JPH05276652A - Faint ground fault section locator - Google Patents

Faint ground fault section locator

Info

Publication number
JPH05276652A
JPH05276652A JP4063596A JP6359692A JPH05276652A JP H05276652 A JPH05276652 A JP H05276652A JP 4063596 A JP4063596 A JP 4063596A JP 6359692 A JP6359692 A JP 6359692A JP H05276652 A JPH05276652 A JP H05276652A
Authority
JP
Japan
Prior art keywords
ground fault
fine ground
slave station
station
slave
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4063596A
Other languages
Japanese (ja)
Other versions
JP3240479B2 (en
Inventor
Mitsuru Nakamura
満 中村
Terunobu Miyazaki
照信 宮崎
Kazuo Nishijima
一夫 西島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP06359692A priority Critical patent/JP3240479B2/en
Publication of JPH05276652A publication Critical patent/JPH05276652A/en
Application granted granted Critical
Publication of JP3240479B2 publication Critical patent/JP3240479B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y04INFORMATION OR COMMUNICATION TECHNOLOGIES HAVING AN IMPACT ON OTHER TECHNOLOGY AREAS
    • Y04SSYSTEMS INTEGRATING TECHNOLOGIES RELATED TO POWER NETWORK OPERATION, COMMUNICATION OR INFORMATION TECHNOLOGIES FOR IMPROVING THE ELECTRICAL POWER GENERATION, TRANSMISSION, DISTRIBUTION, MANAGEMENT OR USAGE, i.e. SMART GRIDS
    • Y04S10/00Systems supporting electrical power generation, transmission or distribution
    • Y04S10/20Systems supporting electrical power generation, transmission or distribution using protection elements, arrangements or systems

Landscapes

  • Remote Monitoring And Control Of Power-Distribution Networks (AREA)
  • Emergency Protection Circuit Devices (AREA)

Abstract

PURPOSE:To provide a highly reliable faint ground fault locator in which a faint ground fault generating circuit is provided in each slave station and the slave station is inspected by generating faint ground fault based on an inspection command delivered from a master station. CONSTITUTION:The faint ground fault section locator for distribution line comprises slave stations 5-13 distributed on a high voltage distribution line 2, and faint ground fault generating circuits 14 provided at respective slave stations 5-13, wherein the function of the slave stations 5-13 is inspected by generating faint ground fault based on a command delivered from a master station 3. Since faint ground fault detecting function at each slave station can be constantly monitored, reliability of locator can be enhanced. Furthermore, since the function is inspected by taking advantage of actual distribution line, detection sensitivity is not subjected to system modification.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、配電系統の微地絡区間
標定装置に係り、特に配電線上に分散配置された子局の
動作を点検する機能を有する微地絡区間標定装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fine ground fault section locating device for a distribution system, and more particularly to a fine ground fault section locating device having a function of inspecting the operation of slave stations distributedly arranged on a distribution line.

【0002】[0002]

【従来の技術】従来のこの種の微地絡区間標定装置とし
ては、特公昭63−25754号及び特開平02−18
8034号の公報に記載されているように、各子局にタ
イマを持たせシステム全体の時間軸を親局の絶対時刻に
一致させ、子局で検出された系統情報の同時性をとり、
系統の微地絡現象がどの地域に発生したかを標定するよ
うに構成されたものがある。たとえば、図1に示す子局
13の負荷側であるF1点で微地絡事故が発生すると零
相電圧、零相電流が変化する。
2. Description of the Related Art Japanese Patent Publication No. 63-25754 and Japanese Unexamined Patent Publication No. 02-18 have been known as conventional ground-fault section locating devices of this type.
As described in Japanese Patent No. 8034, each slave station has a timer so that the time axis of the whole system coincides with the absolute time of the master station, and the system information detected by the slave station is synchronized.
There is one that is configured to determine in which area the system micro-ground fault phenomenon has occurred. For example, when a small ground fault occurs at point F1 on the load side of the slave station 13 shown in FIG. 1, the zero phase voltage and the zero phase current change.

【0003】零相電圧は、系統の各地点で等しいため、
微地絡事故発生とともに各子局5〜13は、零相過電圧
検出要素(OVG要素)により系統の変化を検出し、そ
の時刻と系統情報を記憶する。零相電流は事故点に向っ
て電源側から流れるのが主であることから、子局5、子
局6、子局13は零相電流を検出し地絡方向検出要素
(DG要素)も動作する。
Since the zero-phase voltage is equal at each point in the system,
With the occurrence of the micro-ground fault, each slave station 5 to 13 detects a system change by the zero-phase overvoltage detection element (OVG element), and stores the time and system information. Since the zero-phase current mainly flows from the power supply side toward the accident point, the slave station 5, slave station 6, and slave station 13 detect the zero-phase current and the ground fault direction detection element (DG element) also operates. To do.

【0004】一方、親局では、定期的に子局5〜13の
状態監視を行っており、F1点での微地絡事故発生後、
各子局情報を収集すると、子局5〜13の全てがOVG
要素が動作し、DG要素は子局5、6、13のみ動作し
ていることがわかる。
On the other hand, the master station regularly monitors the states of the slave stations 5 to 13, and after the occurrence of a minor ground fault accident at the F1 point,
When each slave station information is collected, all slave stations 5 to 13 are OVG.
It can be seen that the element is operating and the DG element is operating only the slave stations 5, 6, and 13.

