing them in units of minutes (1 to 30 minutes). In [Discussion], explanation was made using both data. In Tables 1 to 15, since the digital data obtained at intervals of 5 seconds from 5 to 1800 seconds are compressed and expressed in minutes, the subtle temperature changes are the original data obtained at intervals of 5 seconds. Explained using. All experiments were performed at room temperature (18-22 ° C.).

[実施例1]
発熱剤35g(AL22.70g、CaO11.35g)に塩化ナトリウムを0.35g(0.006モル)を配合し、常水70mlを添加した。水を添加後、5秒〜1800秒に亘って発生した蒸気の温度変化を連続して自動記録し得たアナログデータをグラフとして図1に、5秒間隔で得たディジタルデ−タを1〜30分に圧縮して表1に示した。塩化ナトリウムを0.35g、すなわち発熱剤の質量当たり1%添加したことによる発熱量の増加分は、理論上201calである。
[Example 1]
35 g of exothermic agent (AL 22.70 g, CaO 11.35 g) was mixed with 0.35 g (0.006 mol) of sodium chloride, and 70 ml of normal water was added. Analog data obtained by continuously and automatically recording the temperature change of steam generated over 5 seconds to 1800 seconds after adding water is shown in FIG. 1 as digital data obtained at intervals of 5 seconds. The results are shown in Table 1 after being compressed to 30 minutes. The increase in calorific value due to the addition of 0.35 g of sodium chloride, ie 1% per mass of exothermic agent, is theoretically 201 cal.

[比較例1]
発熱剤35g(AL23.33g、CaO11.67)に塩化ナトリウム無添加で、常水70mlを添加した。水を添加後、5秒〜1800秒に亘って発生した蒸気の温度変化を連続して自動記録し、得たアナログデータをグラフとして図1に、5秒間隔で得たディジタルデ−タを1〜30分に圧縮して表1に示した。
[Comparative Example 1]
To 35 g of exothermic agent (AL 23.33 g, CaO 11.67), no sodium chloride was added, and 70 ml of normal water was added. After the addition of water, the temperature change of the steam generated over 5 to 1800 seconds is automatically recorded continuously. The obtained analog data is shown as a graph in FIG. Compressed to ~ 30 minutes and shown in Table 1.

[考 察]
図1に示したグラフにおいて1は実施例1の結果、2は比較例1の結果、3は室温を示している。実施例1と比較例1の結果を併記してある図1及び表1並びに5秒間隔で得た元のディジタルデータを参照すると、実施例1は、測定開始後95〜155秒の間で安定した第1次最高温度帯域約80〜約90℃に達し、その間140秒で最高温度92.1℃に達した。その後、160〜225秒で一旦80℃以下に降下したが、230〜795秒で第2次最高温度帯域約80℃〜約90℃に達し、320秒で最高温度92.2℃に達した。その後805〜1120秒の間80〜70℃に徐々に降下し、さらに1800秒まで60〜50℃に同じ降下率で降下し、1800秒では53.6℃を示した。
[Discussion]
In the graph shown in FIG. 1, 1 is the result of Example 1, 2 is the result of Comparative Example 1, and 3 is the room temperature. Referring to FIG. 1 and Table 1 in which the results of Example 1 and Comparative Example 1 are written together and the original digital data obtained at 5 second intervals, Example 1 is stable between 95 and 155 seconds after the start of measurement. The first highest temperature zone reached about 80 to about 90 ° C., and the maximum temperature reached 92.1 ° C. in 140 seconds. Thereafter, the temperature dropped to 80 ° C. or less once in 160 to 225 seconds, but reached the second highest temperature band of about 80 ° C. to about 90 ° C. in 230 to 795 seconds, and reached the maximum temperature of 92.2 ° C. in 320 seconds. Thereafter, the temperature gradually decreased to 80 to 70 ° C. during 805 to 1120 seconds, and further decreased to 60 to 50 ° C. until 1800 seconds, and showed 53.6 ° C. at 1800 seconds.

一方、比較例1は、測定開始後135〜165秒の間で第1次最高温度帯域約80〜約90℃に達し、その間、145秒で最高温度91.1に達した。次いで、発熱開始後260〜640秒で第2次最高温度帯域80℃〜90℃に達し、その間、345秒で92.3℃を示した。その後、645〜1150秒の間80〜60℃に徐々に降下し、さらに1800秒まで60〜50℃に同じ降下率で降下し、1800秒では46.5℃を示した。   On the other hand, in Comparative Example 1, the primary maximum temperature band reached about 80 to about 90 ° C. in 135 to 165 seconds after the start of measurement, and reached the maximum temperature 91.1 in 145 seconds. Subsequently, the second highest temperature band reached 80 ° C. to 90 ° C. in 260 to 640 seconds after the start of heat generation, and 92.3 ° C. was shown in 345 seconds. Thereafter, the temperature gradually decreased to 80 to 60 ° C. for 645 to 1150 seconds, and further decreased to 60 to 50 ° C. until 1800 seconds, and showed 46.5 ° C. in 1800 seconds.

この結果から、発熱剤35g、塩化ナトリウム1%と水70mlの組合せが、発熱剤35gと水70mlの組合せより、最高到達温度を100℃近くまで引き上げ、80〜100℃を長時間維持し、総発熱量を大きくするという顕著な効果を奏功していることが分かる。   From this result, the combination of 35 g of exothermic agent, 1% sodium chloride and 70 ml of water raised the maximum temperature to nearly 100 ° C. and maintained 80-100 ° C. for a long time, compared with the combination of 35 g of exothermic agent and 70 ml of water. It can be seen that the remarkable effect of increasing the calorific value is achieved.

Figure 2006152090
Figure 2006152090

[実施例2]
発熱剤35g(AL22.70g、CaO11.35g)に塩化ナトリウムを0.7g(0.012モル)を配合し、常水70mlを添加した。水を添加してから5秒〜1800秒に亘って発生した蒸気の温度変化を連続して自動記録し、得たアナログデータをグラフとして図2に、5秒間隔で得たディジタルデ−タを1〜30分に圧縮して表2に示した。塩化ナトリウムを0.7g、すなわち発熱剤の質量当た2%添加したことによる発熱量の増加分は、理論上403calである。
[Example 2]
To 35 g of exothermic agent (AL 22.70 g, CaO 11.35 g), 0.7 g (0.012 mol) of sodium chloride was blended, and 70 ml of normal water was added. The temperature change of the steam generated over 5 to 1800 seconds after the addition of water is automatically recorded continuously, and the obtained analog data is graphed in FIG. 2 with the digital data obtained at 5 second intervals. The results are shown in Table 2 after compression to 1 to 30 minutes. The increase in calorific value due to the addition of 0.7 g of sodium chloride, ie 2% of the mass of the exothermic agent, is theoretically 403 cal.

[比較例2]
発熱剤35g(AL23.33g、CaO11.67)に塩化ナトリウム無添加で、常水70mlを添加した。水を添加してから5秒〜1800秒に亘って発生した蒸気の温度変化を連続して自動記録し、得たアナログデータをグラフとして図2に、5秒間隔で得たディジタルデ−タを1〜30分に圧縮して表2に示した。
[Comparative Example 2]
To 35 g of exothermic agent (AL 23.33 g, CaO 11.67), no sodium chloride was added, and 70 ml of normal water was added. The temperature change of the steam generated over 5 to 1800 seconds after the addition of water is automatically recorded continuously, and the obtained analog data is graphed in FIG. 2 with the digital data obtained at 5 second intervals. The results are shown in Table 2 after compression to 1 to 30 minutes.

[考 察]
図2に示したたグラフにおいて1は実施例2の結果、2は比較例2の結果、3は室温を示している。実施例2と比較例2の結果を併記してある図2、表2、および5秒間隔で得た元のディジタルデータを参照すると、実施例2は、測定開始後55〜170秒の間で安定した第1次最高温度帯域約80〜約90℃に達し、その間155秒で最高温度92.7℃に達した。その後、280〜1080秒の間で、安定な第2次最高温度帯域80℃〜90℃に達し、395秒で最高温度95.2℃に達した。その後1085〜1510秒の間80〜70℃に徐々に降下し、さらに1800秒まで60〜50℃に同じ降下率で降下し、1800秒では63.8℃を示した。
[Discussion]
In the graph shown in FIG. 2, 1 is the result of Example 2, 2 is the result of Comparative Example 2, and 3 is the room temperature. Referring to FIG. 2, which shows the results of Example 2 and Comparative Example 2 together, Table 2, and the original digital data obtained at 5 second intervals, Example 2 is between 55 and 170 seconds after the start of measurement. The stable first highest temperature zone reached about 80 to about 90 ° C., during which time the maximum temperature reached 92.7 ° C. in 155 seconds. Thereafter, a stable second maximum temperature band of 80 ° C. to 90 ° C. was reached in 280 to 1080 seconds, and a maximum temperature of 95.2 ° C. was reached in 395 seconds. Thereafter, the temperature gradually decreased to 80 to 70 ° C. during 1085 to 1510 seconds, and further decreased to 60 to 50 ° C. until 1800 seconds, and showed 63.8 ° C. at 1800 seconds.

一方、比較例2では、測定開始後130〜185秒の間で第1次最高温度帯域約80〜約90℃に達し、その間175秒で最高温度92.7℃に達した。次いで、測定開始後315〜675秒の間で第2次最高温度帯域80℃〜90℃に達し、その間400秒で89.7℃を示した。その後、680〜910秒の間80〜70℃に徐々に降下し、さらに1800秒まで60〜50℃に同じ降下率で降下し、1800秒では47.9℃を示した。   On the other hand, in Comparative Example 2, the primary maximum temperature band reached about 80 to about 90 ° C. in 130 to 185 seconds after the start of measurement, and reached the maximum temperature of 92.7 ° C. in 175 seconds. Subsequently, it reached the second highest temperature band of 80 ° C. to 90 ° C. within 315 to 675 seconds after the start of measurement, and showed 89.7 ° C. during 400 seconds. Thereafter, the temperature gradually decreased to 80 to 70 ° C. for 680 to 910 seconds, and further decreased to 60 to 50 ° C. until 1800 seconds, and showed 47.9 ° C. in 1800 seconds.

この結果から、発熱剤35g、塩化ナトリウム2%と水70mlの組合せが、発熱剤35gと水70mlの組合せより、最高到達温度を100℃近くまで引き上げ、80〜100℃を長時間維持し、総発熱量を大きくするという顕著な効果を奏功していることが分かる。   From this result, the combination of exothermic agent 35g, sodium chloride 2% and water 70ml, compared to the exothermic agent 35g and water 70ml combination, raised the maximum temperature to nearly 100 ° C and maintained 80-100 ° C for a long time, It can be seen that the remarkable effect of increasing the calorific value is achieved.

Figure 2006152090
Figure 2006152090

[実施例3]
発熱剤35g(AL22.70g、CaO11.35g)に塩化ナトリウムを1.05g(0.018モル)を配合して、常水70mlを添加して発熱反応を起こさせ、発生した蒸気の温度変化を5秒〜1800秒に亘って連続して自動記録し、得たアナログデータをグラフとして図3に、5秒間隔で得たディジタルデ−タを1〜30分に圧縮して表3に示した。塩化ナトリウムを1.05g、すなわち発熱剤の質量当たり3%添加したことによる発熱量の増加分は、理論上605calである。
[Example 3]
35 g of exothermic agent (AL22.70 g, CaO 11.35 g) was mixed with 1.05 g (0.018 mol) of sodium chloride, 70 ml of normal water was added to cause an exothermic reaction, and the temperature change of the generated steam was Automatic recording was continuously performed for 5 seconds to 1800 seconds, and the obtained analog data was graphed in FIG. 3, and the digital data obtained at 5 second intervals was compressed to 1 to 30 minutes and shown in Table 3. . The increase in calorific value due to the addition of 1.05 g of sodium chloride, ie 3% per mass of exothermic agent, is theoretically 605 cal.

