JPH052760B2 - - Google Patents

Info

Publication number
JPH052760B2
JPH052760B2 JP14701188A JP14701188A JPH052760B2 JP H052760 B2 JPH052760 B2 JP H052760B2 JP 14701188 A JP14701188 A JP 14701188A JP 14701188 A JP14701188 A JP 14701188A JP H052760 B2 JPH052760 B2 JP H052760B2
Authority
JP
Japan
Prior art keywords
steel
pickling
sulfuric acid
metal
cathode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP14701188A
Other languages
Japanese (ja)
Other versions
JPH01316500A (en
Inventor
Seisaburo Abe
Kazuhiro Tano
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP14701188A priority Critical patent/JPH01316500A/en
Publication of JPH01316500A publication Critical patent/JPH01316500A/en
Publication of JPH052760B2 publication Critical patent/JPH052760B2/ja
Granted legal-status Critical Current

Links

Description

【発明の詳細な説明】[Detailed description of the invention]

〔産業上の利用分野〕 本発明は鉄と炭素を主成分とする炭素鋼、さら
にNi、Cr、Mo、Mn等の1種または2種以上を
含有した低合金鋼あるいは特殊鋼などの鋼質金属
表面の陰極電解処理法に関するものである。 〔従来の技術〕 従来、形鋼、鋼板など各種形状の鋼質金属は、
転炉、電気炉などの溶解炉で溶製された溶鋼を造
塊・分塊工程あるいは連続鋳造工程を経て鍛造、
圧延などの熱間加工や冷間加工、さらには焼準や
焼鈍など熱処理を施して製造されている。ところ
がMn、Ni、Cr、Moなどを多量に含有するステ
ンレス鋼や高マンガン鋼のごとき高合金鋼を熱間
圧延後酸洗すると、板の表面に割れ疵やへH疵が
局部的に散在し、商品の外観性を劣化する問題が
あつた。特に鋼質金属の薄板材さらにはメツキや
化成処理を施した表面処理材では問題視されてい
る。したがつて熱間加工前においては鋼質金属片
を局部手入れや全面研削を行う精整工程を経て熱
間加工後あるいは熱間加工−焼鈍後シヨツトブラ
スト法やワイヤーブラシ法等の機械的清浄法で予
備処理した後、炭素鋼、低合金鋼およびフエライ
トステンレス鋼では塩酸あるいは硫酸水溶液、オ
ーステナイトステンレス鋼は硝酸とふつ酸との混
合水溶液に浸漬して表面の疵や割れさらに高温度
で生成したスケールを溶解除去する方法が行われ
ている。特にステンレス鋼の光沢あるいは美麗な
表面は塩酸又は硫酸酸洗あるいは硝ふつ酸洗の作
用効果に依存することが大きい。しかしながら、
これらの酸洗溶液に浸漬して酸洗処理した場合、
被酸洗材の粒界性状がによつて表面の粒界が腐食
され、これを冷間圧延すると、例えばフエライト
ステンレス鋼ではゴールドダストと呼ばれる微小
ヘゲ疵を発生する問題がある。このことから酸洗
には起因する微小ヘゲ疵の発生を防止し、あるい
はそれを低減する酸洗方法として、特公昭58−
28351号公報の「塩化第二鉄・塩酸混合水溶液を
用いて酸洗する方法」、特公昭61−38270号公報の
「シヨツトブラスト等の機械的処理の脱スケール
法を施した後、希塩酸酸洗し、次いで希硝酸酸洗
する酸洗法」などが開発されている。こうした酸
洗法は、温度50〜60℃程度に加熱した酸洗溶液に
鋼質金属を浸漬するもので脱スケールという観点
からは塩酸酸洗は普通鋼から低廉型フエライトス
テンレス鋼(11〜13wt%Cr)、硫酸酸洗は普通鋼
から高Crフエライトステンレス鋼(11〜25wt%
Cr)まで同一酸洗浴を適用しうる利点があり、
さらに熱間加工あるいはその焼鈍工程で発生する
粒界クロム炭化物析出に伴う粒界クロム欠乏層を
優先腐食せず、粒界ミクログルーブを発生しない
という利点を有するが、硫酸酸洗ではリンの粒界
偏析に起因する粒界ミクログルーブを発生する欠
点を有している。また塩酸酸洗法と硫酸酸洗法で
はいずれもNiを含有するオーステナイトステン
レス鋼の脱スケールは不可能であり、硝ふつ酸酸
洗法等の他の酸洗法が必要であり、現状では普通
鋼、フエライトステンレス鋼およびオーステナイ
トステンレス鋼の脱スケールを同一の酸洗浴で実
施しうるものはなく、酸洗ラインを系列以上設備
するか酸洗浴を交換して使用する等を余儀なくさ
れている。さらには塩酸酸洗法、硫酸酸洗および
硝ふつ酸酸洗法はいずれも鋼質金属を酸洗浴中に
浸漬処理し、自然腐食条件下で脱スケール処理を
行うため、最適酸洗表面を得るという点では問題
点が多く、2回あるいは3回以上の酸洗処理を必
要とする場合が多く、脱スケール酸洗時表面溶削
量を制御しうる酸洗技術の開発が急がれている。 鋼質金属の表面スケールを短時間に除去する効
率的な電解酸洗方法として特公昭57−2800号公報
の電解脱スケールがある。この方法は、硫酸又は
硝酸水溶液中に配置した陽極電極板と該陽極板長
さの2〜4倍の長さをもつ陰極板の間に直流電圧
をかけその両極の間をステンレス鋼帯を通過せし
める間接通電方式の電解脱スケール法を開示する
もので、陽極板の面積に対する陰極板の面積の比
率を大きくすることにより、陽極処理時間の増大
を計つて脱スケール性を向上しようとするもので
ある。そのように電解酸洗には陽極的酸洗法と陰
極的酸洗法があり、陽極的酸洗法は水素脆化の恐
れがなく高温、高電流密度ほど脱スケール速度が
速く、一方陰極的酸洗法では下地金属が殆ど溶解
されないということで、一般的には陽極的電解酸
洗法が使用されている。このように鋼質金属の電
解酸洗あるいは電解研磨は、電解溶液中で被酸洗
面あるいは被研磨面に通電して金属の溶解を行う
場合、被酸洗あるいは被研磨金属を陽極とし、直
接電流を通電する方法が一般的である。これに対
して陰極においては酸洗溶液中の水素イオンが還
元されて水素ガスとなつて放出され、金属の溶解
は進行しないとされている。 〔発明が解決しようとする課題〕 本発明者らはこれまでの陰極電解処理法では下
地金属は殆ど溶解されないという一般的常識とは
異なり鋼質金属の表面を短時間で溶解しかつ美麗
な外観性状をもつ陰極電解処理法を開発すること
を目的に多くの実験と検討を重ねた結果、硫酸水
溶液にCr+6イオンを含有する酸洗溶液中で陰極電
解することによつてその目的が達成されることを
知見した。本発明は、この知見に基づいて構成し
たもので、その要旨は5〜200g/のCr+6イオ
ンを含有する100〜600g/の濃度の硫酸水溶液
中で鋼質金属を陰極とし、該陰極に対向して設け
られた陽極との間に電流密度5〜200A/dm2
通電する鋼質金属の陰極電解処理法である。 〔課題を解決するための手段および作用〕 以下、本発明について詳細に説明する。 高温加工や焼なましなどの熱処理を施した炭素