【0005】親局にはあらかじめ系統構成が登録されて
いることから、子局13以降の配電線で微地絡が発生し
たと判断できるわけである。
Since the system configuration is registered in the master station in advance, it can be determined that a fine ground fault has occurred in the distribution line after the slave station 13.

【0006】ところが、何らかの原因(例えば、検出レ
ベル不適切、ハード不良などの原因)で子局13のDG
要素が動作しなかった場合、親局は、子局6の負荷側
で、子局9〜13の電源側の区間に微地絡が発生したと
誤判断してしまうことになる。配電系統は、面状に広が
っていることから、事故区間を誤まることは、保守、点
検業務に多大な労力をかけることになる。
However, the DG of the slave station 13 is caused by some cause (for example, an inappropriate detection level, a hardware defect, etc.).
When the element does not operate, the master station erroneously determines that a fine ground fault has occurred in the section on the power supply side of the slave stations 9 to 13 on the load side of the slave station 6. Since the power distribution system spreads in a plane, making a mistake in the accident section requires a great deal of effort for maintenance and inspection work.

【0007】[0007]

【発明が解決しようとする課題】上述した従来の微地絡
区間標定装置によれば、分散配置された子局と親局とか
らなるシステム全体の時間軸合せは、系統周波数に同期
したクロックにより、微小時間で同期化することが出来
た。
According to the above-described conventional fine ground fault section locator, the time alignment of the entire system composed of the slave stations and the master station, which are distributed, is performed by the clock synchronized with the system frequency. , It was possible to synchronize in a minute time.

【0008】しかし、従来の微地絡区間標定装置では各
子局の地絡方向検出要素(DG要素)、零相過電圧検出
要素(OVG要素)等が微地絡発生に正しく動作するか
否かの点検方法については検討されておらず、また配電
系統変更に伴なう、DG要素、OVG要素の検出感度の
変更については配慮されていなかった。図4に1線地絡
事故時の等価回路を示す。事故点抵抗をRgとし系統の
対地静電容量をCとすると、零相電圧Vo、零相電流I
oは次式で表わされる。
However, in the conventional fine ground fault section locating device, whether or not the ground fault direction detecting element (DG element), the zero-phase overvoltage detecting element (OVG element), etc. of each slave station operate correctly in generating a fine ground fault. No inspection method was examined, and no consideration was given to changes in detection sensitivity of DG elements and OVG elements due to changes in the distribution system. Figure 4 shows the equivalent circuit for a one-wire ground fault. Assuming that the fault resistance is Rg and the system ground capacitance is C, the zero-phase voltage Vo and the zero-phase current I
o is represented by the following equation.

【0009】[0009]

【数1】 [Equation 1]

【0010】[0010]

【数2】 [Equation 2]

【0011】但し、However,

【0012】[0012]

【数3】 [Equation 3]

【0013】である。[0013]

【0014】式(1)、(2)、(3)から明らかなよ
うに、事故点抵抗Rgを一定とするなら、対地静電容量
Cが変化すれば、すなわち系統構成が変更されれば、零
相電圧Vo、零相電流Ioの大きさも変化する。
As is clear from the equations (1), (2) and (3), if the fault point resistance Rg is constant, if the ground capacitance C changes, that is, if the system configuration is changed, The magnitudes of the zero-phase voltage Vo and the zero-phase current Io also change.

【0015】本発明はこのような事情に鑑みてなされた
ものであり、各子局の微地絡検出回路を点検可能とし、
さらに系統変更に応じて各子局における微地絡の検出レ
ベルを変更可能とし、安定で高信頼な微地絡区間標定が
行える微地絡区間標定装置を提供することを目的とす
る。
The present invention has been made in view of the above circumstances, and enables inspection of the fine ground fault detection circuit of each slave station.
It is another object of the present invention to provide a fine ground fault section locating device capable of changing a detection level of a fine ground fault in each slave station according to a system change and capable of stable and highly reliable fine ground fault section location.

【0016】[0016]

【課題を解決するための手段】本発明の微地絡区間標定
装置は、高圧配電線上に子局を分散配置し、該子局によ
り系統各部の系統情報ならびに子局に設けた微地絡検出
要素の動作結果を検出し、該検出された情報を親局で収
集して当該配電系統の微地絡区間を標定する微地絡区間
標定装置において、前記各子局は、高圧配電線路と対地
間にスイッチ素子を介してインピーダンスを挿入して微
地絡を発生させる微地絡発生回路を有し、親局からの指
令により指定された子局は微地絡を発生させると共に、
親局は、この時の各子局の系統情報検出結果を収集して
各子局の動作状況を確認することにより、子局の点検を
行なうようにしたことを特徴とする。
A fine ground fault section locating device of the present invention has slave stations distributedly arranged on a high-voltage distribution line, and the slave stations detect the system information of each part of the system and the fine ground fault detection provided in the slave stations. In a fine ground fault section locating device that detects an operation result of an element, collects the detected information in a master station, and locates a fine ground fault section of the distribution system, each of the slave stations includes a high voltage distribution line and a ground. It has a fine ground fault generation circuit that inserts impedance via a switch element to generate a fine ground fault, and a slave station specified by a command from the master station generates a fine ground fault,
The master station is characterized in that the slave station is inspected by collecting the system information detection result of each slave station at this time and confirming the operation status of each slave station.