[比較例3]
発熱剤35g(AL23.33g、CaO11.67)に塩化ナトリウム無添加で、常水70mlを添加して発熱反応を起こさせ、発生した蒸気の温度変化を5秒〜1800秒に亘って連続して自動記録し、得たアナログデータをグラフとして図3に、5秒間隔で得たディジタルデ−タを1〜30分に圧縮して表3に示した。
[Comparative Example 3]
The exothermic agent 35g (AL23.33g, CaO11.67) was added with no sodium chloride, 70ml of normal water was added to cause an exothermic reaction, and the temperature change of the generated steam was continued for 5 to 1800 seconds. The recorded analog data was automatically recorded as a graph in FIG. 3, and the digital data obtained at 5-second intervals was compressed to 1 to 30 minutes and shown in Table 3.

[考 察]
図3に示したグラフにおいて1は実施例3の結果、2は比較例3の結果、3は室温を示している。実施例3と比較例3の結果を併記してある図3、表3、および5秒間隔で得た元のディジタルデータを参照すると、実施例3は、測定開始後55〜60秒で第1次最高温度帯域約80〜約90℃に達し、その間55秒で最高温度84.8℃に達した。その後、105〜190秒の間で、安定な第2次最高温度帯域80℃〜90℃に達し、その間160秒で最高温度94.6℃に達した。その後290〜1140秒の間で安定な第3次最高温度帯域80℃〜90℃に達し、その間460秒で最高温度92.6℃に達した。1145〜1575秒の間で、80〜70℃に徐々に降下し、さらに1800秒まで60〜50℃に同じ降下率で降下し、1800秒では65℃を示した。
[Discussion]
In the graph shown in FIG. 3, 1 is the result of Example 3, 2 is the result of Comparative Example 3, and 3 is the room temperature. Referring to FIG. 3, in which the results of Example 3 and Comparative Example 3 are written together, and Table 3 and the original digital data obtained at intervals of 5 seconds, Example 3 is first in 55 to 60 seconds after the start of measurement. The next highest temperature band reached about 80 to about 90 ° C., during which time the maximum temperature reached 84.8 ° C. in 55 seconds. Thereafter, a stable secondary maximum temperature band of 80 ° C. to 90 ° C. was reached in 105 to 190 seconds, and a maximum temperature of 94.6 ° C. was reached in 160 seconds. Thereafter, a stable third maximum temperature band of 80 ° C. to 90 ° C. was reached in 290 to 1140 seconds, and the maximum temperature of 92.6 ° C. was reached in 460 seconds. During 1145 to 1575 seconds, the temperature gradually decreased to 80 to 70 ° C., and further decreased to 60 to 50 ° C. until 1800 seconds, showing 65 ° C. at 1800 seconds.

比較例3は、表3には表記していないが、測定開始後55秒で第1次最高温度82.7℃に達した。その後測定開始後100〜180秒の間で第2次最高温度帯域約80〜約90℃に達し、その間155秒で最高温度94.7℃に達した。次いで、測定開始後250〜615秒の間で第3次最高温度帯域80℃〜90℃に達し、その間335秒で90.3℃を示した。その後、620〜865秒の間80〜70℃に徐々に降下し、さらに1800秒まで60〜50℃に同じ降下率で降下し、1800秒では47℃を示した。   In Comparative Example 3, although not shown in Table 3, the primary maximum temperature reached 82.7 ° C. 55 seconds after the start of measurement. Thereafter, the secondary maximum temperature band reached about 80 to about 90 ° C. within 100 to 180 seconds after the start of measurement, and the maximum temperature reached 94.7 ° C. within 155 seconds. Subsequently, the third maximum temperature band of 80 ° C. to 90 ° C. was reached within 250 to 615 seconds after the start of measurement, and 90.3 ° C. was exhibited during 335 seconds. Thereafter, the temperature gradually decreased to 80 to 70 ° C. for 620 to 865 seconds, further decreased to 60 to 50 ° C. until 1800 seconds, and showed 47 ° C. in 1800 seconds.

この結果から、発熱剤35g、塩化ナトリウム2%と水70mlの組合せが、発熱剤35gと水70mlの組合せより、最高到達温度を100℃近くまで引き上げ、80〜100℃を長時間維持し、総発熱量を大きくし、360秒〜1800秒の間、実施例3は、比較例3と比べて、平均で約15℃高い温度を維持するという顕著な効果を奏功していることが分かる。   From this result, the combination of exothermic agent 35g, sodium chloride 2% and water 70ml, compared to the exothermic agent 35g and water 70ml combination, raised the maximum temperature to nearly 100 ° C and maintained 80-100 ° C for a long time, It can be seen that the calorific value is increased and Example 3 achieves a remarkable effect of maintaining an average temperature of about 15 ° C. higher than that of Comparative Example 3 between 360 seconds and 1800 seconds.

Figure 2006152090
Figure 2006152090

[実施例4]
発熱剤35g(AL22.70g、CaO11.35g)に塩化ナトリウムを0.84g(0.0144モル)を添加した系に常水70mlを添加して発熱反応を起こさせ、発生した蒸気の温度変化を測定開始から5秒〜1800秒にわたって連続して自動記録し、得たアナログデータをグラフとして図4に、5秒間隔で得たディジタルデ−タを1〜30分に圧縮して表4に示した。塩化ナトリウムを0.84g、すなわち発熱剤の質量当たり2.4%添加したことによる発熱量の増加分は、理論上472calである。
[Example 4]
A system in which 0.84 g (0.0144 mol) of sodium chloride was added to 35 g of an exothermic agent (AL 22.70 g, CaO 11.35 g) was added with 70 ml of normal water to cause an exothermic reaction, and the temperature change of the generated steam was measured. Automatic recording is continuously performed for 5 seconds to 1800 seconds from the start of measurement, and the obtained analog data is graphed in FIG. 4 and the digital data obtained at 5 second intervals is compressed to 1 to 30 minutes and shown in Table 4. It was. The increase in calorific value due to the addition of 0.84 g of sodium chloride, ie 2.4% per mass of exothermic agent, is theoretically 472 cal.

[実施例5]
発熱剤35g(AL22.70g、CaO11.35g)に塩化ナトリウムを1.05g(0.018モル)を添加した系に常水70mlを添加して発熱反応を起こさせ、発生した蒸気の温度変化を測定開始から5秒〜1800秒にわたって連続して自動記録し、得たアナログデータをグラフとして図4に、5秒間隔で得たディジタルデ−タを1〜30分に圧縮して表4に示した。塩化ナトリウムを1.05g、すなわち発熱剤の質量当たり3.0%添加したことによる発熱量の増加分は、理論上605calである。
[Example 5]
A system in which 1.05 g (0.018 mol) of sodium chloride was added to 35 g of exothermic agent (AL 22.70 g, CaO 11.35 g) was added with 70 ml of normal water to cause an exothermic reaction, and the temperature change of the generated steam was Automatic recording is continuously performed for 5 seconds to 1800 seconds from the start of measurement, and the obtained analog data is graphed in FIG. 4 and the digital data obtained at 5 second intervals is compressed to 1 to 30 minutes and shown in Table 4. It was. The increase in calorific value due to the addition of 1.05 g of sodium chloride, ie 3.0% per mass of exothermic agent, is theoretically 605 cal.

[考 察]
図4に示したグラフにおいて1は実施例4の結果、2は実施例5の結果、3は室温を示している。実施例4と実施例5の結果を併記してある図4,表4、及び5秒間隔で得た元のディジタルデータを参照すると、実施例4は、測定開始後135〜200秒の間で安定した第1次最高温度帯域約80〜約90℃に達し、その間170秒で最高温度90.7℃に達した。その後、295〜1160秒の間で、安定な第2次最高温度帯域80℃〜90℃に達し、その間560秒で最高温度87.9℃に達した。その後1160〜1560秒の間、80〜70℃に徐々に降下し、さらに1800秒まで70〜60℃に同じ降下率で降下し、1800秒では66.4℃を示した。
[Discussion]
In the graph shown in FIG. 4, 1 is the result of Example 4, 2 is the result of Example 5, and 3 is the room temperature. Referring to FIG. 4, Table 4 in which the results of Example 4 and Example 5 are written together, and the original digital data obtained at intervals of 5 seconds, Example 4 is between 135 and 200 seconds after the start of measurement. The stable first highest temperature zone reached about 80 to about 90 ° C., during which time the maximum temperature reached 90.7 ° C. in 170 seconds. Thereafter, a stable secondary maximum temperature band of 80 ° C. to 90 ° C. was reached in 295 to 1160 seconds, and the maximum temperature of 87.9 ° C. was reached in 560 seconds. Thereafter, the temperature gradually decreased to 80 to 70 ° C. for 1160 to 1560 seconds, and further decreased to 70 to 60 ° C. until 1800 seconds, and showed 66.4 ° C. in 1800 seconds.

一方、実施例5は、測定開始後85〜180秒で、第1次最高温度帯域約80〜約90℃に達し、その間155秒で最高温度95℃に達した。次いで、測定開始後245〜1150秒で、第2次最高温度帯域80℃〜90℃に達し、その間415秒で93.4℃を示した。その後、1155〜1540秒の間、80〜70℃に徐々に降下し、さらに1800秒まで、70〜60℃に同じ降下率で降下し、1800秒では63.5℃を示した。   On the other hand, in Example 5, the primary maximum temperature range of about 80 to about 90 ° C. was reached in 85 to 180 seconds after the start of measurement, and the maximum temperature of 95 ° C. was reached in 155 seconds. Next, the secondary maximum temperature band reached 80 ° C. to 90 ° C. in 245 to 1150 seconds after the start of measurement, and 93.4 ° C. was exhibited in 415 seconds during that time. Thereafter, the temperature gradually decreased to 80 to 70 ° C. for 1155 to 1540 seconds, and further decreased to 70 to 60 ° C. until 1800 seconds, and showed 63.5 ° C. in 1800 seconds.

この結果から、発熱剤35g、塩化ナトリウム2.4%と水70mlの組合せによる発熱反応と、発熱剤35g、塩化ナトリウム3.0%と水70mlの組合せが、無添加の場合に比べて、最高到達温度を100℃近くまで引き上げ、100〜90℃を長時間維持し、総発熱量を大きくするという顕著な効果を奏功していることが分かる。   From this result, the exothermic reaction by the combination of 35 g of exothermic agent, 2.4% sodium chloride and 70 ml of water, and the combination of 35 g of exothermic agent, 3.0% sodium chloride and 70 ml of water were the highest compared to the case of no addition. It can be seen that the remarkable effect of raising the ultimate temperature to near 100 ° C., maintaining 100 to 90 ° C. for a long time, and increasing the total calorific value is achieved.

Figure 2006152090
Figure 2006152090

[実施例6]
発熱剤35g(AL22.70g、CaO11.35g)に塩化ナトリウムを0.945g(0.0172モル)を添加した系に、常水70mlを添加して発熱反応を起こさせた。発生した蒸気の温度変化を、測定開始5秒〜1800秒に亘って連続して自動記録し、得たアナログデータをグラフとして図5に、5秒間隔で得たディジタルデ−タを1〜30分に圧縮して表5に示した。塩化ナトリウムを0.945g、すなわち発熱剤の質量当たり2.7%添加したことによる発熱量の増加分は、理論上580calである。
[Example 6]
To a system in which 0.945 g (0.0172 mol) of sodium chloride was added to 35 g of exothermic agent (AL 22.70 g, CaO 11.35 g), 70 ml of normal water was added to cause an exothermic reaction. The temperature change of the generated steam is automatically recorded continuously for 5 to 1800 seconds from the start of measurement, and the obtained analog data is graphed in FIG. Table 5 shows the results compressed into minutes. The increase in calorific value due to the addition of 0.945 g of sodium chloride, ie 2.7% per mass of exothermic agent, is theoretically 580 cal.