鋼さらにNi、Cr、Mo等の強化元素、塑性向上元
素や耐食性向上元素の1種または2種以上を含有
した低合金鋼あるいはステンレス鋼のごとき特殊
鋼などの鋼質金属の表面に生成したスケールある
いは付着した汚染を溶解除去するとともに下地金
属を適当量溶削して良好な酸洗表面を製造するた
めにCrイオンを含有する硫酸水溶液中で該鋼質
金属を陰極にして電解処理を行う。硫酸水溶液中
においては炭素鋼およびNiを含有しない25wt%
以下のCrを含有するフエライトステンレス鋼は
自然浸漬状態で活性溶解により表面溶削が行われ
る。これに対してNiを含有するオーステナイト
ステンレス鋼は硫酸水溶液中に浸漬しただけでは
殆ど活性溶解は進行しない。しかしながら、本発
明の陰極電解処理法によれば、硫酸水溶液中にお
ける陰極部で水素ガスの発生条件下でオーステナ
イトステンレス鋼を含むすべての鋼質金属の溶解
が進行する。本発明者らは硫酸水溶液以外に塩
酸、燐酸水溶液等各種酸中における陰極電解処理
効果を検討し、いずれの酸中においても陰極溶解
が進行することを確認したが、その溶解量は硫酸
水溶液中におけるそれに比して著しく小さく実用
的でないことを確認した。硫酸水溶液中における
顕著な陰極溶解のメカニズムの詳細は現状では明
らかではないが、本発明者らは陰極通電下で化学
的活性溶解反応が進行することによると考えてい
る。一般的に陰極電解液として使用される水酸化
ナトリウムに塩化ナトリウム、塩酸などを添加し
た溶液に較べ、硫酸水溶液中で極めて高速の金属
溶解が進行するというすぐれた特徴を示すが、こ
のような硫酸水溶液中の作用効果はいかなる濃度
においても得られるというものではない。第1図
は各種濃度の硫酸水溶液(温度80℃)でSUS430
鋼を電解酸洗処理した時の該鋼の溶解深さを陽極
電解処理部と陰極電解処理部で比較して示したも
のである。100g/未満の薄い濃度では陰極電
解処理部が陽極電解処理部を越える溶解深さが得
られず、また600g/を越える濃度では過度に
溶解して鋼表面は孔食状の不均一溶解が進行し、
均質な表面品質を得ることが困難になるとともに
コストアツプ要因ともなる。したがつて、本発明
において鋼質金属表面を溶削し、孔食状の不均一
溶解を防止して均質な表面性状を得るために硫酸
水溶液の濃度を100〜600g/とした。さらに本
発明は硫酸水溶液に重クロム酸ナトリウム
(Na2Cr2O7)、重クロム酸カリウム(K2Cr2O7)、
無水クロム酸(CrO3)のごとき硫酸水溶液中で
Crイオンを生成する化合物を添加する。Crイオ
ンを含有する硫酸電解質溶液中においては、陰極
電解処理部でCr6+イオンがCr+3イオンに還元さ
れ、鋼質金属の溶解(M→Mn++ne-)にともな
い発生する電子(e-)を消費(Cr6++3e-→Cr3+
することにより、金属の溶解速度を高めるととも
に粒界に偏析したリンによる水素発生反応を低減
し、粒界ミクログルーブの発生を防止して良好な
表面性状の製造を可能とする。第2図は300g/
の濃度の硫酸水溶液(温度80℃)中に各種濃度
のCr6+イオンを添加してSUS304鋼を陰極電解処
理した場合の該金属の溶解深さを示したもので、
該電解質溶液中に単純浸漬したのみでは何の変化
も見られないが、陰極電解処理した場合顕著な溶
解深さを示す。すなわち、本発明において限定し
たCr6+イオンの含有量は鋼質金属の表面について
短時間に顕著な溶削作用が得られる範囲であつ
て、5g/未満の薄い濃度または200g/を
越える濃い濃度ではその種の効果が望めない。さ
らに本発明は、こうしたCr6+イオンを含有する硫
酸水溶液を用いて鋼質金属を陰極とし、該金属に
対向して設けられる陽極との間に電流密度5〜
200A/dm2を通電する。電流密度は鋼質金属の
溶解速度を加速するもので、第3図に50g/の
Cr6+イオンを含有する300g/の濃度の硫酸水
溶液(温度80℃)中で60秒の陰極電解処理した
SUS430鋼の溶削深さを示す。すなわち5A/dm2
未満の小電流密度では十分な陰極溶削効果を得る
ことができず、また200A/dm2を越える過剰な
大電流密度では溶液抵抗のため液温急上昇を生起
するとともに陰極溶削量も飽和してくる。したが
つて、陰極電解処理を効果的に行うとともに電解
溶液の温度制御を行う上から電流密度を5〜
200A/dm2とした。 上記のような本発明の鋼質金属の陰極電解処理
法は鋼質金属の浸漬法あるいは連続法など任意な
方法で処理される。 〔実施例〕 炭素鋼、Crを約17%含有するSUS430、Crを約
23%含有する高Crフエライトステンレス鋼およ
びオーステナイトステンレス鋼のSUS304のそれ
ぞれについて80℃で60秒間陰極溶解を行つた場合
の溶解深さを10g/のCr6+イオン−150g/
の硫酸、100g/のCr+6イオン−150g/の硫
酸について第1表と第2表、10g/のCr6+イオ
ン−300g/の硫酸、75g/のCr6+イオン−
300g/の硫酸、180g/のCr6+イオン−300
g/の硫酸についてそれぞれ第3表、第4表と
第5表および15g/のCr6+イオン−550g/
の硫酸、175g/のCr6+イオン−550g/の硫
酸について第6表と第7表に示す。従来の陰極通
電を施さない単純浸漬では、炭素鋼以外
[Industrial Application Field] The present invention is applicable to steels such as carbon steel whose main components are iron and carbon, and low alloy steel or special steel containing one or more of Ni, Cr, Mo, Mn, etc. The present invention relates to a cathodic electrolytic treatment method for metal surfaces. [Conventional technology] Conventionally, steel metals of various shapes such as shaped steel and steel plates were
Molten steel produced in a melting furnace such as a converter or electric furnace is forged through an ingot making process or a continuous casting process.