【0017】また本発明の微地絡区間標定装置は、高圧
配電線上に子局を分散配置し、該子局により系統各部の
系統情報ならびに子局に設けた微地絡検出要素の動作結
果を検出し、該検出された情報を親局で収集して当該配
電系統の微地絡区間を標定する微地絡区間標定装置にお
いて、親局は、高圧配電線上に分散配置された微地絡発
生回路を有する子局に対し、点検毎に微地絡を発生させ
る子局を順次、変更することにより、配電線上の微地絡
発生場所や微地絡の大きさに応じて発生する高周波成分
の各子局における検出状況から、予め系統の高周波減衰
特性を測定して記憶し、系統に微地絡が発生した際に、
各子局の高周波検出状況と前述系統の高周波減衰特性と
から微地絡区間の標定と微地絡の大きさを推定するよう
にしたことを特徴とする。
Further, the fine ground fault section locating device of the present invention disperses the slave stations on the high voltage distribution line, and the slave station displays the system information of each part of the system and the operation result of the fine ground fault detection element provided in the slave station. In the fine ground fault section locating device that detects and collects the detected information in the master station and locates the fine ground fault section of the power distribution system, the master station generates a fine ground fault that is distributed and arranged on the high voltage distribution line. For slave stations that have circuits, by sequentially changing the slave stations that generate a fine ground fault at each inspection, the high-frequency components generated depending on the location of the fine ground fault on the distribution line and the magnitude of the fine ground fault can be From the detection status at each slave station, the high frequency attenuation characteristics of the system are measured and stored in advance, and when a fine ground fault occurs in the system,
The feature is that the orientation of the fine ground fault section and the magnitude of the fine ground fault are estimated from the high frequency detection status of each slave station and the high frequency attenuation characteristic of the above-mentioned system.

【0018】更に本発明の微地絡区間標定装置は、高圧
配電線上に子局を分散配置し、該子局により系統各部の
系統情報ならびに子局に設けた微地絡検出要素の動作結
果を検出し、該検出された情報を親局で収集して当該配
電系統の微地絡区間を標定する微地絡区間標定装置にお
いて、親局は各子局の点検時における各子局から収集し
た系統情報に基づいて、各子局における微地絡の検出レ
ベルを親局から再設定するように構成したことを特徴と
する。
Further, the fine ground fault section locating device of the present invention disperses the slave stations on the high-voltage distribution line, and the slave station displays the system information of each part of the system and the operation result of the fine ground fault detection element provided in the slave station. In the fine ground fault section locating device that detects and collects the detected information in the master station and locates the fine ground fault section of the distribution system, the master station collects from each slave station at the time of inspection of each slave station. It is characterized in that the detection level of the fine ground fault in each slave station is reset from the master station based on the system information.

【0019】[0019]

【作用】配電線上に分散配置された各子局に対し、順
次、微地絡を発生させることにより、各子局の動作点検
が行なえるとともに、系統変更に伴う微地絡の検出レベ
ルを実際に微地絡を発生させて確認できるために、上記
検出レベルを最適値に設定することができる。
[Function] By sequentially generating a fine ground fault for each slave station distributed on the distribution line, the operation check of each slave station can be performed, and the detection level of the fine ground fault due to the system change can be actually detected. Since it can be confirmed by generating a fine ground fault in the above, the detection level can be set to an optimum value.

【0020】また動作点検により微地絡発生場所に応じ
て各子局における微地絡により発生する高周波の検出状
況から、親局では系統の高周波減衰特性を知ることがで
き、系統に実際に微地絡が発生した際に、各子局の高周
波検出状況から微地絡区間の標定と微地絡の大きさを推
定することができる。
Further, from the operation inspection, the main station can know the high frequency attenuation characteristic of the system from the detection state of the high frequency generated by the fine ground fault in each slave station according to the place where the fine ground fault occurs. When a ground fault occurs, the orientation of the fine ground fault section and the magnitude of the fine ground fault can be estimated from the high frequency detection status of each slave station.

【0021】[0021]

【実施例】以下、本発明の一実施例を図面を参照して説
明する。図1には本発明に係る微地絡区間標定装置の全
体構成が示されている。同図において、配電用変圧器1
の二次側には系統全体の情報を収集する親局3が設置さ
れている。この親局3は、収集した系統情報から、系統
のどの区間に微地絡が発生したかを判断し、区間標定を
行なう。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to the drawings. FIG. 1 shows the overall configuration of a fine ground fault section locating device according to the present invention. In the figure, a distribution transformer 1
A master station 3 for collecting information on the entire system is installed on the secondary side. The master station 3 determines from which section of the system the fine ground fault has occurred based on the collected system information, and performs section orientation.

【0022】また親局3には親局3と面状に拡がった高
圧配電線2に沿って分散設置された子局5〜13群との
間で通信する通信部4が付設されている。
Further, the master station 3 is provided with a communication section 4 for communicating between the master station 3 and groups of slave stations 5 to 13 distributed along the planar high voltage distribution line 2.

【0023】子局5〜13は系統の各種状態量を取込
み、系統の異常(状態変化)を検出する機能と、親局3
との通信機能を有し、さらに高圧配電線と対地間にスイ
ッチ素子141を介してインピーダンス素子142を挿
入して微地絡を発生させる微地絡発生部14を有してい
る。
The slave stations 5 to 13 take in various state quantities of the system and detect an abnormality (state change) of the system, and the master station 3
It further has a communication function with respect to, and further has a fine ground fault generating section 14 for generating a fine ground fault by inserting the impedance element 142 between the high voltage distribution line and the ground through the switch element 141.