[実施例7]
発熱剤35g(AL22.70g、CaO11.35g)に塩化ナトリウムを0.84g(0.014モル)配合した系に、常水70mlを添加して発熱反応を起こさせた。発生した蒸気の温度変化を測定開始5秒〜1800秒に亘って連続して自動記録し、得たアナログデータをグラフとして図5に、5秒間隔で得たディジタルデ−タを1〜30分に圧縮して表5に示した。塩化ナトリウムを0.84g、すなわち発熱剤の質量当たり2.4%添加したことによる発熱量の増加分は、472calである。
[Example 7]
70 ml of normal water was added to a system in which 0.84 g (0.014 mol) of sodium chloride was mixed with 35 g of exothermic agent (AL 22.70 g, CaO 11.35 g) to cause an exothermic reaction. The temperature change of the generated steam is automatically recorded continuously for 5 to 1800 seconds from the start of measurement, and the obtained analog data is graphed in FIG. 5 and the digital data obtained at 5 second intervals for 1 to 30 minutes. The results are shown in Table 5. The amount of increase in calorific value due to the addition of 0.84 g of sodium chloride, that is, 2.4% per mass of the exothermic agent is 472 cal.

[考 察]
図5に示したグラフにおいて1は実施例6の結果、2は実施例7の結果、3は室温を示している。実施例6と実施例7の結果を併記してある図5,表5、および5秒間隔で得た元のディジタルデータを参照すると、実施例6は、測定開始後45〜175秒で、安定した第1次最高温度帯域約80〜90℃に達し、その間150秒で最高温度95.8℃に達した。さらに、測定開始後270〜1085秒で、安定した第2次最高温度帯域約80〜90℃に達し、その間410秒で最高温度93.8℃に達した。その後、1090〜1475秒の間、80〜70℃に徐々に降下し、さらに1800秒まで、70〜60℃に同じ降下率で降下し、1800秒では62.5℃を示した。
[Discussion]
In the graph shown in FIG. 5, 1 is the result of Example 6, 2 is the result of Example 7, and 3 is room temperature. Referring to FIG. 5, Table 5 where the results of Example 6 and Example 7 are written together, and the original digital data obtained at 5 second intervals, Example 6 is stable at 45 to 175 seconds after the start of measurement. The first highest temperature zone reached about 80 to 90 ° C., and the maximum temperature reached 95.8 ° C. in 150 seconds. Furthermore, it reached a stable secondary maximum temperature band of about 80 to 90 ° C. in 270 to 1085 seconds after the start of measurement, and reached a maximum temperature of 93.8 ° C. in 410 seconds. Thereafter, the temperature gradually decreased to 80 to 70 ° C. for 1090 to 1475 seconds, and further decreased to 70 to 60 ° C. until 1800 seconds, and showed 62.5 ° C. in 1800 seconds.

一方、実施例7は、測定開始後120〜175秒で、第1次最高温度帯域約80〜約90℃に達し、その間160秒で最高温度96.1℃に達した。次いで、測定開始後255〜1030秒で、第2次最高温度帯域80℃〜90℃に達し、その間375秒で93.3℃を示した。その後、1035〜1395秒で、80〜70℃に徐々に降下し、さらに1800秒まで、70〜60℃に同じ降下率で降下し、1800秒では60.3℃を示した。   On the other hand, in Example 7, 120 to 175 seconds after the start of measurement, the first highest temperature band reached about 80 to about 90 ° C., and the maximum temperature reached 96.1 ° C. in 160 seconds. Subsequently, the second maximum temperature band of 80 ° C. to 90 ° C. was reached in 255 to 1030 seconds after the start of measurement, and 93.3 ° C. was exhibited in 375 seconds. Thereafter, the temperature gradually decreased to 80 to 70 ° C. in 1035 to 1395 seconds, and further decreased to 70 to 60 ° C. until 1800 seconds, and showed 60.3 ° C. in 1800 seconds.

この結果から、発熱剤35g、塩化ナトリウム2.7%と水70mlの組合せによる発熱反応と、発熱剤35g、塩化ナトリウ2.4%と水70mlの組合せが、無添加の場合に比べて、最高到達温度を100℃近くまで引き上げ、100〜90℃を長時間維持し、総発熱量を大きくするという顕著な効果を奏功していることが分かる。   From this result, the exothermic reaction due to the combination of 35 g of exothermic agent, 2.7% sodium chloride and 70 ml of water and the combination of 35 g of exothermic agent, 2.4% sodium chloride and 70 ml of water were the highest compared to the case of no addition. It can be seen that the remarkable effect of raising the ultimate temperature to near 100 ° C., maintaining 100 to 90 ° C. for a long time, and increasing the total calorific value is achieved.

Figure 2006152090
Figure 2006152090

[実施例8]
発熱剤35g(AL22.70g、CaO11.35g)に塩化ナトリウムを0.945g(0.0172モル)を添加した系に常水70mlを添加して発熱反応を起こさせた。発生した蒸気の温度変化を、5秒〜1800秒に亘って連続して自動記録し、得たアナログデータをグラフとして図6に、5秒間隔で得たディジタルデ−タを1〜30分に圧縮して表6に示した。塩化ナトリウムを0.945g、すなわち発熱剤の質量当たり2.7%添加したことによる発熱量の増加分は、理論上580calである。
[Example 8]
70 ml of ordinary water was added to a system in which 0.945 g (0.0172 mol) of sodium chloride was added to 35 g of exothermic agent (AL 22.70 g, CaO 11.35 g) to cause an exothermic reaction. The temperature change of the generated steam is automatically recorded continuously over 5 seconds to 1800 seconds, and the obtained analog data is graphed in FIG. 6 and the digital data obtained at intervals of 5 seconds is 1 to 30 minutes. The result is shown in Table 6. The increase in calorific value due to the addition of 0.945 g of sodium chloride, ie 2.7% per mass of exothermic agent, is theoretically 580 cal.

[実施例9]
発熱剤35g(AL22.70g、CaO11.35g)に塩化ナトリウムを1.05g(0.018モル)配合した系に、常水70mlを添加して発熱反応を起こさせ、5秒〜1800秒に亘って発生した蒸気の温度変化を連続して自動記録し、得たアナログデータをグラフとして図6に、5秒間隔で得たディジタルデ−タを1〜30分に圧縮して表6に示した。塩化ナトリウムを1.05g、すなわち発熱剤の質量当たり3.0%添加したことによる発熱量の増加分は、理論上605calである。
[Example 9]
To a system in which 1.05 g (0.018 mol) of sodium chloride was added to 35 g of exothermic agent (AL 22.70 g, CaO 11.35 g), 70 ml of normal water was added to cause an exothermic reaction, and for 5 to 1800 seconds. The temperature change of the generated steam was automatically recorded continuously, and the obtained analog data was graphed in FIG. 6 and the digital data obtained at 5-second intervals was compressed to 1 to 30 minutes and shown in Table 6. . The increase in calorific value due to the addition of 1.05 g of sodium chloride, ie 3.0% per mass of exothermic agent, is theoretically 605 cal.

[考 察]
図6に示したグラフにおいて1は実施例8の結果、2は実施例9の結果、3は室温を示している。実施例8は、表6には記載しなかったが、測定開始後50秒で第1次最高温度85.4℃を示した。その後、測定開始後70〜215秒の間で安定した第1次最高温度帯域約80〜約90℃を示し、その間165秒で最高温度94.4℃に達した。次いで、測定開始後285〜1090秒で安定した第3次最高温度帯域約80〜約90℃を示し、その間400秒で最高温度95.1℃に達した。その後1095〜1410秒の間、80〜70℃に徐々に降下し、さらに1800秒まで、70〜60℃に同じ降下率で降下し、1800秒では61.6℃を示した。
[Discussion]
In the graph shown in FIG. 6, 1 is the result of Example 8, 2 is the result of Example 9, and 3 is the room temperature. Although not described in Table 6, Example 8 showed a primary maximum temperature of 85.4 ° C. 50 seconds after the start of measurement. Thereafter, a stable primary maximum temperature band of about 80 to about 90 ° C. was exhibited in 70 to 215 seconds after the start of measurement, and the maximum temperature of 94.4 ° C. was reached in 165 seconds. Subsequently, a stable third highest temperature band of about 80 to about 90 ° C. was exhibited in 285 to 1090 seconds after the start of measurement, and the maximum temperature reached 95.1 ° C. in 400 seconds. Thereafter, the temperature gradually decreased to 80 to 70 ° C. for 1095 to 1410 seconds, and further decreased to 70 to 60 ° C. until 1800 seconds, and showed 61.6 ° C. in 1800 seconds.

実施例9は、表6には記載しなかったが、測定開始後50秒で第1次最高温度89.1℃を示した。その後、測定開始後115〜205秒で、第2次最高温度帯域約80〜約90℃に達し、その間180秒で、最高温度92.5℃に達した。次いで、測定開始後250〜1230秒で、第3次最高温度帯域80℃〜90℃に達し、その間340秒で、95.7℃を示した。その後、1230〜1610秒の間80〜70℃に徐々に降下し、さらに1800秒まで、70〜60℃に同じ降下率で降下し、1800秒では65.2℃を示した。   Although Example 9 was not described in Table 6, the primary maximum temperature of 89.1 ° C. was exhibited 50 seconds after the start of measurement. Thereafter, the secondary maximum temperature band reached about 80 to about 90 ° C. in 115 to 205 seconds after the start of measurement, and the maximum temperature reached 92.5 ° C. in 180 seconds. Subsequently, the third highest temperature band reached 80 ° C. to 90 ° C. in 250 to 1230 seconds after the start of measurement, and 95.7 ° C. was shown in 340 seconds. Thereafter, the temperature gradually decreased to 80 to 70 ° C. for 1230 to 1610 seconds, and further decreased to 70 to 60 ° C. until 1800 seconds, and showed 65.2 ° C. in 1800 seconds.

この結果から、発熱剤35g、塩化ナトリウム2.7%と水70mlの組合せによる発熱反応と、発熱剤35g、塩化ナトリウ2.4%と水70mlの組合せが、無添加の場合に比べて、最高到達温度を100℃近くまで引き上げ、100〜90℃を長時間維持し、総発熱量を大きくするという顕著な効果を奏功していることが分かる。   From this result, the exothermic reaction due to the combination of 35 g of exothermic agent, 2.7% sodium chloride and 70 ml of water and the combination of 35 g of exothermic agent, 2.4% sodium chloride and 70 ml of water were the highest compared to the case of no addition. It can be seen that the remarkable effect of raising the ultimate temperature to near 100 ° C., maintaining 100 to 90 ° C. for a long time, and increasing the total calorific value is achieved.

Figure 2006152090
Figure 2006152090

次ぎに、発熱剤15g、20g、25g、35g、40g、50g、及び60gに所定量の塩化ナトリウムを配合し水と反応させて、発生蒸気の温度変化を確認した実施例10〜16と、塩化ナトリウムを配合せずに、水と反応させて発生蒸気の温度変化を確認した比較例4〜10を行った。   Next, exothermic agents 15g, 20g, 25g, 35g, 40g, 50g, and 60g were mixed with a predetermined amount of sodium chloride and reacted with water to confirm the temperature change of the generated steam. Comparative Examples 4 to 10 in which the temperature change of the generated steam was confirmed by reacting with water without blending sodium were performed.

[実施例10]
発熱剤15g(AL9.73g、CaO4.865g)に塩化ナトリウムを0.405g(0.0069モル)を配合し、常水30mlを添加して発熱反応を起こさせ、5秒〜1800秒に亘って発生した蒸気の温度変化を連続して自動記録し、得たアナログデータをグラフとして図7に、5秒間隔で得たディジタルデ−タを1〜30分に圧縮して表7に示した。塩化ナトリウムを0.405g、すなわち発熱剤の質量当たり2.7%添加したことによる発熱量の増加分は、理論上232calである。
[Example 10]
The exothermic agent 15g (AL9.73g, CaO 4.865g) is mixed with 0.405g (0.0069mol) of sodium chloride, and 30ml of normal water is added to cause an exothermic reaction, for 5 to 1800 seconds. The temperature change of the generated steam was continuously and automatically recorded, and the obtained analog data was graphed in FIG. 7 and the digital data obtained at 5-second intervals was compressed to 1 to 30 minutes and shown in Table 7. The increase in calorific value due to the addition of 0.405 g of sodium chloride, ie 2.7% per mass of exothermic agent, is theoretically 232 cal.