It is manufactured through hot working such as rolling, cold working, and heat treatment such as normalizing and annealing. However, when high alloy steel such as stainless steel or high manganese steel containing large amounts of Mn, Ni, Cr, Mo, etc. is pickled after hot rolling, cracks and cracks are scattered locally on the surface of the plate. , there was a problem that the appearance of the product deteriorated. This is particularly problematic in thin steel sheet materials and surface-treated materials that have been plated or chemically treated. Therefore, before hot working, the steel metal piece undergoes a refining process that includes local care and overall grinding, and then mechanical cleaning such as shot blasting or wire brushing after hot working or after hot working and annealing. After pretreatment using the method, carbon steel, low alloy steel, and ferritic stainless steel are immersed in an aqueous solution of hydrochloric acid or sulfuric acid, and austenitic stainless steel is immersed in a mixed aqueous solution of nitric acid and fluoric acid to prevent surface scratches and cracks that occur at high temperatures. A method of dissolving and removing scale is being used. In particular, the gloss or beautiful surface of stainless steel largely depends on the effects of hydrochloric acid or sulfuric acid pickling, or sulfuric acid pickling. however,
When immersed in these pickling solutions and subjected to pickling treatment,
Due to the grain boundary properties of the material to be pickled, the grain boundaries on the surface are corroded, and when this is cold rolled, for example, in ferrite stainless steel, there is a problem in that minute scratches called gold dust occur. For this reason, as a pickling method that prevents or reduces the occurrence of microscopic scratches caused by pickling, the
``A method of pickling using a mixed aqueous solution of ferric chloride and hydrochloric acid'' in Publication No. 28351, and ``A method of pickling using a mixed aqueous solution of ferric chloride and hydrochloric acid,'' and ``A method of pickling using a mixed aqueous solution of ferric chloride and hydrochloric acid,'' and ``After descaling by mechanical treatment such as shot blasting, diluted hydrochloric acid. A pickling method has been developed that involves washing and then pickling with dilute nitric acid. In this pickling method, steel metal is immersed in a pickling solution heated to a temperature of about 50 to 60℃.From the perspective of descaling, hydrochloric acid pickling can be used to reduce the weight of ordinary steel to low-cost ferrite stainless steel (11 to 13 wt%). Cr), sulfuric acid pickling changes from ordinary steel to high Cr ferrite stainless steel (11~25wt%
It has the advantage that the same pickling bath can be applied to
Furthermore, it has the advantage that it does not preferentially corrode the grain boundary chromium-deficient layer due to grain boundary chromium carbide precipitation that occurs during hot working or its annealing process, and does not generate grain boundary microgrooves. It has the disadvantage of generating grain boundary microgrooves due to segregation. In addition, it is impossible to descale austenitic stainless steel containing Ni with both hydrochloric acid pickling and sulfuric acid pickling, and other pickling methods such as nitric acid pickling are required. There is no way to descale steel, ferritic stainless steel, and austenitic stainless steel using the same pickling bath, and it is necessary to install more than one pickling line or to replace the pickling bath. Furthermore, in the hydrochloric acid pickling method, sulfuric acid