【0024】次に図1における子局の具体的構成を図2
に示す。同図において本発明による微地絡区間標定装置
は、微地絡発生部14と、零相電流入力部16と、零相
電圧入力部17と、DG要素18と、OVG要素19
と、クロック発生部20と、カウンタ21と、論理演算
部22と、不揮発性メモリ23と、通信処理部24と、
電圧変成器30と、停電検出部31と、バックアップタ
イマ32とを有している。 微地絡発生部14は、スイ
ッチ素子141と、インピーダンス素子142とから構
成されている。
Next, FIG. 2 shows a concrete configuration of the slave station in FIG.
Shown in. In the figure, the fine ground fault section locating device according to the present invention includes a fine ground fault generating unit 14, a zero phase current input unit 16, a zero phase voltage input unit 17, a DG element 18, and an OVG element 19.
A clock generation unit 20, a counter 21, a logical operation unit 22, a non-volatile memory 23, a communication processing unit 24,
It has a voltage transformer 30, a power failure detection unit 31, and a backup timer 32. The fine ground fault generator 14 includes a switch element 141 and an impedance element 142.

【0025】また通信処理部24は、解読部25と、通
信情報編集部26と、通信制御部27と、通信回線接続
部28とから構成されている。
The communication processing section 24 is composed of a decoding section 25, a communication information editing section 26, a communication control section 27, and a communication line connecting section 28.

【0026】上記構成において、高圧配電線2に設けら
れた零相電流変成器15により検出された零相電流は、
零相電流入力部16にてA/D変換を含む入力処理がな
されている。また、零相電圧入力部17は高圧配電線2
の3相の各相の対地間電圧を取込み、零相電圧を検出す
るようになっている。これにより検出された零相電圧信
号は、前記零相電流入力部16から出力される零相電流
信号とともに地絡方向を検出するDG要素18に入力さ
れる。また零相電圧信号は零相過電圧を検出するOVG
要素19に入力される。これらDG要素18、OVG要
素19により検出された系統の状態変化を示す系統情報
は論理演算部22に入力されている。論理演算部22は
入力される状態変化等の系統情報に基づいて系統の異常
を検出し、図示していない開閉器などに遮断指令等の制
御指令を出力するようになっている。なお、DG要素1
8、OVG要素19は、共に配電線2の引出口に設ける
保護リレーに比べ、高感度に検出するため検出値は低い
レベルとし、微地絡等に対し、敏感に応動するように整
定されている。
In the above structure, the zero-phase current detected by the zero-phase current transformer 15 provided in the high voltage distribution line 2 is
Input processing including A / D conversion is performed in the zero-phase current input unit 16. In addition, the zero-phase voltage input unit 17 is used for the high voltage distribution line 2
The zero-phase voltage is detected by taking in the ground voltage of each of the three phases. The zero-phase voltage signal thus detected is input to the DG element 18 which detects the ground fault direction together with the zero-phase current signal output from the zero-phase current input section 16. In addition, the zero-phase voltage signal is an OVG that detects a zero-phase overvoltage.
Input to element 19. The system information indicating the system state change detected by the DG element 18 and the OVG element 19 is input to the logical operation unit 22. The logical operation unit 22 detects an abnormality of the system based on the system information such as the input state change and outputs a control command such as a disconnection command to a switch (not shown). DG element 1
8 and OVG element 19 are both set to sensitively respond to a fine ground fault and the like, so that the detection value is lower than that of the protection relay provided at the outlet of the distribution line 2 because the detection is performed with high sensitivity. There is.

【0027】一方、クロック発生部20は高圧配電線2
の1相の対地間電圧を入力とし、その電圧波形から系統
周波数を検出し、その周波数に同期したクロックパルス
を生成してカウンタ21に出力するようになっている。
カウンタ21は入力されるクロックパルスを計数して計
時を行う。カウンタ21のセット、リセットは論理演算
部22により制御される。論理演算部22は前記DG要
素18、OVG要素19から系統の状態変化情報が入力
される度に、そのときのカウンタの計数値を読み込み、
不揮発性メモリ23に状態変化情報と計数値の内容を対
応させて格納するように構成されている。
On the other hand, the clock generator 20 is the high voltage distribution line 2
The one-phase voltage to ground is input, the system frequency is detected from the voltage waveform, a clock pulse synchronized with that frequency is generated and output to the counter 21.
The counter 21 counts clock pulses that are input and measures time. The setting and resetting of the counter 21 is controlled by the logical operation unit 22. Every time the system state change information is input from the DG element 18 and the OVG element 19, the logical operation unit 22 reads the count value of the counter at that time,
The nonvolatile memory 23 is configured to store the state change information and the content of the count value in association with each other.

【0028】子局5〜13と親局3は通信回線29を介
して多方向通信が可能になっており、専用回線方式ある
いは電力線搬送方式等の周知の通信方式を適用すること
ができる。子局側の通信処理部24は通信回線接続部2
8、通信制御部27、解読部25、通信情報編集部26
を含んで構成されている。通信回線29より通信回線接
続部28に取り込まれた親局情報は、通信制御部27に
て自局宛のものが抽出される。この抽出された親局から
の情報は解読部25で解読されて論理演算部22に伝達
される。
The slave stations 5 to 13 and the master station 3 are capable of multidirectional communication via the communication line 29, and a known communication system such as a dedicated line system or a power line carrier system can be applied. The communication processing unit 24 on the slave station side is the communication line connection unit 2.
8, communication control unit 27, decoding unit 25, communication information editing unit 26
It is configured to include. The master station information fetched from the communication line 29 to the communication line connection unit 28 is extracted by the communication control unit 27 to the own station. The extracted information from the master station is decoded by the decoding unit 25 and transmitted to the logical operation unit 22.