[比較例4]
発熱剤15g(AL10g、CaO5g)に塩化ナトリウム無添加で、常水30mlを添加して発熱反応を起こさせ、測定熱開始5秒から1800秒に亘って発生した蒸気の温度変化を連続して自動記録し、得たアナログデータをグラフとして図7に、5秒間隔で得たディジタルデ−タを1〜30分に圧縮して表7に示した。
[Comparative Example 4]
15 g of exothermic agent (AL 10 g, CaO 5 g) is added without sodium chloride, 30 ml of normal water is added to cause an exothermic reaction, and the temperature change of the steam generated from 5 seconds to 1800 seconds is started automatically. The recorded analog data as a graph is shown in FIG. 7, and the digital data obtained at intervals of 5 seconds are compressed to 1 to 30 minutes and shown in Table 7.

[考 察]
図7に示したグラフにおいて1は実施例10の結果、2は比較例4の結果、3は室温を示している。図7,表7,および5秒間隔で得た元のディジタルデータを参照すると、実施例10は、測定開始後30〜45秒で第1次最高温度帯域約70℃を示し、その間35秒で76.8℃を示した。その後、測定開始後265〜495秒の間で第2次最高温度帯域約70〜76℃を示し、その間400秒で最高温度75.9℃に達した。次いで、測定開始後495〜1800秒まで70〜30℃に同じ降下率で降下し、1800秒では38.1℃を示した。
[Discussion]
In the graph shown in FIG. 7, 1 is the result of Example 10, 2 is the result of Comparative Example 4, and 3 is the room temperature. Referring to FIG. 7, Table 7, and the original digital data obtained at 5 second intervals, Example 10 shows a primary maximum temperature band of about 70 ° C. 30 to 45 seconds after the start of measurement, during which 35 seconds. It showed 76.8 ° C. Thereafter, the secondary maximum temperature band of about 70 to 76 ° C. was exhibited in 265 to 495 seconds after the start of measurement, and the maximum temperature reached 75.9 ° C. in 400 seconds. Subsequently, the temperature decreased from 70 to 30 ° C. at the same rate from 495 to 1800 seconds after the start of measurement, and showed 38.1 ° C. at 1800 seconds.

比較例4は、測定開始後30〜55秒で第1次最高温度帯域約70〜80℃を示し、その間45秒で第1次最高温度85.8℃を示した。その後、80〜305秒で第2次最高温度帯域約70〜90℃を示し、その間135秒で最高温度86.6℃に達した。その後、310〜1800秒まで、70〜約30℃に急激に降下し、1800秒では32.1℃を示した。   Comparative Example 4 showed a primary maximum temperature band of about 70 to 80 ° C. 30 to 55 seconds after the start of measurement, and a primary maximum temperature of 85.8 ° C. in 45 seconds. Thereafter, the second highest temperature band of about 70 to 90 ° C. was exhibited in 80 to 305 seconds, and the maximum temperature of 86.6 ° C. was reached in 135 seconds. Then, it dropped rapidly from 70 to about 30 ° C. until 310 to 1800 seconds, and showed 32.1 ° C. at 1800 seconds.

実施例10と比較例4を比較すると、発熱開始から355秒までは比較例4の方が熱量が高いが、360秒〜1800秒の間は、実施例10の方が、比較例4より平均で5〜10℃高い温度を維持し、そのまま温度降下し、1800秒では、実施例10は38.1℃を、比較例4は32.1℃を示した。この結果から、実施例10が、比較例4より、発熱総発熱量を大きくするという顕著な効果を奏功していることが分かる。   When Example 10 and Comparative Example 4 are compared, the amount of heat in Comparative Example 4 is higher from the start of heat generation to 355 seconds, but Example 10 is more average than Comparative Example 4 between 360 seconds and 1800 seconds. The temperature was maintained at 5 to 10 ° C., and the temperature was lowered. In 1800 seconds, Example 10 showed 38.1 ° C. and Comparative Example 4 showed 32.1 ° C. From this result, it can be seen that Example 10 achieves a remarkable effect of increasing the total heat generation amount as compared with Comparative Example 4.

Figure 2006152090
Figure 2006152090

[実施例11]
発熱剤20g(AL12.97g、CaO6.49g)に塩化ナトリウムを0.540g(0.0092モル)を配合し、常水40mlを添加して発熱反応を起こさせた。測定開始5秒から1800秒に亘って発生した蒸気の温度変化を連続して自動記録し、得たアナログデータをグラフとして図8に、5秒間隔で得たディジタルデ−タを1〜30分に圧縮して表8に示した。塩化ナトリウムを0.540g、すなわち発熱剤の質量当たり2.7%添加したことによる発熱量の増加分は、理論上311calである。
[Example 11]
0.540 g (0.0092 mol) of sodium chloride was added to 20 g of exothermic agent (AL 12.97 g, CaO 6.49 g), and 40 ml of normal water was added to cause an exothermic reaction. The temperature change of the steam generated from 5 seconds to 1800 seconds from the start of measurement is automatically recorded continuously. The obtained analog data is graphed in FIG. 8 and the digital data obtained at 5 second intervals is 1 to 30 minutes. The results are shown in Table 8. The increase in calorific value due to the addition of 0.540 g of sodium chloride, ie 2.7% per mass of exothermic agent, is theoretically 311 cal.

[比較例5]
発熱剤20g(AL13.3g、CaO6.67g)に塩化ナトリウム無添加で、常水40mlを添加して発熱反応を起こさせた。測定開始5秒から1800秒に亘って発生した蒸気の温度変化を連続して自動記録し、得たアナログデータをグラフとして図8に、5秒間隔で得たディジタルデ−タを1〜30分に圧縮して表8に示した。
[Comparative Example 5]
An exothermic reaction was caused by adding 40 ml of normal water to 20 g of exothermic agent (AL 13.3 g, CaO 6.67 g) without adding sodium chloride. The temperature change of the steam generated from 5 seconds to 1800 seconds from the start of measurement is automatically recorded continuously. The obtained analog data is graphed in FIG. 8 and the digital data obtained at 5 second intervals is 1 to 30 minutes. The results are shown in Table 8.

[考 察]
図8において1は実施例11の結果、2は比較例5の結果、3は室温を示している。図8,表8,および5秒間隔で得た元のディジタルデータを参照すると、実施例11は、測定開始後35〜50秒で第1次最高温度帯域約80〜83℃に達し、その間35秒で82.6℃を示した。その後、測定開始後65〜430秒の間で第2次最高温度帯域約70〜89℃に達し、その間365秒で最高温度88.1℃を示した。次いで、測定開始後495〜1800秒まで70〜40℃にほぼ同じ降下率で降下し、1800秒では48.6℃を示した。
[Discussion]
In FIG. 8, 1 is the result of Example 11, 2 is the result of Comparative Example 5, and 3 is the room temperature. Referring to FIG. 8, Table 8, and the original digital data obtained at 5 second intervals, Example 11 reached the first highest temperature band of about 80 to 83 ° C. in 35 to 50 seconds after the start of measurement, during which 35 It showed 82.6 ° C in seconds. Thereafter, the secondary maximum temperature band reached about 70 to 89 ° C. in 65 to 430 seconds after the start of measurement, and the maximum temperature of 88.1 ° C. was shown in 365 seconds. Subsequently, it dropped at 70 to 40 ° C. from 495 to 1800 seconds after the start of measurement, and showed 48.6 ° C. at 1800 seconds.

比較例5は、測定開始後40〜50秒で第1次最高温度帯域約80〜83℃に達し、その間40秒で最高温度82.4℃を示した。その後、95〜210秒の間で第2次最高温度帯域約80℃に達し、その間170秒で最高温度87.6℃を示した。その後、260〜1800秒まで、ほぼ同じ降下率で70〜40℃に降下し、1800秒では40.3℃を示した。   In Comparative Example 5, the primary maximum temperature band reached about 80 to 83 ° C. in 40 to 50 seconds after the start of measurement, and the maximum temperature was 82.4 ° C. in 40 seconds. Thereafter, the secondary maximum temperature band reached about 80 ° C. in 95 to 210 seconds, and the maximum temperature of 87.6 ° C. was shown in 170 seconds. Thereafter, the temperature dropped from 70 to 1800 seconds at 70 to 40 ° C. at substantially the same drop rate, and 1800 seconds showed 40.3 ° C.

すなわち、発熱剤20g、塩化ナトリウム2.7%と水40mlの組合せと発熱剤20gと水70mlの組合せを比較すると、発熱開始から355秒までは、比較例4の方が熱量が高いが、360秒〜1800秒の間は、実施例11の方が、比較例5より平均で5〜10℃高い温度を維持し、そのまま温度降下し、1800秒では、実施例38.1℃を、比較例4は32.1℃を示した。この結果から、実施例11が、比較例5より、総発熱量を大きくするという顕著
な効果を奏功していることが分かる。
That is, when a combination of 20 g of exothermic agent, 2.7% sodium chloride and 40 ml of water and a combination of 20 g of exothermic agent and 70 ml of water are compared, the heat amount of Comparative Example 4 is higher from the start of exotherm to 355 seconds. Between 1 second and 1800 seconds, Example 11 maintained an average temperature of 5-10 ° C. higher than that of Comparative Example 5, and the temperature dropped as it was. In 1800 seconds, Example 38.1 ° C. 4 showed 32.1 degreeC. From this result, it can be seen that Example 11 achieved a remarkable effect of increasing the total calorific value as compared with Comparative Example 5.

Figure 2006152090
Figure 2006152090

[実施例12]
発熱剤25g(AL16.22g、CaO8.10g)に塩化ナトリウムを0.675g(0.0115モル)を配合し、常水50mlを添加して発熱反応を起こさせた。測定開始5秒から1800秒に亘って、発生した蒸気の温度変化を連続して自動記録し、得たアナログデータをグラフとして図9に、5秒間隔で得たディジタルデ−タを1〜30分に圧縮して表9に示した。塩化ナトリウムを0.675g、すなわち発熱剤の質量当たり2.7%添加したことによる発熱量の増加分は、理論上389calである。
[Example 12]
An exothermic reaction was caused by adding 0.675 g (0.0115 mol) of sodium chloride to 25 g of exothermic agent (AL 16.22 g, CaO 8.10 g) and adding 50 ml of normal water. From 5 seconds to 1800 seconds from the start of measurement, the temperature change of the generated steam is automatically recorded continuously, and the obtained analog data is graphed in FIG. Table 9 shows the results compressed into minutes. The increase in calorific value due to the addition of 0.675 g of sodium chloride, ie 2.7% per mass of exothermic agent, is theoretically 389 cal.

[比較例6]
発熱剤25g(AL16.67g、CaO8.33g)に塩化ナトリウム無添加で、常水50mlを添加して発熱反応を起こさせ、測定開始5秒から1800秒に亘って、発生した蒸気の温度変化を連続して自動記録し、得たアナログデータをグラフとして図9に、5秒間隔で得たディジタルデ−タを1〜30分に圧縮して表9に示した。
[Comparative Example 6]
Exothermic agent 25g (AL16.67g, CaO8.33g) was added without sodium chloride, 50ml of normal water was added to cause an exothermic reaction, and the temperature change of the generated steam was observed from 5 seconds to 1800 seconds. FIG. 9 shows the obtained analog data as a graph, and the digital data obtained at intervals of 5 seconds are compressed to 1 to 30 minutes and shown in Table 9.