pickling method, and nitric acid pickling method, the steel metal is immersed in a pickling bath and descaling is performed under natural corrosion conditions, so an optimal pickled surface can be obtained. There are many problems in this respect, and in many cases two or three or more pickling treatments are required, so there is an urgent need to develop pickling technology that can control the amount of surface abrasion during descaling pickling. . As an efficient electrolytic pickling method for removing surface scale of steel metals in a short time, there is an electrolytic descaling method disclosed in Japanese Patent Publication No. 57-2800. This method involves applying a direct current voltage between an anode plate placed in a sulfuric acid or nitric acid aqueous solution and a cathode plate having a length 2 to 4 times the length of the anode plate, and passing a stainless steel strip between the two electrodes. This method discloses an electrolytic descaling method using an electric current method, and attempts to improve descaling performance by increasing the ratio of the area of the cathode plate to the area of the anode plate to increase the anodizing time. There are two types of electrolytic pickling: an anodic pickling method and a cathodic pickling method.The anodic pickling method has no fear of hydrogen embrittlement and the higher the temperature and current density, the faster the descaling speed. Generally, an anodic electrolytic pickling method is used because the underlying metal is hardly dissolved in the pickling method. In this way, in electrolytic pickling or electrolytic polishing of steel metals, when the metal is melted by passing current through the pickled or polished surface in an electrolytic solution, the metal to be pickled or polished is used as an anode and a direct current is applied. A common method is to energize. On the other hand, at the cathode, the hydrogen ions in the pickling solution are reduced and released as hydrogen gas, and it is said that the dissolution of the metal does not proceed. [Problems to be Solved by the Invention] The present inventors have developed a method that dissolves the surface of steel metal in a short time and creates a beautiful appearance, contrary to the common wisdom that the underlying metal is hardly dissolved by conventional cathodic electrolytic treatment methods. As a result of many experiments and studies aimed at developing a cathodic electrolytic treatment method with specific properties, the objective was achieved by cathodic electrolysis in a pickling solution containing Cr +6 ions in an aqueous sulfuric acid solution. I found out that this happens. The present invention was constructed based on this knowledge, and its gist is that a steel metal is used as a cathode in an aqueous sulfuric acid solution containing 5 to 200 g of Cr +6 ions and a concentration of 100 to 600 g/. This is a cathodic electrolytic treatment method for steel metal in which a current density of 5 to 200 A/dm 2 is passed between anodes placed opposite to each other. [Means and effects for solving the problems] The present invention will be described in detail below. Carbon steel that has undergone heat treatment such as high-temperature working or annealing, as well as low