【0029】一方、子局から親局への送信は、論理演算
部22から出力される情報を送信情報編集部26で所定
の伝送フォーマットに変換し、通信制御部27及び通信
回線接続部28を介してなされるようになっている。
On the other hand, in the transmission from the slave station to the master station, the information output from the logical operation unit 22 is converted into a predetermined transmission format by the transmission information editing unit 26, and the communication control unit 27 and the communication line connection unit 28 are connected. It is supposed to be done through.

【0030】高圧配電線2の1相と対地間にスイッチ素
子141を介してインピーダンス142を挿入する微地
絡発生部14は、論理演算部22によりスイッチ素子が
制御されるようになっている。
The fine ground fault generating section 14 in which the impedance 142 is inserted between the one phase of the high voltage power distribution line 2 and the ground through the switch element 141 is controlled by the logical operation section 22.

【0031】上記構成からなる微地絡区間標定装置の動
作について以下に説明する。図3(a)は子局のクロッ
ク発生部20が取り込んでいる系統の電圧波形を示して
いる。装置全体はこの系統電圧に同期したクロックで動
作している。
The operation of the fine ground fault section locating device having the above configuration will be described below. FIG. 3A shows a voltage waveform of the system taken in by the clock generation unit 20 of the slave station. The entire device operates with a clock synchronized with this system voltage.

【0032】親局3は、t1時刻に子局5に対して点検
指令を与えると、子局5は、論理演算部22により系統
電圧に同期した時刻t2に微地絡発生部14のスイッチ
素子141をON制御し、時刻t3にOFF制御する。
これにより、図3(b)、(c)に示すように零相電圧
Vo、零相電流Ioが系統に発生する。発生時間(t3
−t2)は、子局の各要素の動作確認が可能な最小時間
(数サイクル程度)とし、他の保護リレーに影響を与え
ない時間とする。
When the master station 3 gives an inspection command to the slave station 5 at time t 1 , the slave station 5 causes the logical operation unit 22 to synchronize the system voltage with the fine ground fault generator 14 at time t 2 . The switch element 141 is ON-controlled and turned OFF at time t 3 .
As a result, the zero-phase voltage Vo and the zero-phase current Io are generated in the system as shown in FIGS. Occurrence time (t 3
-T 2 ) is the minimum time (about several cycles) at which the operation of each element of the slave station can be confirmed, and the time that does not affect other protection relays.

【0033】次に親局3は時刻t4以降に各子局の状態
を監視し、時刻t2にOVG要素が動作していることを
確認し、各子局のOVG要素回路が正常であると判断す
るとともに、時刻の同時性を確認する。またDG要素に
ついては、系統構成から、動作すべき子局が動作し、不
動作となるべき子局は不動作であることを確認する。親
局3は、時刻t1では子局5に対して点検指令を与えた
が、次回は子局6とし、点検のたびに順次、点検指令を
与える子局を変更することにより、全子局のDG要素の
動作確認を行なうことができる。
Next, the master station 3 monitors the state of each slave station after time t 4 , confirms that the OVG element is operating at time t 2, and the OVG element circuit of each slave station is normal. And confirm the simultaneity of time. Regarding the DG element, it is confirmed from the system configuration that the slave station to be operated operates and the slave station to be inactive does not operate. The master station 3 gives an inspection command to the slave station 5 at the time t 1 , but next time the slave station 6 is selected, and the slave stations to which the inspection command is given are changed every time the inspection is performed. The operation of the DG element can be confirmed.

【0034】本実施例によれば、各子局の系統情報の検
出要素の動作点検と時刻の同時性確認が行なえるため、
装置の信頼度向上に多大な効果がある。
According to the present embodiment, since it is possible to check the operation of the detecting elements of the system information of each slave station and to confirm the simultaneity of time,
It has a great effect on improving the reliability of the device.

【0035】次に本発明の微地絡区間標定装置の他の実
施例について以下述べる。微地絡事故時の零相電圧や零
相電流の波形は、図3(b)、図3(c)に示すよう
な、正弦波の0点から始まり、0点で終わるものばかり
でない。特に微地絡の発生当初は、電圧のピーク点で放
電が開始されることが多い。この点に着目したのが別の
実施例であり、図5に示すように、時刻t1に点検指令
を受けた時、電圧のピーク点である時刻t2に微地絡発
生部のスイッチをON制御するようにして、各子局の動
作点検を行なうようにした。この場合、電圧ピーク点で
スイッチを投入するため、図5(b)(c)に示すよう
に過渡応動となり、高周波成分を含んだ波形となる。
Next, another embodiment of the fine ground fault section locating device of the present invention will be described below. The waveforms of the zero-phase voltage and the zero-phase current at the time of the micro-ground fault are not limited to those starting from the zero point of the sine wave and ending at the zero point as shown in FIGS. 3B and 3C. In particular, at the beginning of occurrence of a fine ground fault, discharge often starts at the peak point of voltage. Another embodiment focuses on this point. As shown in FIG. 5, when an inspection command is received at time t 1 , the switch of the fine ground fault generating section is turned on at time t 2 which is the peak point of the voltage. The ON control is performed so that the operation of each slave station is inspected. In this case, since the switch is turned on at the voltage peak point, there is a transient response as shown in FIGS. 5B and 5C, and the waveform has a high-frequency component.