[考 察]
図9において1は実施例12の結果、2は比較例6の結果、3は室温を示している。図9,表9,および5秒間隔で得た元のディジタルデータを参照すると、実施例12は、測定開始後125〜180秒の間で安定した第1次最高温度帯域約80℃に達し、150秒で最高温度88.5℃に達した。その後、185〜1100秒、80℃以下70℃以上を維持しながら、ゆっくりと温度降下し、1100〜1800秒の間、ほぼ同じ降下率で70〜50℃に降下し、1800秒では52.9℃を示した。
[Discussion]
In FIG. 9, 1 is the result of Example 12, 2 is the result of Comparative Example 6, and 3 is the room temperature. Referring to FIG. 9, Table 9, and the original digital data obtained at 5 second intervals, Example 12 reached a stable primary maximum temperature band of about 80 ° C. between 125 and 180 seconds after the start of measurement. The maximum temperature reached 88.5 ° C in 150 seconds. Thereafter, the temperature gradually decreases while maintaining at 80 ° C. or lower and 70 ° C. or higher for 185 to 1100 seconds, and decreases to 70 to 50 ° C. at approximately the same rate of decrease for 1100 to 1800 seconds, and 52.9 at 1800 seconds. ° C.

一方、比較例6は、測定開始後30〜40秒で第1次最高温度帯域約80〜90℃に達し、その間35秒で最高温度90.3℃を示した。その後、60〜185秒の間で第2次最高温度帯域約80〜90℃に達し、その間155秒で最高温度94.1℃を示した。その後、185〜1800秒まで、ほぼ同じ降下率で70〜40℃に降下し、1800秒では40.2℃を示した。   On the other hand, Comparative Example 6 reached about 80 to 90 ° C. in the first highest temperature band 30 to 40 seconds after the start of measurement, and showed a maximum temperature of 90.3 ° C. in 35 seconds. Thereafter, the secondary maximum temperature band of about 80 to 90 ° C. was reached in 60 to 185 seconds, and the maximum temperature of 94.1 ° C. was shown in 155 seconds. Thereafter, the temperature dropped to 70 to 40 ° C. at substantially the same rate of decrease from 185 to 1800 seconds, and showed 40.2 ° C. at 1800 seconds.

この結果から、実施例12と比較例6を比較すると、発熱開始から255秒までは両者ほぼ同じ発熱挙動を示したが、255秒程度から、実施例12が比較例6より平均で15℃高い温度を維持して、そのまま1800秒まで温度降下したことがわかる。この結果から、実施例12が、比較例6より、総発熱量を大きくするという顕著な効果を奏功していることが分かる。   From this result, when Example 12 and Comparative Example 6 were compared, both showed almost the same heat generation behavior from the start of heat generation to 255 seconds, but from about 255 seconds, Example 12 was 15 ° C. higher than Comparative Example 6 on average. It can be seen that the temperature dropped to 1800 seconds while maintaining the temperature. From this result, it can be seen that Example 12 achieved a remarkable effect of increasing the total calorific value as compared with Comparative Example 6.

Figure 2006152090
Figure 2006152090

[実施例13]
発熱剤40g(AL25.95g、CaO12.97g)に塩化ナトリウムを1.08g(0.0184モル)を配合し、常水80mlを添加して発熱反応を起こさせた。測定開始5秒から1800秒に亘って、発生した蒸気の温度変化を連続して自動記録し、得たアナログデータをグラフとして図10に、5秒間隔で得たディジタルデ−タを1〜30分に圧縮して表10に示した。塩化ナトリウムを1.08g、すなわち発熱剤の質量当たり2.7%添加したことによる発熱量の増加分は、理論上683calである。
[Example 13]
40 g of exothermic agent (AL 25.95 g, CaO 12.97 g) was mixed with 1.08 g (0.0184 mol) of sodium chloride, and 80 ml of normal water was added to cause an exothermic reaction. From 5 seconds to 1800 seconds from the start of measurement, the temperature change of the generated steam is automatically recorded continuously, and the obtained analog data is graphed in FIG. 10 with digital data obtained at 5 second intervals 1-30. Table 10 shows the results compressed into minutes. The increase in calorific value due to the addition of 1.08 g of sodium chloride, ie 2.7% per mass of exothermic agent, is theoretically 683 cal.

[比較例7]
発熱剤40g(AL26.67g、CaO13.33g)に塩化ナトリウム無添加で、常水80mlを添加して発熱反応を起こさせた。測定開始5秒から1800秒に亘って、発生した蒸気の温度変化を連続して自動記録し、得たアナログデータをグラフとして図10に、5秒間隔で得たディジタルデ−タを1〜30分に圧縮して表10に示した。
[Comparative Example 7]
To 40 g of exothermic agent (AL 26.67 g, CaO 13.33 g) was added no sodium chloride, and 80 ml of normal water was added to cause an exothermic reaction. From 5 seconds to 1800 seconds from the start of measurement, the temperature change of the generated steam is automatically recorded continuously, and the obtained analog data is graphed in FIG. 10 with digital data obtained at 5 second intervals 1-30. Table 10 shows the results compressed into minutes.

図10において1は実施例13の結果、2は比較例7の結果、3は室温を示している。図10,表10,および5秒間隔で得た元のディジタルデータを参照すると、実施例13は、測定開始後30〜35秒で第1次最高温度80.1℃に達した。その後、80〜140秒の間で第2次最高温度帯域約70〜89℃に達しし、その間105秒で最高温度89.8℃を示した。次いで145〜240秒の間、約70〜60℃に降下した。245〜1445秒の間、約80〜100℃の第3次最高温度帯域約80〜90℃を示し、その間315秒で最高温度95.9℃を示した。その後、1450〜1800秒まで80〜70℃をほぼ同じ降下率で降下し、1800秒では72.2℃を示した。   In FIG. 10, 1 is the result of Example 13, 2 is the result of Comparative Example 7, and 3 is the room temperature. Referring to FIG. 10, Table 10, and the original digital data obtained at 5 second intervals, Example 13 reached the first maximum temperature of 80.1 ° C. 30 to 35 seconds after the start of measurement. Thereafter, the secondary maximum temperature band reached about 70 to 89 ° C. in 80 to 140 seconds, and the maximum temperature of 89.8 ° C. was shown in 105 seconds. It then dropped to about 70-60 ° C. for 145-240 seconds. A third highest temperature band of about 80 to 90 ° C. of about 80 to 100 ° C. was exhibited for 245 to 1445 seconds, and a maximum temperature of 95.9 ° C. was exhibited for 315 seconds. Thereafter, the temperature dropped from 80 to 70 ° C. at approximately the same rate from 1450 to 1800 seconds, and showed 72.2 ° C. at 1800 seconds.

一方、比較例7は、測定開始後40〜50秒で第1次最高温度帯域約80〜83℃に達し、その間45秒で最高温度82℃を示した。その後、190〜705秒の間で第2次最高温度帯域約80〜90℃に達し、その間250秒で最高温度92.1℃を示した。次いで710〜1800秒まで80〜50℃をほぼ同じ降下率で降下し、1800秒では50.2℃を示した。   On the other hand, Comparative Example 7 reached the first highest temperature band of about 80 to 83 ° C. in 40 to 50 seconds after the start of measurement, and showed the maximum temperature of 82 ° C. in 45 seconds. Thereafter, the secondary maximum temperature band reached about 80 to 90 ° C. in 190 to 705 seconds, and the maximum temperature was 92.1 ° C. in 250 seconds. Subsequently, 80-50 ° C. was dropped at approximately the same rate of decrease from 710 to 1800 seconds, and 50.2 ° C. was exhibited at 1800 seconds.

この結果から、発熱剤40gと、塩化ナトリウム2.7%と水80mlの組合せの方が、発熱剤40gと水80mlの組合せより、高温維持時間が長く、総発熱量が大きいことが分かる。   From this result, it can be seen that the combination of exothermic agent 40 g, sodium chloride 2.7% and water 80 ml has a longer high temperature maintenance time and a larger total calorific value than the exothermic agent 40 g and water 80 ml.

Figure 2006152090
Figure 2006152090

[実施例14]
発熱剤50g(AL32.43g、CaO16.21g)に塩化ナトリウムを1.35g(0.023モル)を配合し、常水100mlを添加して発熱反応を起こさせた。測定開始5秒から1800秒に亘って、発生した蒸気の温度変化を連続して自動記録し、得たアナログデータをグラフとして図11に、5秒間隔で得たディジタルデ−タを1〜30分に圧縮して表11に示した。塩化ナトリウムを1.35g、すなわち、発熱剤の質量当たり、2.7%添加したことによる発熱量の増加分は、理論上778calである。
[Example 14]
50 g of exothermic agent (AL 32.43 g, CaO 16.21 g) was mixed with 1.35 g (0.023 mol) of sodium chloride, and 100 ml of normal water was added to cause an exothermic reaction. From 5 seconds to 1800 seconds from the start of measurement, the temperature change of the generated steam is automatically recorded continuously, and the obtained analog data is graphed in FIG. Table 11 shows the results compressed into minutes. The increase in calorific value due to the addition of 1.35 g of sodium chloride, ie 2.7% per mass of exothermic agent, is theoretically 778 cal.

[比較例8]
発熱剤50g(AL32.43g、CaO16.21g)に塩化ナトリウム無添加で、常水100mlを添加して発熱反応を起こさせた。測定開始5秒から1800秒に亘って、発生した蒸気の温度変化を連続して自動記録し、得たアナログデータをグラフとして図11に、5秒間隔で得たディジタルデ−タを1〜30分に圧縮して表11に示した。
[Comparative Example 8]
To 50 g of exothermic agent (AL 32.43 g, CaO 16.21 g) was added no sodium chloride, and 100 ml of normal water was added to cause an exothermic reaction. From 5 seconds to 1800 seconds from the start of measurement, the temperature change of the generated steam is automatically recorded continuously, and the obtained analog data is graphed in FIG. Table 11 shows the results compressed into minutes.

[考 察]
図11において1は実施例14の結果、2は比較例8の結果、3は室温を示している。図11,表11,および5秒間隔で得た元のディジタルデータを参照すると、実施例14は、測定開始後35〜95秒で第1次最高温度帯域約80〜90℃に達し、その間80秒で92.2℃を示した。その後、135〜1505秒の間で第2次最高温度帯域約80〜89℃に達し、その間210秒で最高温度96.9℃を示した。次いで1510〜1800秒の間、80〜70℃をほぼ同じ降下率で降下し、1800秒では73.3℃を示した。
[Discussion]
In FIG. 11, 1 is the result of Example 14, 2 is the result of Comparative Example 8, and 3 is the room temperature. Referring to FIG. 11, Table 11, and the original digital data obtained at intervals of 5 seconds, Example 14 reached the first maximum temperature band of about 80 to 90 ° C. at 35 to 95 seconds after the start of measurement, during which 80 It showed 92.2 ° C in seconds. Thereafter, the second highest temperature band reached about 80 to 89 ° C. in 135 to 1505 seconds, and the maximum temperature of 96.9 ° C. was shown in 210 seconds. Subsequently, the temperature dropped from 80 to 70 ° C. at about the same rate of fall for 1510 to 1800 seconds, and showed 73.3 ° C. at 1800 seconds.

一方、比較例8は、測定開始後30〜50秒の間で第1次最高温度帯域約80〜83℃に達し、その間35秒で最高温度83℃を示した。その後、70〜895秒の間で第2次最高温度帯域約80〜90℃に達し、その間220秒で最高温度96.8℃を示した。次いで895〜1800秒まで80〜50℃をほぼ同じ降下率で降下し、1800秒では56.5℃を示した。   On the other hand, Comparative Example 8 reached the first highest temperature band of about 80 to 83 ° C. within 30 to 50 seconds after the start of measurement, and showed the maximum temperature of 83 ° C. during 35 seconds. Thereafter, the second highest temperature band reached about 80 to 90 ° C. in 70 to 895 seconds, and the maximum temperature of 96.8 ° C. was shown in 220 seconds. Subsequently, 80 to 50 ° C. was dropped at approximately the same rate of decrease from 895 to 1800 seconds, and 56.5 ° C. was exhibited at 1800 seconds.