alloy steel or stainless steel that contains one or more of strengthening elements such as Ni, Cr, and Mo, plasticity improving elements, and corrosion resistance improving elements. In order to dissolve and remove scale formed on the surface of steel metals such as special steel or adhered contamination, and to create a good pickled surface by melting an appropriate amount of the underlying metal, the process is carried out in a sulfuric acid aqueous solution containing Cr ions. Electrolytic treatment is performed using the steel metal as a cathode. 25wt% without carbon steel and Ni in sulfuric acid aqueous solution
The following ferrite stainless steels containing Cr are surface-cut by active melting in a natural immersion state. On the other hand, when austenitic stainless steel containing Ni is simply immersed in an aqueous sulfuric acid solution, active dissolution hardly progresses. However, according to the cathodic electrolytic treatment method of the present invention, the dissolution of all steel metals including austenitic stainless steel progresses under hydrogen gas generation conditions at the cathode in an aqueous sulfuric acid solution. The present inventors investigated the effect of cathodic electrolytic treatment in various acids such as hydrochloric acid and phosphoric acid aqueous solutions in addition to sulfuric acid aqueous solution, and confirmed that cathodic dissolution proceeds in any acid, but the amount of dissolution in sulfuric acid aqueous solution was It was confirmed that it was significantly smaller than that in the previous model and was therefore impractical. The details of the mechanism of significant cathodic dissolution in an aqueous sulfuric acid solution are not currently clear, but the present inventors believe that it is due to the progress of a chemically active dissolution reaction under cathodic current application. Compared to the solution generally used as a catholyte, which is made by adding sodium chloride, hydrochloric acid, etc. to sodium hydroxide, an aqueous sulfuric acid solution exhibits an excellent feature of dissolving metals at an extremely high rate. The effect in aqueous solution is not obtained at any concentration. Figure 1 shows SUS430 in sulfuric acid aqueous solution of various concentrations (temperature 80℃).
The figure shows a comparison of the dissolution depth of steel in an anodic electrolytic treatment section and a cathodic electrolysis treatment section when the steel is electrolytically pickled. At a thin concentration of less than 100g/, the depth of dissolution in the cathodic electrolytically treated area will not exceed that of the anodic electrolytically treated area, and at a concentration exceeding 600g/, excessive dissolution will occur, causing uneven dissolution in the form of pitting corrosion on the steel surface. death,
This makes it difficult to obtain a uniform surface quality and also becomes a factor in increasing costs. Therefore, in the present invention, the concentration of the sulfuric acid aqueous solution was set to 100 to 600 g/ml in order to obtain a homogeneous surface texture by melting the steel metal surface and preventing uneven dissolution in the form of pitting corrosion. Furthermore, the present invention includes sodium dichromate (Na 2 Cr 2 O 7 ), potassium dichromate (K 2 Cr 2 O 7 ),