【0036】子局では、基本波に応動するDG要素1
8、OVG19要素の動作状況とは別に、この高周波成
分の大きさを計測し、系統情報として親局に与えるよう
にした。高周波成分は、距離とともに減衰するため、微
地絡発生点が一番大きく、離れるとともに小さくなる。
At the slave station, DG element 1 responding to the fundamental wave
8. In addition to the operating status of the OVG19 element, the magnitude of this high frequency component is measured and given to the master station as system information. Since the high frequency component attenuates with distance, the point of occurrence of the fine ground fault is the largest and becomes smaller as the distance increases.

【0037】親局3では、点検時、各子局のDG要素1
8、OVG19要素の動作確認とは別に、高周波成分の
大きさを測定し、系統に於ける高周波の減衰特性を求め
ておく。これにより、系統に微地絡が発生した時、微地
絡区間と子局設置点からの距離を標定することが可能と
なる。
At the time of inspection, the master station 3 checks the DG element 1 of each slave station.
8. In addition to checking the operation of the OVG19 element, the magnitude of the high frequency component is measured and the high frequency attenuation characteristic of the system is obtained. Thereby, when a fine ground fault occurs in the system, it becomes possible to locate the distance from the fine ground fault section and the slave station installation point.

【0038】すなわち図6に示すように、子局5で点検
した時の微地絡による高周波電圧の大きさを、子局5の
地点でv5、子局6の地点でv5’とし、子局6で点検し
た時の微地絡による高周波電圧の大きさをv6、及び
6’とする。これにより、子局5から子局6への高周
波の減衰特性はv5−v5’の直線で示す傾きとなり、子
局6から子局5への高周波の減衰特性はv6−v6’の直
線で示す傾きとなる。従って、系統の微地絡により、子
局5でva、子局6でvbなる高周波電圧を得た場合、
事故点は、va、vbから各々高周波特性の傾きと平行
に点線を引き、その交点が事故発生点であり、高周波電
圧の大きさvFを知ることができるわけである。本実施
例によれば、微地絡発生区間と子局設置点からの距離を
標定することができるという多大な効果がある。
That is, as shown in FIG. 6, the magnitude of the high-frequency voltage due to the fine ground fault when the slave station 5 is inspected is v 5 at the slave station 5 and v 5 'at the slave station 6, The magnitudes of the high-frequency voltage due to a slight ground fault when inspected by the slave station 6 are v 6 and v 6 ′. As a result, the attenuation characteristic of the high frequency from the slave station 5 to the slave station 6 has a slope shown by a straight line of v 5 -v 5 ′, and the attenuation characteristic of the high frequency from the slave station 6 to the slave station 5 is v 6 −v 6 ′. The slope is indicated by the straight line. Therefore, when a high frequency voltage of va is obtained at the slave station 5 and vb is obtained at the slave station 6 due to a fine ground fault of the system,
For the accident point, a dotted line is drawn from va and vb in parallel with the inclination of the high frequency characteristic, and the intersection is the accident occurrence point, and the magnitude vF of the high frequency voltage can be known. According to this embodiment, there is a great effect that the distance from the fine ground fault occurrence section and the slave station installation point can be located.

【0039】次に本発明の微地絡区間標定装置の更に他
の実施例について述べる。
Next, still another embodiment of the fine ground fault section locating device of the present invention will be described.

【0040】子局は、親局3からの指令で、指定された
子局のみ、論理演算部22により微地絡発生部14のス
イッチ素子141をON制御するが、他の子局も同時に
点検指令を受信するようにし、点検による微地絡発生期
間の零相電圧、及び零相電流の大きさを計測し、DG要
素18、OVG要素19の動作とは別に検出レベルとと
もに計測結果を親局3に送るようにする。
The slave station controls the switch element 141 of the fine ground fault generating section 14 to be turned on only by the slave station designated by the instruction from the master station 3 by the logical operation section 22, but the other slave stations are also inspected at the same time. By receiving the command, the magnitude of the zero-phase voltage and the zero-phase current during the fine ground fault occurrence period by the inspection is measured, and the measurement result is displayed together with the detection level separately from the operation of the DG element 18 and the OVG element 19. I will send it to 3.

【0041】親局3では各子局の動作結果を確認すると
ともに、各子局が入力している零相電圧、電流の値が正
しいか、検出レベルが他の子局と同じであるかを確認
し、差がある場合には、通信により親局3より当該子局
の検出レベルを再整定するようにする。これにより、各
子局間の微地絡検出の特性のバラツキを無くすることが
できる。
The master station 3 confirms the operation result of each slave station and checks whether the values of the zero-phase voltage and current input to each slave station are correct and whether the detection level is the same as that of the other slave stations. If there is a difference, the master station 3 resets the detection level of the slave station through communication. As a result, it is possible to eliminate the variation in the characteristics of the fine ground fault detection among the slave stations.

【0042】また本実施例では系統を変更することによ
り、地絡点抵抗が一定であっても零相電圧、零相電流の
大きさが変化することから、動作点検により微地絡の検
出レベルが現状の系統に対し適切か否かを判断し、各子
局の微地絡の検出レベルを親局3からの指令により再整
定できるように構成したので、系統変更があっても微地
絡の検出感度を一定に保つことができる。
Further, in this embodiment, by changing the system, the magnitude of the zero-phase voltage and the zero-phase current changes even if the ground fault point resistance is constant. Is determined to be appropriate for the current system, and the detection level of the fine ground fault of each slave station can be reset by the command from the master station 3, so even if the system is changed, the fine ground fault is detected. The detection sensitivity of can be kept constant.