この結果から、発熱剤50gと、塩化ナトリウム2.7%と水100mlの組合せの方が、発熱剤50gと水100mlの組合せより、高温維持時間が長く、総発熱量が大きいことが分かる。   From this result, it can be seen that the combination of 50 g of exothermic agent, 2.7% sodium chloride and 100 ml of water has a longer high temperature maintenance time and a larger total calorific value than the combination of exothermic agent 50 g and 100 ml of water.

Figure 2006152090
Figure 2006152090

[実施例15]
発熱剤60g(AL38.92g、CaO19.46g)に塩化ナトリウムを1.62(0.0277モル)を配合し、常水120mlを添加して発熱反応を起こさせた。5秒後から測定を開始し1800秒に亘って、発生した蒸気の温度変化を連続して自動記録し、得たアナログデータをグラフとして図12に、5秒間隔で得たディジタルデ−タを1〜30分に圧縮して表12に示した。塩化ナトリウムを1.62g、すなわち発熱剤の質量当たり2.7%添加したことによる発熱量の増加分は、理論上934calである。
[Example 15]
1.62 (0.0277 mol) of sodium chloride was added to 60 g of exothermic agent (AL 38.92 g, CaO 19.46 g), and 120 ml of normal water was added to cause an exothermic reaction. The measurement is started after 5 seconds, and the temperature change of the generated steam is automatically recorded continuously over 1800 seconds. The obtained analog data is graphed in FIG. The results are shown in Table 12 after being compressed to 1 to 30 minutes. The increase in calorific value due to the addition of 1.62 g of sodium chloride, ie 2.7% per mass of exothermic agent, is theoretically 934 cal.

[比較例9]
発熱剤60g(AL40.00g、CaO20.00g)に塩化ナトリウム無添加で、常水120mlを添加して発熱反応を起こさせた。5秒後から測定を開始し、1800秒に亘って、発生した蒸気の温度変化を連続して自動記録し、得たアナログデータをグラフとして図12に、5秒間隔で得たディジタルデ−タを1〜30分に圧縮して表12に示した。
[Comparative Example 9]
An exothermic reaction was caused by adding 120 ml of normal water without adding sodium chloride to 60 g of exothermic agent (AL 40.00 g, CaO 20.00 g). The measurement is started after 5 seconds, and the temperature change of the generated steam is automatically recorded continuously over 1800 seconds. The obtained analog data is shown as a graph in FIG. 12 in the digital data obtained at intervals of 5 seconds. Is shown in Table 12 after being compressed to 1 to 30 minutes.

[考 察]
図12において1は実施例15の結果、2は比較例9の結果、3は室温を示している。図12,表12,および5秒間隔で得た元のディジタルデータを参照すると、実施例15は、測定開始後45〜90秒の間で第1次最高温度帯域約80〜90℃に達し、その間70秒で90℃を示した。その後、130〜1800秒の間で第2次最高温度帯域約80〜90℃に達し、その間305秒で最高温度97.1℃に達した。
[Discussion]
In FIG. 12, 1 is the result of Example 15, 2 is the result of Comparative Example 9, and 3 is the room temperature. Referring to FIG. 12, Table 12, and the original digital data obtained at 5 second intervals, Example 15 reached the first highest temperature band of about 80-90 ° C. between 45 and 90 seconds after the start of measurement, Meanwhile, 90 ° C. was exhibited in 70 seconds. Thereafter, the secondary maximum temperature band reached about 80 to 90 ° C. in 130 to 1800 seconds, and reached the maximum temperature 97.1 ° C. in 305 seconds.

一方、比較例9は、測定開始後45〜95秒の間で第1次最高温度帯域約80〜90℃に達し、その間85秒で最高温度89.5℃を示した。その後、150〜1105秒の間で第2次最高温度帯域約80〜90℃に達し、その間350〜375秒の間で最高温度97〜97.1℃を示した。次いで1110〜1800秒まで80〜60℃をほぼ同じ降下率で降下し、1800秒では62.5℃を示した。   On the other hand, in Comparative Example 9, the primary maximum temperature band reached about 80 to 90 ° C. in 45 to 95 seconds after the start of measurement, and the maximum temperature was 89.5 ° C. in 85 seconds. Thereafter, the second highest temperature zone reached about 80 to 90 ° C. in 150 to 1105 seconds, and the maximum temperature of 97 to 97.1 ° C. was shown in 350 to 375 seconds. Subsequently, the temperature dropped from 80 to 60 ° C. at approximately the same drop rate from 1110 to 1800 seconds, and showed 62.5 ° C. at 1800 seconds.

この結果から、発熱剤60gと、塩化ナトリウム2.7%と水120mlの組合せの方が、発熱剤60gと水120mlの組合せより、高温維持時間が長く、総発熱量が大きいことが分かる。   From this result, it can be seen that the combination of 60 g of exothermic agent, 2.7% sodium chloride and 120 ml of water has a longer high temperature maintenance time and a larger total calorific value than the combination of 60 g of exothermic agent and 120 ml of water.

Figure 2006152090
Figure 2006152090

次ぎに、発熱剤35g(AL22.70g、CaO11.35g)に、微量(0.5%)の塩化ナトリム、及び大量(5%、10%、15%、20%、及び25%)の塩化ナトリムを配合し、常水70mlを添加して発熱反応を起こさせ、発熱剤に添加する塩化ナトリムの量の臨界性を検討した。   Next, 35 g of exothermic agent (AL 22.70 g, 11.35 g of CaO), a small amount (0.5%) of sodium chloride, and a large amount (5%, 10%, 15%, 20%, and 25%) of sodium chloride And 70 ml of normal water was added to cause an exothermic reaction, and the criticality of the amount of sodium chloride added to the exothermic agent was examined.

[実施例16]
発熱剤35g(AL22.70g、CaO11.35g)に塩化ナトリウムを3.5g(0.05988モル)を配合し、常水70mlを添加して発熱反応を起こさせた。5秒後から測定を開始し、1800秒に亘って、発生した蒸気の温度変化を連続して自動記録し、得たアナログデータをグラフとして図13に、5秒間隔で得たディジタルデ−タを1〜30分に圧縮して表13に示した。塩化ナトリウムを3.5g、すなわち発熱剤の質量当たり10%添加したことによる発熱量の増加分は、理論上2018calである。
[Example 16]
35 g (AL22.70 g, CaO 11.35 g) of exothermic agent was mixed with 3.5 g (0.05988 mol) of sodium chloride, and 70 ml of normal water was added to cause an exothermic reaction. The measurement is started after 5 seconds, and the temperature change of the generated steam is automatically recorded continuously over 1800 seconds. The obtained analog data is shown as a graph in FIG. 13 in the digital data obtained at intervals of 5 seconds. The results are shown in Table 13 after being compressed to 1 to 30 minutes. The increase in calorific value due to the addition of 3.5 g of sodium chloride, ie, 10% per mass of exothermic agent, is theoretically 2018 cal.

[実施例17]
発熱剤35g(AL22.70g、CaO11.35g)に塩化ナトリウムを5.25g(0.0898モル)を配合し、常水70mlを添加して発熱反応を起こさせた。5秒後から測定を開始し、1800秒に亘って、発生した蒸気の温度変化を連続して自動記録し、得たアナログデータをグラフとして図13に、5秒間隔で得たディジタルデ−タを1〜30分に圧縮して表13に示した。塩化ナトリウムを5.25、すなわち発熱剤の質量当たり15%添加したことによる発熱量の増加分は、理論上3026calである。
[Example 17]
35 g of exothermic agent (AL 22.70 g, CaO 11.35 g) was mixed with 5.25 g (0.0898 mol) of sodium chloride, and 70 ml of normal water was added to cause an exothermic reaction. The measurement is started after 5 seconds, and the temperature change of the generated steam is automatically recorded continuously over 1800 seconds. The obtained analog data is shown as a graph in FIG. 13 in the digital data obtained at intervals of 5 seconds. The results are shown in Table 13 after being compressed to 1 to 30 minutes. The increase in calorific value due to the addition of 5.25, i.e. 15% per mass of exothermic agent, is theoretically 3026 cal.

[考 察]
図13において1は実施例16の結果、2は実施例17の結果、3は室温を示している。図13,表13,および5秒間隔で得た元のディジタルデータを参照すると、実施例16は、測定開始後35〜45秒の間で第1次最高温度帯域約80〜90℃に達し、その間35秒で最高温度85℃を示した。その後、55〜210秒の間で第2次最高温度帯域約80〜90℃に達し、その間145秒で最高温度93.8℃を示した。その後、260〜910秒の間100〜90℃をほぼ同じ降下率で温度降下し、915秒〜1800秒まで80〜60℃をほぼ同じ降下率で温度降下し、1800秒では67.7℃を示した。
[Discussion]
In FIG. 13, 1 is the result of Example 16, 2 is the result of Example 17, and 3 is room temperature. Referring to FIG. 13, Table 13, and the original digital data obtained at 5 second intervals, Example 16 reached a primary maximum temperature band of about 80-90 ° C. between 35 and 45 seconds after the start of measurement, During this time, the maximum temperature was 85 ° C. in 35 seconds. Thereafter, the secondary maximum temperature band reached about 80 to 90 ° C. in 55 to 210 seconds, and the maximum temperature was 93.8 ° C. in 145 seconds. After that, the temperature is decreased from 100 to 90 ° C. at approximately the same rate for 260 to 910 seconds, the temperature is decreased from 80 to 60 ° C. at approximately the same rate from 915 to 1800 seconds, and 67.7 ° C. at 1800 seconds. Indicated.

一方、実施例17は、測定開始後45〜50秒の間で第1次最高温度帯域約80℃に達し、その間45秒で最高温度84.6℃を示した。その後、85〜180秒の間で第2次最高温度帯域約80〜90℃に達し、その間160秒で最高温度94.2℃を示した。その後、185〜255秒の間一旦80〜70℃に温度降下した。その後、260〜1010秒の間で第2次最高温度帯域約80〜90℃に達し、その間345〜365秒の間で最高温度95.7〜95.8℃を示した。その後、1015〜1435秒の間、90〜80℃をゆっくりと降下し、1440〜1800秒まで80〜70℃をほぼ同じ降下率で降下し、1800秒では71.3℃を示した。   On the other hand, in Example 17, the primary maximum temperature band reached about 80 ° C. in 45 to 50 seconds after the start of measurement, and the maximum temperature was 84.6 ° C. in 45 seconds. Thereafter, the secondary maximum temperature band reached about 80 to 90 ° C. in 85 to 180 seconds, and the maximum temperature of 94.2 ° C. was shown in 160 seconds. Thereafter, the temperature was once lowered to 80 to 70 ° C. for 185 to 255 seconds. Thereafter, the second highest temperature band reached about 80 to 90 ° C. within 260 to 1010 seconds, and the maximum temperature of 95.7 to 95.8 ° C. was exhibited during 345 to 365 seconds. Thereafter, the temperature gradually decreased from 90 to 80 ° C. during 1015 to 1435 seconds, and decreased from 80 to 70 ° C. at approximately the same rate from 1440 to 1800 seconds, and showed 71.3 ° C. at 1800 seconds.

この結果から、発熱剤60gと、塩化ナトリウム2.7%と水120mlの組合せの方が、発熱剤60gと水120mlの組合せより、高温維持時間が長く、総発熱量が大きいことが分かる。   From this result, it can be seen that the combination of 60 g of exothermic agent, 2.7% sodium chloride and 120 ml of water has a longer high temperature maintenance time and a larger total calorific value than the combination of 60 g of exothermic agent and 120 ml of water.

Figure 2006152090
Figure 2006152090

[実施例18]
発熱剤35g(AL22.70g、CaO11.35g)に塩化ナトリウムを0.175g(0.00299モル)を配合し、常水70mlを添加して発熱反応を起こさせ、測定開始5秒から1800秒に亘って、発生した蒸気の温度変化を連続して自動記録し、得たアナログデータをグラフとして図14に、5秒間隔で得たディジタルデ−タを1〜30分に圧縮して表14に示した。塩化ナトリウムを0.175g、すなわち発熱剤の質量当たり、0.5%添加したことによる発熱量の増加分は、理論上100.8calである。
[Example 18]
Combining 0.175 g (0.00299 mol) of sodium chloride with 35 g of exothermic agent (AL 22.70 g, CaO 11.35 g), adding 70 ml of normal water to cause an exothermic reaction, from 5 seconds to 1800 seconds from the start of measurement. Over time, the temperature change of the generated steam is automatically recorded continuously, and the obtained analog data is graphed in FIG. 14 and the digital data obtained at intervals of 5 seconds is compressed to 1 to 30 minutes in Table 14. Indicated. The increase in calorific value due to the addition of 0.175 g of sodium chloride, ie 0.5% per mass of exothermic agent, is theoretically 100.8 cal.

[実施例19]
発熱剤35g(AL22.70g、CaO11.35g)に塩化ナトリウム
を1.75g(0.0299モル)を配合し、常水70mlを添加して発熱反
応を起こさせ、測定開始5秒から1800秒に亘って、発生した蒸気の温度変
化を連続して自動記録し、得たアナログデータをグラフとして図14に、5秒
間隔で得たディジタルデ−タを1〜30分に圧縮して表14に示した。塩化ナ
トリウムを1.75g、すなわち発熱剤の質量当たり、5%添加したことによ
る発熱量の増加分は、理論上1009calである。
[Example 19]
Combining 1.75 g (0.0299 mol) of sodium chloride with 35 g of exothermic agent (AL 22.70 g, CaO 11.35 g), adding 70 ml of normal water to cause an exothermic reaction, from 5 seconds to 1800 seconds from the start of measurement. Over time, the temperature change of the generated steam is automatically recorded continuously, and the obtained analog data is graphed in FIG. 14 and the digital data obtained at intervals of 5 seconds is compressed to 1 to 30 minutes in Table 14. Indicated. The increase in calorific value due to the addition of 1.75 g of sodium chloride, ie 5% per mass of exothermic agent, is theoretically 1009 cal.

[考 察]
図14において1は実施例18の結果、2は実施例19の結果、3は室温を
示している。図14,表14,および5秒間隔で得た元のディジタルデータを
参照すると、実施例18は、測定開始から160秒で71.8℃に達し、16
5〜210秒の間で、安定した第1次最高温度帯域約80〜90℃を示し、2
00秒で最高温度92.1℃に達した。その後、215〜300秒の間一旦8
0℃以下に温度降下し、305〜820秒の間で、第2次最高温度帯域約80
〜90℃を示し、その間395秒で最高温度88.9℃に達した。その後、82
5〜1800秒まで、ほぼ同じ降下率で温度降下し、1800秒では56.2
℃を示した。
[Discussion]
In FIG. 14, 1 is the result of Example 18, 2 is the result of Example 19, and 3 is room temperature. Referring to FIG. 14, Table 14, and the original digital data obtained at 5 second intervals, Example 18 reached 71.8 ° C. in 160 seconds from the start of measurement.
A stable first highest temperature band of about 80 to 90 ° C. is exhibited in 5 to 210 seconds, 2
The maximum temperature reached 92.1 ° C in 00 seconds. After that, once for 215-300 seconds
The temperature falls below 0 ° C., and the second highest temperature band is about 80 for 305 to 820 seconds.
A maximum temperature of 88.9 ° C. was reached in 395 seconds. Then 82
From 5 to 1800 seconds, the temperature drops at approximately the same rate, and at 1800 seconds 56.2
° C.

一方、実施例19は、測定開始から70〜175秒の間は、約73〜約90
℃の範囲で昇温、降温を繰り返す第1次最高温度帯域℃に達し、160秒で最高
温度93,3℃に達した。その後、235〜1380秒で、第2次最高温度帯
域約80〜90℃を示し、そ395秒で最高温度95.7℃に達した。その後、
1385〜1800秒の間、80℃からほぼ同じ降下率で温度降下し、180
0秒では70.2℃を示した。
On the other hand, in Example 19, about 73 to about 90 for 70 to 175 seconds from the start of measurement.
The temperature reached the first highest temperature range of 0 ° C. where the temperature was raised and lowered repeatedly within the range of 0 ° C., and reached the maximum temperature of 93, 3 ° C. in 160 seconds. Thereafter, the secondary maximum temperature band of about 80 to 90 ° C. was exhibited in 235 to 1380 seconds, and the maximum temperature of 95.7 ° C. was reached in 395 seconds. afterwards,
During 1385 to 1800 seconds, the temperature drops from 80 ° C. at approximately the same rate, 180 °
In 0 seconds, it was 70.2 ° C.

この結果から、発熱剤35g、塩化ナトリウム0.5%と水70mlの組合
せ、及び発熱剤35g、塩化ナトリウム5%と水70mlの組合せの両方が8
0〜90℃の高温維持時間が長いこと、総発熱量が大きいことが分かる。
From this result, both 35 g of exothermic agent, 0.5% sodium chloride and 70 ml of water, and 8 g of exothermic agent 35 g, 5% sodium chloride and 70 ml of water were 8
It can be seen that the high temperature maintenance time of 0 to 90 ° C. is long and the total calorific value is large.

Figure 2006152090
Figure 2006152090

[実施例20]
発熱剤35g(AL22.70g、CaO11.35g)に塩化ナトリウム
を7.0g(0.1197モル)を配合し、常水70mlを添加して発熱反応
を起こさせ、測定開始5秒から1800秒に亘って、発生した蒸気の温度変化
を連続して自動記録し、得たアナログデータをグラフとして図15に、5秒間
隔で得たディジタルデ−タを1〜30分に圧縮して表15に示した。塩化ナト
リウムを7.0g、すなわち発熱剤の質量当たり20%添加したことによる発
熱量の増加分は、理論上4036calである。
[Example 20]
The exothermic agent 35g (AL22.70g, CaO 11.35g) is mixed with 7.0g (0.1197mol) of sodium chloride, 70ml of normal water is added to cause an exothermic reaction, from 5 seconds to 1800 seconds from the start of measurement. Over time, the temperature change of the generated steam is automatically recorded continuously, and the obtained analog data is graphed in FIG. 15 and the digital data obtained at 5 second intervals is compressed to 1 to 30 minutes in Table 15. Indicated. The increase in calorific value due to the addition of 7.0 g of sodium chloride, ie 20% per mass of exothermic agent, is theoretically 4036 cal.

[実施例21]
発熱剤35g(AL22.70g、CaO11.35g)に塩化ナトリウム
を8.75g(0.1497モル)を配合し、常水70mlを添加して発熱反
応を起こさせ、測定開始5秒から1800秒に亘って、発生した蒸気の温度変
化を連続して自動記録し、得たアナログデータをグラフとして図15に、5秒
間隔で得たディジタルデ−タを1〜30分に圧縮して表15に示した。塩化ナ
トリウムを8.75g、すなわち発熱剤の質量当たり25%添加したことによ
る発熱量の増加分は、理論上5045calである。
[Example 21]
The exothermic agent 35g (AL22.70g, CaO 11.35g) is mixed with 8.75g (0.1497mol) of sodium chloride, and 70ml of normal water is added to cause an exothermic reaction, from 5 seconds to 1800 seconds from the start of measurement. Over time, the temperature change of the generated steam is automatically recorded continuously, and the obtained analog data is graphed in FIG. 15 and the digital data obtained at 5 second intervals is compressed to 1 to 30 minutes in Table 15. Indicated. The increase in calorific value due to the addition of 8.75 g of sodium chloride, ie 25% per mass of exothermic agent, is theoretically 5045 cal.

[考 察]
図15において1は実施例20の結果、2は実施例21の結果、3は室温を
示している。図15,表15,および5秒間隔で得た元のディジタルデータを
参照すると、実施例20は、測定開始後40〜45秒の間で第1次最高温度帯
域約80℃に達し、その間40秒で最高温度86.3℃を示した。その後、16
5〜285秒の間で安定した第1次最高温度帯域約80℃に達し、255秒で
最高温度88℃を示した。290〜485秒の間、一旦80〜60℃の間に降下
し、その後、490〜1800秒で、安定した第2次最高温度帯域約80〜9
0℃に達しし、その間990秒で最高温度95℃を示した。1235秒頃から、
ほぼ同じ降下率で温度降下し、1800秒では82.7℃を示した。
[Discussion]
In FIG. 15, 1 is the result of Example 20, 2 is the result of Example 21, and 3 is the room temperature. Referring to FIG. 15, Table 15, and the original digital data obtained at 5 second intervals, Example 20 reached the first highest temperature band of about 80 ° C. between 40 and 45 seconds after the start of measurement, during which 40 The maximum temperature was 86.3 ° C. in seconds. Then 16
A stable first maximum temperature zone of about 80 ° C. was reached in 5 to 285 seconds, and a maximum temperature of 88 ° C. was shown in 255 seconds. During 290 to 485 seconds, the temperature once drops to 80 to 60 ° C., and then after 490 to 1800 seconds, the stable second highest temperature band is about 80 to 9
The temperature reached 0 ° C., during which time the maximum temperature was 95 ° C. in 990 seconds. From around 1235 seconds
The temperature dropped at approximately the same rate of drop, and showed 82.7 ° C. in 1800 seconds.

一方、実施例21は、測定開始後45〜55秒の間で第1次最高温度帯域
約80℃に達し、その間45秒で最高温度87.4℃を示した。その後、発熱開
始90〜200秒で安定した第2次最高温度帯域約80〜90℃に達し、17
5秒で最高温度92.4℃を示した。その後、370〜1800秒の間で、安
定した第3次最高温度帯域約80〜90℃に達し、その間、550秒で最高温
度93.9に達し、1800秒でも76℃を示した。
On the other hand, in Example 21, the primary maximum temperature band reached about 80 ° C. for 45 to 55 seconds after the start of measurement, and the maximum temperature was 87.4 ° C. for 45 seconds. After that, the secondary maximum temperature band stabilized at about 80 to 90 ° C. reached 90 to 200 seconds after the start of heat generation, and reached 17
The maximum temperature was 92.4 ° C. in 5 seconds. Thereafter, a stable third maximum temperature band of about 80 to 90 ° C. was reached in 370 to 1800 seconds, while the maximum temperature of 93.9 was reached in 550 seconds, and 76 ° C. was exhibited even in 1800 seconds.

この結果から、発熱剤35g、塩化ナトリウム20%と水70mlの組合せ
、及び発熱剤35g、塩化ナトリウム25%と水70mlの組合せの両方が8
0〜90℃の高温維持時間、及び総発熱量の両方が極めて顕著に増大されてい
ることが分かる。
From this result, both 35 g of exothermic agent, 20% sodium chloride and 70 ml of water, and 8 g of exothermic agent 35 g, 25% sodium chloride and 70 ml of water were 8
It can be seen that both the high temperature maintenance time of 0-90 ° C. and the total calorific value are significantly increased.

Figure 2006152090
Figure 2006152090

[実施例22〜26]
次ぎに、実施例22〜26を、各実施例で3回試験を行った。それぞれの例
で、発熱剤の質量を正確に秤量し、発熱剤の質量当たり表16に示した量の塩
化ナトリウムを添加した水80mlと、発熱剤を反応させ、温度センサーを発
熱剤に直接接触させて、最高温度を測定し、3回の最高温度の平均値と、それ
ぞれの最高温度までの到達時間を測定した。得た結果を表16に示す。
[Examples 22 to 26]
Next, Examples 22 to 26 were tested three times in each Example. In each example, the mass of the exothermic agent was accurately weighed, and the exothermic agent was reacted with 80 ml of water added with the amount of sodium chloride shown in Table 16 per mass of exothermic agent, and the temperature sensor was in direct contact with the exothermic agent. The maximum temperature was measured, and the average value of the three maximum temperatures and the time required to reach each maximum temperature were measured. The obtained results are shown in Table 16.

[比較例11]
比較例11として、3回試験を行った。それぞれの例で、発熱剤の質量を正
確に秤量し、発熱剤の質量当たり、表16に示した量の塩化ナトリウムを添加
した水80mlと、発熱剤とを反応させ、温度センサーを発熱剤に直接接触さ
せて、最高温度を測定し、3回の最高温度の平均値と、それぞれの最高温度ま
での到達時間を測定した。得た結果を表16に示す。
[Comparative Example 11]
As Comparative Example 11, the test was performed three times. In each example, the mass of the exothermic agent was accurately weighed, and 80 ml of water added with sodium chloride in the amount shown in Table 16 per mass of the exothermic agent was reacted with the exothermic agent, and the temperature sensor was used as the exothermic agent. The maximum temperature was measured by direct contact, and the average value of the three maximum temperatures and the time to reach each maximum temperature were measured. The obtained results are shown in Table 16.

Figure 2006152090
Figure 2006152090

[考 察]
表16に示した結果から、塩化ナトリウムを発熱剤に配合して常水と反応させ
た場合でも、塩化ナトリウムを水に配合して発熱剤と反応させた場合でも、同
じ発熱効果が得られることが分かる。特に、発熱剤の質量当たり3%の塩化ナ
トリウムを水に配合して、発熱剤と反応させた場合、反応開始から約10分以
内に最高温度120.2℃に到達した。
[Discussion]
From the results shown in Table 16, the same exothermic effect can be obtained even when sodium chloride is added to the exothermic agent and reacted with normal water, or when sodium chloride is added to water and reacted with the exothermic agent. I understand. In particular, when 3% sodium chloride per mass of the exothermic agent was added to water and reacted with the exothermic agent, the maximum temperature reached 120.2 ° C. within about 10 minutes from the start of the reaction.

以上述べたように、本発明の高発熱量発生発熱剤は、粉体生石灰と粉体アル
ミニウムとから成り水と反応させる化学発熱剤に、化学的に安全で、開放状態
でも安全に使用でき、安全に保管でき、かつ低価格の塩化ナトリウムを配合す
るだけで、最高到達温度を90〜100℃に引き上げ、反応開始から30分後
でも、70〜80℃近傍を維持することができるので、自衛隊用戦闘糧食、駅
弁、各種携帯食品、非常食等の加熱はもとより、温度管理を適切に行えば、登
山、釣り、スキューバーダイビング等マリーンスポーツで冷えきった体を現場
で暖めたり、地震等災害時の緊急避難所の屋内外で簡易沐浴設備を作るのに資
することができ、新たな用途を拡大することができる。
As described above, the high calorific value generating exothermic agent of the present invention is a chemical exothermic agent composed of powdered quicklime and powdered aluminum and reacted with water, which is chemically safe and can be used safely even in an open state. Self-Defense Forces can be stored safely and can be kept at 70-80 ° C even after 30 minutes from the start of the reaction by simply adding low-priced sodium chloride and raising the maximum temperature to 90-100 ° C. In addition to heating for combat food, station lunches, various portable foods, emergency foods, etc., if temperature management is properly performed, the body that has been cooled by marine sports such as mountain climbing, fishing, scuba diving, etc. will be warmed on site, disasters such as earthquakes It can contribute to making a simple bathing facility inside and outside the emergency evacuation shelter, and can expand new applications.

実施例1と比較例1における発生蒸気の時間−温度変化を示すグラフ。The graph which shows the time-temperature change of the generated steam in Example 1 and Comparative Example 1. FIG. 実施例2と比較例2における発生蒸気の時間−温度変化を示すグラフ。The graph which shows the time-temperature change of the generated steam in Example 2 and Comparative Example 2. FIG. 実施例3と比較例3における発生蒸気の時間−温度変化を示すグラフ。The graph which shows the time-temperature change of the generated steam in Example 3 and Comparative Example 3. 実施例4と実施例5における発生蒸気の時間−温度変化を示すグラフ。The graph which shows the time-temperature change of the generated steam in Example 4 and Example 5. FIG. 実施例6と実施例7における発生蒸気の時間−温度変化を示すグラフ。The graph which shows the time-temperature change of the generated steam in Example 6 and Example 7. FIG. 実施例8と実施例9における発生蒸気の時間−温度変化を示すグラフ。The graph which shows the time-temperature change of the generated steam in Example 8 and Example 9. FIG. 実施例10と比較例4における発生蒸気の時間−温度変化を示すグラフ。The graph which shows the time-temperature change of the generated steam in Example 10 and Comparative Example 4. 実施例11と比較例5における発生蒸気の時間−温度変化を示すグラフ。The graph which shows the time-temperature change of the generated steam in Example 11 and Comparative Example 5. 実施例12と比較例6における発生蒸気の時間−温度変化を示すグラフ。The graph which shows the time-temperature change of the generated steam in Example 12 and Comparative Example 6. 実施例13と比較例7における発生蒸気の時間−温度変化を示すグラフ。The graph which shows the time-temperature change of the generated steam in Example 13 and Comparative Example 7. 実施例14と比較例8における発生蒸気の時間−温度変化を示すグラフ。The graph which shows the time-temperature change of the generated steam in Example 14 and Comparative Example 8. 実施例15と比較例9における発生蒸気の時間−温度変化を示すグラフ。The graph which shows the time-temperature change of the generated steam in Example 15 and Comparative Example 9. 実施例16と実施例17における発生蒸気の時間−温度変化を示すグラフ。The graph which shows the time-temperature change of the generated steam in Example 16 and Example 17. FIG. 実施例18と実施例19における発生蒸気の時間−温度変化を示すグラフ。The graph which shows the time-temperature change of the generated steam in Example 18 and Example 19. FIG. 実施例20と実施例21における発生蒸気の時間−温度変化を示すグラフ。The graph which shows the time-temperature change of the generated steam in Example 20 and Example 21. FIG.

Claims (5)

粉体生石灰と粉体アルミニウムとから成り水と反応させる化学発熱剤に、塩化ナトリウムを配合したことを特徴とする発熱剤。 An exothermic agent characterized in that sodium chloride is added to a chemical exothermic agent composed of powdered quicklime and powdered aluminum to react with water. 発熱剤が、100メッシュ(−150・m90%以上)〜200メッシュ(−75・m95%以上)の粉体生石灰が15〜30質量%,及び−330メッシュ(−45・m)が40〜60%,+330メッシュ(+45・m)が15〜3質量0%,+235メッシュ(+63・m)が15%>、+200メッシュ(+75・m)が10%>の粒度分布を有する粉体アルミニウム70〜85質量%から成ることを特徴とする請求項1に記載の発熱剤。 The exothermic agent is 15 to 30% by mass of powdered lime of 100 mesh (−150 · m 90% or more) to 200 mesh (−75 · m 95% or more), and 40 to 60 of −330 mesh (−45 · m). %, +330 mesh (+ 45 · m) 15 to 3 mass 0%, +235 mesh (+ 63 · m) 15%>, +200 mesh (+ 75 · m) 10%> The heat generating agent according to claim 1, comprising 85% by mass. 塩化ナトリウムの配合量が、発熱剤の質量当たり0.5〜25%である請求項1または2に記載した発熱剤。 The exothermic agent according to claim 1 or 2, wherein the amount of sodium chloride is 0.5 to 25% per mass of the exothermic agent. 塩化ナトリウムを発熱剤に配合した請求項1〜3のいずれか1項に記載した発熱剤。 The exothermic agent according to any one of claims 1 to 3, wherein sodium chloride is added to the exothermic agent. 塩化ナトリウムを水に配合した請求項1〜3のいずれか1項に記載した発熱剤。 The exothermic agent according to any one of claims 1 to 3, wherein sodium chloride is blended in water.
JP2004343022A 2004-11-26 2004-11-26 Heat-generating agent Pending JP2006152090A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004343022A JP2006152090A (en) 2004-11-26 2004-11-26 Heat-generating agent

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004343022A JP2006152090A (en) 2004-11-26 2004-11-26 Heat-generating agent

Publications (1)

Publication Number Publication Date
JP2006152090A true JP2006152090A (en) 2006-06-15

Family

ID=36630766

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004343022A Pending JP2006152090A (en) 2004-11-26 2004-11-26 Heat-generating agent

Country Status (1)

Country Link
JP (1) JP2006152090A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041542A1 (en) * 2006-10-02 2008-04-10 Energy Dyne Corporation Exothermic agent
JP2017115059A (en) * 2015-12-25 2017-06-29 太平洋マテリアル株式会社 Hydration exothermic agent

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61133284A (en) * 1984-12-03 1986-06-20 Iwatsukusu Kk Chemically heating medium
JPS6443594A (en) * 1987-08-10 1989-02-15 Yoshikazu Munakata Heat-generating composition
JPH0391588A (en) * 1989-09-05 1991-04-17 Paudaa Tec Kk Heat generating composition and method for generating heat
JP3467729B2 (en) * 2000-02-17 2003-11-17 株式会社協同 Exothermic agent and method of using exothermic agent

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61133284A (en) * 1984-12-03 1986-06-20 Iwatsukusu Kk Chemically heating medium
JPS6443594A (en) * 1987-08-10 1989-02-15 Yoshikazu Munakata Heat-generating composition
JPH0391588A (en) * 1989-09-05 1991-04-17 Paudaa Tec Kk Heat generating composition and method for generating heat
JP3467729B2 (en) * 2000-02-17 2003-11-17 株式会社協同 Exothermic agent and method of using exothermic agent

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008041542A1 (en) * 2006-10-02 2008-04-10 Energy Dyne Corporation Exothermic agent
US7537002B2 (en) 2006-10-02 2009-05-26 Energy Dyne Corporation Exothermic agent
JP2017115059A (en) * 2015-12-25 2017-06-29 太平洋マテリアル株式会社 Hydration exothermic agent

Similar Documents

Publication Publication Date Title
US7537002B2 (en) Exothermic agent
KR100576185B1 (en) Portable heat source
US7364669B2 (en) Method for reducing reactivity of calcium hypochlorite
US8088300B2 (en) Stabilized composition for producing chlorine dioxide
CN103299475A (en) Method and device for fighting or preventing fires in the interior, on the surface, or in the surroundings of an electrochemical energy store
JP6256969B2 (en) Heat generation structure
JP2006152090A (en) Heat-generating agent
JP3467729B2 (en) Exothermic agent and method of using exothermic agent
JP2014132048A (en) Hydrolytic exothermic agent
KR100740783B1 (en) Heating composition for food
US9150772B2 (en) Flameless heating composition
US20100136186A1 (en) Hydrogen elimination and thermal energy generation in water-activated chemical heaters
JP3778213B1 (en) Pyrogen
JP2008013739A (en) Exothermic agent
KR100960811B1 (en) 4 components system heating agent
JPH0391588A (en) Heat generating composition and method for generating heat
KR100804257B1 (en) Heating element composition and apparatus for heating food the same
KR100346043B1 (en) Portable Foods Exothermic Container
JP7223407B2 (en) heating agent
JP2003342558A (en) Thermogenic agent
JP2006240931A (en) Method for generating hydrogen and hydrogen generating agent
JPH03179080A (en) Heat generating composition
KR101437348B1 (en) Heating element composition for heating food
KR100540056B1 (en) Mg-Al alloy for heating element, heating element using Mg-Al alloy, method for preparing heating element, and heating process using heating element
JPH02204307A (en) Method for generating oxygen and oxygen generating agent

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110315