In an aqueous solution of sulfuric acid such as chromic anhydride (CrO 3 )
Add a compound that generates Cr ions. In a sulfuric acid electrolyte solution containing Cr ions, Cr 6+ ions are reduced to Cr +3 ions in the cathode electrolytic treatment section, and electrons ( e - ) is consumed (Cr 6+ +3e - →Cr 3+ )
By doing so, it is possible to increase the dissolution rate of the metal, reduce the hydrogen generation reaction due to phosphorus segregated at the grain boundaries, prevent the generation of grain boundary microgrooves, and make it possible to produce a good surface quality. Figure 2 is 300g/
This shows the dissolution depth of the metal when SUS304 steel is cathodic electrolytically treated by adding various concentrations of Cr 6+ ions to a sulfuric acid aqueous solution (temperature 80°C) with a concentration of
When simply immersed in the electrolyte solution, no change is observed, but when subjected to cathodic electrolytic treatment, a remarkable depth of dissolution is observed. That is, the content of Cr 6+ ions limited in the present invention is within a range that can provide a remarkable cutting action on the surface of steel metal in a short time, and is a thin concentration of less than 5 g/ or a high concentration of more than 200 g/. That kind of effect cannot be expected. Furthermore, the present invention uses a sulfuric acid aqueous solution containing Cr 6+ ions to use a steel metal as a cathode, and a current density of 5 to
200A/dm 2 is applied. The current density accelerates the dissolution rate of steel metal, and as shown in Figure 3, the current density is 50 g/
Cathodic electrolysis treatment was performed for 60 seconds in a sulfuric acid aqueous solution containing Cr 6+ ions at a concentration of 300 g/80°C.
Indicates the cutting depth of SUS430 steel. i.e. 5A/ dm2
At a small current density below 200A/dm2, sufficient cathode cutting effect cannot be obtained, and at an excessively large current density exceeding 200A/ dm2 , the liquid temperature will rise rapidly due to solution resistance and the amount of cathode cutting will become saturated. It's coming. Therefore, in order to effectively perform cathodic electrolytic treatment and to control the temperature of the electrolytic solution, the current density should be set to 5~5.
It was set to 200A/ dm2 . The cathodic electrolytic treatment method for steel metal of the present invention as described above is carried out by any method such as a dipping method or a continuous method for steel metal. [Example] Carbon steel, SUS430 containing about 17% Cr,
When high Cr ferrite stainless steel and austenitic stainless steel SUS304 containing 23% are cathodicly melted at 80°C for 60 seconds, the melting depth is 10 g/Cr 6+ ion - 150 g/
Tables 1 and 2 for sulfuric acid, 100 g/of Cr +6 ions - 150 g/of sulfuric acid, 10 g/of Cr 6+ ions - 300 g/of sulfuric acid, 75 g/of Cr 6+ ions -
300g/sulfuric acid, 180g/Cr 6+ ion −300
Tables 3, 4 and 5 respectively for g/g of sulfuric acid and 15 g/Cr 6+ ions - 550 g/
of sulfuric acid, 175 g/g of Cr 6+ ions - 550 g/sulfuric acid are shown in Tables 6 and 7. Conventional simple immersion without cathode energization is effective against non-carbon steel.