【0043】[0043]

【発明の効果】以上のように本発明の微地絡区間標定装
置によれば、各子局は、高圧配電線路と対地間にスイッ
チ素子を介してインピーダンスを挿入して微地絡を発生
させる微地絡発生回路を有し、親局からの指令により指
定された子局は微地絡を発生させると共に、親局は、こ
の時の各子局の系統情報検出結果を収集して各子局の動
作状況を確認することにより、子局の点検を行なうよう
にしたので、各子局の微地絡検出動作を常に監視するこ
とができ、装置の高信頼度化が図れるという効果があ
る。
As described above, according to the fine ground fault section locating device of the present invention, each slave station inserts an impedance between the high voltage power distribution line and the ground through a switch element to generate a fine ground fault. The slave station specified by the command from the master station has a minute ground fault generation circuit, and the master station generates a minute ground fault, and the master station collects the system information detection results of each slave station at this time and Since the slave stations are inspected by confirming the operating status of the stations, it is possible to constantly monitor the fine ground fault detection operation of each slave station, which has the effect of improving the reliability of the device. ..

【0044】また本発明の微地絡区間標定装置によれ
ば、実配電線を利用した動作点検を行なっているため、
系統変更に対して微地絡の検出感度に影響を受けないと
いう効果がある。
Further, according to the fine ground fault section locating device of the present invention, since the operation inspection using the actual distribution line is performed,
There is an effect that the detection sensitivity of the fine ground fault is not affected by the system change.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る微地絡区間標定装置の一実施例の
全体構成を示す構成図である。
FIG. 1 is a configuration diagram showing an overall configuration of an embodiment of a fine ground fault section locating device according to the invention.

【図2】図1に示す微地絡区間標定装置における子局の
具体的構成を示すブロック図である。
FIG. 2 is a block diagram showing a specific configuration of a slave station in the fine ground fault section locating device shown in FIG.

【図3】本発明に係る微地絡区間標定装置の動作の一例
を示す説明図である。
FIG. 3 is an explanatory diagram showing an example of an operation of the fine ground fault section locating device according to the present invention.

【図4】配電線の一線地絡事故時の等価回路を示す回路
図である。
FIG. 4 is a circuit diagram showing an equivalent circuit at the time of a one-line ground fault of a distribution line.

【図5】本発明に係る微地絡区間標定装置の動作の一例
を示す説明図である。
FIG. 5 is an explanatory diagram showing an example of an operation of the fine ground fault section locating device according to the present invention.

【図6】本発明に係る微地絡区間標定装置の動作の一例
を示す説明図である。
FIG. 6 is an explanatory diagram showing an example of the operation of the fine ground fault section locating device according to the present invention.

【符号の説明】[Explanation of symbols]

1 配変用変圧器 2 高圧配電線 3 親局 4 通信部 5 子局 6 子局 7 子局 8 子局 9 子局 10 子局 11 子局 12 子局 13 子局 14 微地絡発生部 15 零相電流変成器 16 零相電流入力部 17 零相電圧入力部 18 DG要素 19 OVG要素 20 クロック発生部 21 カウンタ 22 論理演算部 23 不揮発メモリ 24 通信処理部 25 解読部 26 通信情報編集部 27 通信制御部 28 通信回線接続部 29 通信回線 30 電圧変成器 31 停電検出部 32 バックアップタイマ 141 スイッチ素子 142 インピーダンス素子 1 Distribution transformer 2 High-voltage distribution line 3 Parent station 4 Communication section 5 Slave station 6 Slave station 7 Slave station 8 Slave station 9 Slave station 10 Slave station 11 Slave station 12 Slave station 13 Slave station 14 Micro-ground fault generating section 15 Zero-phase current transformer 16 Zero-phase current input section 17 Zero-phase voltage input section 18 DG element 19 OVG element 20 Clock generation section 21 Counter 22 Logical operation section 23 Non-volatile memory 24 Communication processing section 25 Decoding section 26 Communication information editing section 27 Communication Control unit 28 Communication line connection unit 29 Communication line 30 Voltage transformer 31 Power failure detection unit 32 Backup timer 141 Switch element 142 Impedance element