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

【表】【table】

〔発明の効果〕〔Effect of the invention〕

本発明によれば、炭素鋼からフエライトステン
レス鋼およびオーステナイトステンレス鋼まです
べての鋼質金属の脱スケール処理を同一酸洗槽、
同一酸洗浴で実施することが出来るとともに単純
浸漬処理に比して2〜3倍の高速溶削が可能なこ
とから酸洗の前工程で発生した各種の表面疵の除
去を溶削量制御条件で行うことが出来る。さら
に、通常の硫酸水溶液中での自然浸漬法による脱
スケール酸洗時に発生する鋼中不純物リンの粒界
偏析に起因する粒界ミクログルーブの発生を防止
しうるとともに、硝ふつ酸酸洗時あるいは陽極部
で発生する粒界クロム欠乏層に起因する粒界ミク
ログループの発生も防止することが出来、外観性
の優れた光沢表面が得られる。
According to the present invention, descaling treatment of all steel metals from carbon steel to ferritic stainless steel and austenitic stainless steel can be carried out in the same pickling tank.
Since it can be carried out in the same pickling bath and can perform 2 to 3 times faster machining compared to simple immersion treatment, it is possible to remove various surface flaws generated in the pre-pickling process under the conditions of controlling the amount of machining. It can be done with Furthermore, it is possible to prevent the formation of grain boundary microgrooves caused by the grain boundary segregation of phosphorus, an impurity in steel, which occurs during descaling pickling by natural immersion in a normal sulfuric acid aqueous solution, and It is also possible to prevent the generation of grain boundary microgroups due to the grain boundary chromium-deficient layer that occurs in the anode portion, resulting in a glossy surface with excellent appearance.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はSUS430鋼の80℃の100〜600g/の
濃度の純硫酸溶液中における直流電流通電下の陽
極および陰極における60秒当りの金属溶解深さの
硫酸濃度依存性を示す図である。第2図は
SUS304鋼の80℃の300g/の濃度の硫酸溶液
中における自然浸漬および陰極通電下の60秒当り
の金属溶解深さのCr+6イオン濃度依存性を示す図
である。第3図はSUS430鋼の80℃の50g/の
Cr6+イオンを含有する300g/の濃度の硫酸溶
液中における60秒当りの陽極および陰極における
金属溶解深さの電流密度依存性を示す図である。
FIG. 1 is a diagram showing the dependence of the depth of metal dissolution per 60 seconds at the anode and cathode of SUS430 steel in a pure sulfuric acid solution at 80° C. with a concentration of 100 to 600 g/600 g per 60 seconds on the sulfuric acid concentration. Figure 2 is
FIG. 2 is a diagram showing the dependence of the metal dissolution depth per 60 seconds on the Cr +6 ion concentration during natural immersion and cathode current application in a sulfuric acid solution of 300 g/concentration at 80° C. for SUS304 steel. Figure 3 shows SUS430 steel of 50g/kg at 80℃.
FIG. 3 shows the current density dependence of the metal dissolution depth at the anode and cathode per 60 seconds in a sulfuric acid solution containing Cr 6+ ions at a concentration of 300 g/min.

Claims (1)

【特許請求の範囲】[Claims] 1 5〜200g/のCr6+イオンを含有する100〜
600g/の濃度の硫酸水溶液中で鋼質金属を陰
極とし、該陰極に対向して設けられた陽極との間
に電流密度5〜200A/dm2を通電して陰極溶解
することを特徴とする鋼質金属の陰極電解処理
法。
100~ containing 5~200g/Cr 6+ ions
A steel metal is used as a cathode in an aqueous solution of sulfuric acid with a concentration of 600 g/dm, and a current density of 5 to 200 A/dm 2 is passed between the cathode and an anode provided opposite to the cathode for cathodic dissolution. Cathodic electrolytic treatment method for steel metals.
JP14701188A 1988-06-16 1988-06-16 Electrolytic treatment of steely metal as cathode Granted JPH01316500A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14701188A JPH01316500A (en) 1988-06-16 1988-06-16 Electrolytic treatment of steely metal as cathode

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14701188A JPH01316500A (en) 1988-06-16 1988-06-16 Electrolytic treatment of steely metal as cathode

Publications (2)

Publication Number Publication Date
JPH01316500A JPH01316500A (en) 1989-12-21
JPH052760B2 true JPH052760B2 (en) 1993-01-13

Family

ID=15420532

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14701188A Granted JPH01316500A (en) 1988-06-16 1988-06-16 Electrolytic treatment of steely metal as cathode

Country Status (1)

Country Link
JP (1) JPH01316500A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0711080B2 (en) * 1990-02-21 1995-02-08 新日本製鐵株式会社 High-speed electrolytic melting method for steel metal
JP5891845B2 (en) * 2012-02-24 2016-03-23 Jfeスチール株式会社 Manufacturing method of surface-treated steel sheet

Also Published As

Publication number Publication date
JPH01316500A (en) 1989-12-21

Similar Documents

Publication Publication Date Title
JP2819378B2 (en) Pickling method for stainless steel
US3043758A (en) Process of electrolytically pickling alloy steels
Li et al. Pickling of austenitic stainless steels (a review)
JP2588646B2 (en) High speed pickling method for steel metal
US9580831B2 (en) Stainless steel pickling in an oxidizing, electrolytic acid bath
US5490908A (en) Annealing and descaling method for stainless steel
JP2002525429A (en) Electrolytic pickling method using nitric acid-free solution
CN1451058A (en) Continuous electrolytic pickling method for metallic products using alternate current suplied cells
JP6105167B2 (en) Pickling method of high chromium ferritic stainless cold rolled steel sheet
JPS6053776A (en) Crucible into which salt bath in which steel is treated by boron is entered
JPH0357196B2 (en)
JPH052760B2 (en)
JP3792335B2 (en) Finishing electrolytic pickling method in descaling of stainless steel strip
Covino et al. Pickling of Stainless Steels--a Review
JP2577619B2 (en) Method and apparatus for descaling alloy steel strip
JPH0474899A (en) Production of cold rolled ferritic stainless steel strip having excellent corrosion resistance
JP2002348700A (en) DESCALING METHOD FOR COLD-ROLLED AND ANNEALED Cr-BASED STAINLESS STEEL SHEET
JP2965423B2 (en) Pickling of ferritic stainless steel sheet containing high Cr
JPS6345480B2 (en)
KR100368207B1 (en) Electrolytic pickling solution for cold annealed austenitic stainless steel sheet
JP4037743B2 (en) Method for producing stainless steel with excellent surface gloss
JPS6054391B2 (en) How to pickle stainless steel
JP3799812B2 (en) Electrode alloys for electrolytic descaling
JPH0726233B2 (en) Cladded steel sheet and its continuous manufacturing method and apparatus
CN118028800A (en) High-temperature-resistant, color-changing and corrosion-resistant treatment method for stainless steel workpiece