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 高圧配電線上に子局を分散配置し、該子
局により系統各部の系統情報ならびに子局に設けた微地
絡検出要素の動作結果を検出し、該検出された情報を親
局で収集して当該配電系統の微地絡区間を標定する微地
絡区間標定装置において、 前記各子局は、高圧配電線路と対地間にスイッチ素子を
介してインピーダンスを挿入して微地絡を発生させる微
地絡発生回路を有し、親局からの指令により指定された
子局は微地絡を発生させると共に、 親局は、この時の各子局の系統情報検出結果を収集して
各子局の動作状況を確認することにより、子局の点検を
行なうようにしたことを特徴とする微地絡区間標定装
置。
1. A slave station is distributedly arranged on a high-voltage distribution line, the slave station detects system information of each part of the system and an operation result of a fine ground fault detection element provided in the slave station, and the detected information is transmitted to a parent. In a fine ground fault section locating device that collects at a station and locates a fine ground fault section of the distribution system, each of the slave stations inserts an impedance via a switching element between the high-voltage power distribution line and the ground to perform a fine ground fault. The slave station specified by the command from the master station generates a fine ground fault, and the master station collects the system information detection results of each slave station at this time. A fine ground fault section locating device characterized in that the slave stations are inspected by checking the operating status of each slave station.
【請求項2】 高圧配電線上に子局を分散配置し、該子
局により系統各部の系統情報ならびに子局に設けた微地
絡検出要素の動作結果を検出し、該検出された情報を親
局で収集して当該配電系統の微地絡区間を標定する微地
絡区間標定装置において、 親局は、高圧配電線上に分散配置された微地絡発生回路
を有する子局に対し、点検毎に微地絡を発生させる子局
を順次、変更することにより、配電線上の微地絡発生場
所や微地絡の大きさに応じて発生する高周波成分の各子
局における検出状況から、予め系統の高周波減衰特性を
測定して記憶し、系統に微地絡が発生した際に、各子局
の高周波検出状況と前述系統の高周波減衰特性とから微
地絡区間の標定と微地絡の大きさを推定するようにした
ことを特徴とする微地絡区間標定装置。
2. A slave station is dispersedly arranged on a high-voltage distribution line, the slave station detects the system information of each part of the system and the operation result of a fine ground fault detection element provided in the slave station, and the detected information is used as a parent. In the fine ground fault section locating device that collects at the station and locates the fine ground fault section of the power distribution system, the master station checks the slave stations that have the fine ground fault generating circuits distributed on the high voltage distribution line every inspection. By sequentially changing the slave stations that generate a fine ground fault, the detection status in each slave station of the high-frequency component generated according to the location of the fine ground fault on the distribution line and the magnitude of the fine ground fault Measures and stores the high-frequency attenuation characteristics of the, and when a fine ground fault occurs in the system, the orientation of the fine ground fault section and the magnitude of the fine ground fault are determined from the high-frequency detection status of each slave station and the high-frequency attenuation characteristics of the system. A fine ground fault section locating device characterized in that the height is estimated.
【請求項3】 高圧配電線上に子局を分散配置し、該子
局により系統各部の系統情報ならびに子局に設けた微地
絡検出要素の動作結果を検出し、該検出された情報を親
局で収集して当該配電系統の微地絡区間を標定する微地
絡区間標定装置において、 親局は各子局の点検時における各子局から収集した系統
情報に基づいて、各子局における微地絡の検出レベルを
親局から再設定するように構成したことを特徴とする微
地絡区間標定装置。
3. A slave station is distributedly arranged on a high-voltage distribution line, the slave station detects system information of each system section and an operation result of a fine ground fault detection element provided in the slave station, and the detected information is transmitted to a parent. In the micro-ground fault section locating device that collects at the station and locates the micro-ground fault section of the distribution system, the master station is based on the grid information collected from each slave station at the time of inspection of each slave station, A fine ground fault section locating device, characterized in that the detection level of the fine ground fault is reset from the master station.
JP06359692A 1992-03-19 1992-03-19 Micro ground fault section location device Expired - Fee Related JP3240479B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP06359692A JP3240479B2 (en) 1992-03-19 1992-03-19 Micro ground fault section location device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP06359692A JP3240479B2 (en) 1992-03-19 1992-03-19 Micro ground fault section location device

Publications (2)

Publication Number Publication Date
JPH05276652A true JPH05276652A (en) 1993-10-22
JP3240479B2 JP3240479B2 (en) 2001-12-17

Family

ID=13233814

Family Applications (1)

Application Number Title Priority Date Filing Date
JP06359692A Expired - Fee Related JP3240479B2 (en) 1992-03-19 1992-03-19 Micro ground fault section location device

Country Status (1)

Country Link
JP (1) JP3240479B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006001394A (en) * 2004-06-17 2006-01-05 West Japan Railway Co Feeder cable monitoring device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006001394A (en) * 2004-06-17 2006-01-05 West Japan Railway Co Feeder cable monitoring device

Also Published As

Publication number Publication date
JP3240479B2 (en) 2001-12-17

Similar Documents

Publication Publication Date Title
CN101858948B (en) Method and system for carrying out transient and intermittent earth fault detection and direction determination in three-phase medium-voltage distribution system
US7894169B2 (en) High resistance ground protection employing AC drive characteristics
EP1669767A1 (en) System and method of locating ground fault in electrical power distribution system
JPH03501523A (en) Accident detection
KR20080046388A (en) Multi-function terminal for distributing automation and operating method thereof
KR101904813B1 (en) Apparatus and method for diagnosing seral arc of electrical equipment using smart distribution board
MX2009002646A (en) Apparatus, systems and methods for reliably detecting faults within a power distribution system.
JP2001196980A (en) Method and system for retrieving and locating fault point of communication cable for wired distribution line remote supervisory control
Kumm et al. Assessing the effectiveness of self-tests and other monitoring means in protective relays
CN101345408B (en) Method for assigning a fault current to one of the three phase currents of a three-phase system
JPH05276652A (en) Faint ground fault section locator
GB2437315A (en) Diagnostic signal processor
JP2003299215A (en) Method for validity check of current transformer in switchgear, computer program and device, and switchgear provided with the device
CN110780224A (en) Ground fault detection circuit and device
US11128116B2 (en) Electric power system protection device with active and testing configurations
KR100498557B1 (en) Circuit for detecting ground
KR100953684B1 (en) Distrtibuting board cabinet panel for tunnel lamp controlling with capability of detecting function loose contact and arc
JP3657064B2 (en) High voltage insulation constant monitoring device
CN218783576U (en) Arc fault protection device
JPH11271376A (en) Protecting relay control circuit testing device
JPH06284551A (en) Testing circuit of overcurrent protection device
JPH0783564B2 (en) Ground fault point recognition device for distribution lines
KR102539823B1 (en) Intelligent distribution box and controlling method of the same
JP3546396B2 (en) Ground fault discriminator in high voltage distribution system
JP2647412B2 (en) Preventive diagnostics for substation equipment

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071019

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081019

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091019

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees