JP3799812B2 - Electrode alloys for electrolytic descaling - Google Patents

Electrode alloys for electrolytic descaling Download PDF

Info

Publication number
JP3799812B2
JP3799812B2 JP09304998A JP9304998A JP3799812B2 JP 3799812 B2 JP3799812 B2 JP 3799812B2 JP 09304998 A JP09304998 A JP 09304998A JP 9304998 A JP9304998 A JP 9304998A JP 3799812 B2 JP3799812 B2 JP 3799812B2
Authority
JP
Japan
Prior art keywords
electrode
electrolysis
alloy
content
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09304998A
Other languages
Japanese (ja)
Other versions
JPH11286752A (en
Inventor
滋 木谷
透 松橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP09304998A priority Critical patent/JP3799812B2/en
Publication of JPH11286752A publication Critical patent/JPH11286752A/en
Application granted granted Critical
Publication of JP3799812B2 publication Critical patent/JP3799812B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Electrodes For Compound Or Non-Metal Manufacture (AREA)
  • Cleaning And De-Greasing Of Metallic Materials By Chemical Methods (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ステンレス鋼等の鋼材の電解脱スケールに用いる電解液中での溶解速度が小さく、硝酸電解液中でも使用できる電極用合金に関する。
【0002】
【従来の技術】
ステンレス鋼帯の製造過程において、冷間圧延後の鋼帯を軟化させるために加熱炉での焼鈍がおこなわれる。そして、この焼鈍によって生成したステンレス鋼表面の酸化スケールを除去するために酸洗等による脱スケール処理がおこなわれる。
【0003】
脱スケール方法はステンレス鋼の種類によっても異なり、例えばSUS304のようなオーステナイト系ステンレス鋼の場合は、溶融アルカリ塩浴浸漬処理または中性塩電解処理を施した後、硝ふっ酸浸漬処理する方法が一般的である。
溶融アルカリ塩浴浸漬処理は、水酸化ナトリウムや硝酸ナトリウムを主成分とする500℃程度の溶融塩浴中に浸漬する方法である。この処理によって、スケール中の酸化クロム(Cr23)がクロム酸ナトリウム(Na2CrO4)として溶け出すので、その後の硝ふっ酸酸洗による脱スケールが容易となる。
【0004】
また、中性塩電解処理は硫酸ナトリウム等の中性塩の水溶液中で電解する方法である。この電解によってスケール中の酸化クロムが重クロム酸イオン (Cr27 2-) として溶け出すので、その後の硝ふっ酸浸漬処理による脱スケールが容易となる。
【0005】
硝ふっ酸浸漬処理は、硝酸とふっ化水素酸の混酸中に浸漬する脱スケール方法である。この処理によって残存しているスケール直下のクロム欠乏層(比較的クロム濃度の低い金属層)が溶解し、スケールが鋼板の表面から剥離する。
【0006】
一方、SUS430のようなフェライト系ステンレス鋼の場合には、溶融アルカリ塩浴浸漬処理または中性塩電解処理を施した後、硝酸電解処理をおこなって脱スケールする方法が一般的である。硝酸電解処理は、硝酸水溶液中で電解する方法であり、この電解によって先におこなった溶融アルカリ塩浴浸漬処理または中性塩電解処理で溶け残った、鉄を主成分とする残存スケールが溶解するといわれている。
【0007】
これらの脱スケール方法の内、中性塩電解法と硝酸電解法はいずれも水溶液中で電解する方法である。
【0008】
図2は、工業的な間接通電電解装置を示す模式図である。この装置は、鋼帯1の進行方向に横並びに配置された上下対の正極2と負極3とを備えており、これら電極は電源4に接続されている。これら電極間を鋼帯1が通過する時に、電流が正極から鋼帯に流れ込み、鋼帯から負極へ流れ出る。従って、正極の近傍を通過する時には陰極電解、負極の近傍を通過する時には陽極電解が行われる。
【0009】
従来の正極や負極の材質は、珪素を15%程度含有する鋳鉄(以後、高珪素鋳鉄と呼ぶ)が一般的であったが、最近になって正極としてチタンに酸化イリジウム(IrO2) などを被覆した電極(以後、単にチタン電極と呼ぶ)が開発された。例えば、特開平3−267399号公報には、チタン電極を陽極(正極)として用い、ステンレス鋼帯を硝酸または硫酸水溶液中で電解酸洗する方法が開示されている。
【0010】
特開平5−295600号公報には、同じくチタン電極を陽極(正極)としてステンレス鋼帯を中性塩または硝酸水溶液中で電解する方法が開示されており、また特開平5−195294号公報にはチタン電極の作製方法が開示されている。
【0011】
高珪素鋳鉄は非常に脆いので、少しの衝撃でも破損することがある。また、電解による電極の溶解速度もかなり大きく消耗し易い。さらに、特殊な鋳造技術を要するため、電極の製作費が高い。
【0012】
一方、チタン電極は中性塩電解法の正極としては優れているが、硝酸電解法の場合には酸化イリジウム被覆膜が剥離しやすく、比較的寿命が短い。また、高価な貴金属やチタンを使用し、製作に要する時間が長く多くの工数を要するため、電極自体のコストが高くなる。
【0013】
【発明が解決しようとする課題】
本発明は、電解処理液中での溶解速度が小さく、硝酸電解液中でも使用できる安価な電解脱スケールに用いる電極用合金(正極材)を提供することを課題とする。
【0014】
【課題を解決するための手段】
電解脱スケールに用いる電極用合金に係わる本発明の要旨は下記の通りである。
【0015】
(1)重量%で、C:0.003〜0.5%、Si:5%以下、Mn:5%以下、Cr:1〜15%およびMo:0〜5%を含有し、残部Feおよび不可避的不純物からなる電解脱スケールに用いる電極用合金。
【0016】
(2)重量%で、C:0.003〜0.5%、Si:5%以下、Mn:5%以下、Cr:1〜15%、Mo:0〜5%およびNi:0.3〜5%を含有し、残部Feおよび不可避的不純物からなる電解脱スケールに用いる電極用合金。
【0017】
(3)上記(1)または(2)に記載の電極用合金において、Feの一部に替えて、重量%で、Ti:C×4〜2%、Nb:C×8〜4の1種または2種を含有する電解脱スケールに用いる電極用合金。
【0018】
本発明者らは、硝酸水溶液中での電解中および電解しないで電解液に浸漬している時にも溶解しにくい材質を開発すべく、実験によって種々検討した結果、下記の知見を得て本発明を完成するに至った。
【0019】
a)電極の材質として、鉄基Cr含有合金が適しているが、正極とし用いた場合のみにおいて、電解液による溶解速度が小さい。
【0020】
b)鉄基Cr含有合金では、Cr含有率が低いほど電解時における溶解減量が少なくなる。
【0021】
c)しかし、Crが1%未満と少なくなると、電解しないで電解液に浸漬されている間は電解減量が増加する。
【0022】
d)このようなことから、Cr含有量は1〜15%が適量であが、この量では電極の自重によるたわみや変形が生じるので、強度を高める必要がある。
【0023】
e)強度をたかめるには、C含有量を増やすかSi、Mn、Niを添加するのがよい。
【0024】
【発明の実施の形態】
以下、本発明の電極用合金の化学組成の限定理由を説明する。(以下、%は重量%とする)
C:
Cは、材料の強度に大きな影響を及ぼす成分であり、Cr等の他の成分との含有比率によっても異なるが、C含有率が高いほど強度が大きくなる。0.003未満の量では強度を高めることができなく、一方0.5%を超えると硬度が大きくなり、製造過程で割れ等のトラブルが発生しやすい。したがって、C含有量は0.003〜0.5%とした。
【0025】
一般に、C含有率が低くてCr含有率が高い場合には軟質のフェライト組織となり、成形加工は容易であるが強度が低くなる。従って、この場合には後述するSi、Mn、Niの1種以上を添加して強度を補う必要がある。逆に、C含有率が高くてCr含有率が低い場合には硬質のマルテンサイト組織となり、強度は上昇するが熱間加工性や冷間加工性が低下する傾向となる。したがって、適切な熱条件で焼きなまし処理したのち加工するのが好ましい。
【0026】
Si、Mn:SiおよびMnは、脱酸剤として添加される。また、これらの元素は、強度を高めたり、製鋼の過程で鋼中の酸化物を低減し、非金属介在物を少なくするのに役立ち、さらに電極を鋳造法で作る場、溶湯の流動性を高めて巣の発生を少なくする働きもする。C含有量を多くすることにより強度が確保できる場合は、0.3%未満でよい。しかし、C含有量を増量しないで強度を高める場合には0.3%以上にする必要がある。しかし、5%を超えると材質が脆くなり、製造時に割れが発生しやすい。
【0027】
Cr:
Crは、電極の溶解減量に直接影響を及ぼす成分であり、1%未満では電解をおこなわないで単に電解液に浸漬されている電極は溶解し易く、溶解減量が増加すると共に液面より上部で発銹する。一方電解時の溶解減量は15%を超えると急激に増加する。したがって、Crの含有量は1〜15%が好適な範囲であり、さらに好ましくは3〜10%である。
【0028】
図1は、Cr含有率の異なる鉄基合金を正極、白金を負極として硝酸水溶液で電解し、正極の溶解減量を調べた結果を示す図である。
【0029】
同図の実線で示す曲線から明らかなように、合金中のCr含有量が低いほど電解中の溶解減量が少なくなる。このように、Cr含有量が高い方が溶解減量が多くなる理由は、電解中の正極表面の電位がいわゆる過不動態電位域にあるために、Crが6価クロムとして溶解するものと推測される。また、図1の点線で示す曲線から明らかなように、電解しないで単に電解液に浸漬されている間の溶解減量は、Cr含有率が小さいほど大きくなる。
【0030】
Mo:
Moは、耐食性を高める効果があり必要により添加する。しかし、Moは高価であるうえ、含有量が多くなると製造時に割れが発生しやすいので上限を5%とした。耐食性を高める場合0.01%以上含有させるのが好ましい。
【0031】
Ni:
Niは、強度や耐食性を高める働きをし、必要により含有させる。それらの効果を得るためには0.3%以上が必要である。一方5%を超えると製造時に割れが発生しやすい。したがって、Ni含有量は0.3〜5%とした。
【0032】
Ti:
Tiは、鋼中で炭化物を形成する性質が強く、溶接の熱影響部でCrが炭化物を作って鋭敏化する(すなわち、Cr炭化物の近傍の鋼中Cr濃度が低下して耐食性が劣化する)のを防止する働きがあるので必要により含有させる。ただし、C含有量が多いとTi添加の効果が十分現れないので、溶接によって電極を組み立てる場合の電極材はC含有量を少な目にする(具体的には、C≦0.1%)のが望ましい。Tiの含有量はC含有量の4倍以上が必要であるが、2%を超えると鋼中の非金属介在物が多くなり、溶接強度も劣化する。したがって、Tiを含有させる場合の含有量を4×C〜2%とした。
【0033】
Nb:
Nbは、Tiと同様に鋼中で炭化物を作る性質が強く、溶接の熱影響部でCrが炭化物を作って鋭敏化するのを防止する働きがあるので、必要により含有させる。ただし、C含有率があまりに高いとNb添加の効果が十分現れないので、溶接によって電極を組み立てる場合の電極材はC含有量を少な目にする(具体的には、C≦0.1%)のが望ましい。Nbの添加量はC含有率の8倍以上が必要であるが、4%を超えると硬度の上昇が著しくなり、電極製造時の割れ等のトラブルが発生しやすい。
【0034】
本発明の電極用合金のより具体的な組成例としては、電極を溶接によって組み立てる場合には、C:0.1%以下、Si:5%以下、Mn:5%以下、Cr:3〜10%、Ni:5%以下、Mo:5%以下、Ti:4×C〜2%または/およびNb:8×C〜4%(ただし、TiとNbの両方を添加する場合はNbの含有率の半分とTi含有率の和が4×C〜2%の範囲に入るようにする)が推奨される。ただし、NiとMoは必ずしも添加する必要はなく、SiとMnは上記の範囲内で添加することが望ましい。
【0035】
また、電極を溶接ではなく、ボルトやナットを用いて組み立てたり、直接鋳込むことによって製作する場合には、C:0.5%以下、Si:5%以下、Mn:5%以下、Cr:3〜10%を含有し、必要に応じてNi:5%以下、Mo:5%以下を添加したものが推奨される。
【0036】
なお、C含有率が比較的高い場合には、SiやMnの含有率を0.3%未満に低めてもよい。
【0037】
本発明の電解脱スケールに用いる電極用合金はステンレス鋼や炭素鋼と同様な方法で製造できる。すなわち、材料としては合金鉄やスクラップを用い、電気炉でこれらを溶解、精錬して鋳造することにより合金が得られる。溶湯を鋳込んで電極とするか、溶湯を鋼塊またはスラブに鋳造した後、これらを熱間圧延して板状とし、所望の強度が得られるように熱処理したのち、酸洗等により表面の酸化スケールを除去し、機械加工、溶接等により電極に加工する。
【0038】
図3は、間接通電電解用電極の模式図で、図3(a)は平面図、同(b)は断面図(通板方向に対して直角方向の断面)である。上電極5と下電極6とが所定の間隔を置いて図示しない電解槽中に配置される。電極は給電端子8から給電され、電極の間を鋼帯9が通過して電解される。
【0039】
電極の組み立てにおいては、自重によるたわみや変形をより完全に防ぐために通常、補強板7などを取り付けるのが好ましい。また、例えば板厚が10〜30mmのようなかなり厚い材料を使用する場合にはL型の屈曲部を1枚の板を曲げて作るのは難しいので、何枚かの板をつなぎ合わせるのが好ましい。このような板の接続や補強板の取り付け方法としては溶接が最も確実で推奨される。ボルトやナットを用いてもよいが、接続部の接触抵抗が大きくならないように十分に締め付け、使用に伴う腐食等による接触抵抗増加にも注意する必要がある。
【0040】
また、上述のように電極を直接、鋳造によって作ることも可能であるが、この場合にはいわゆる巣と呼ばれる鋳造欠陥ができないように注意する必要がある。なお、鋳造法で電極を作る場合には、比較的Si含有率の高い組成の材料が鋳造欠陥を少なくする上で望ましい。
【0041】
本発明の電極用合金は、硝酸電解の正極に使用することを目的として開発されたものである。したがって、例えば硝酸電解の負極に使用した場合には、溶解減量が非常に大きくなる。また、硫酸中で正極として使用した場合には硝酸中での使用に比べて3〜倍の溶解速度となることが多いが、それでも従来の高珪素鋳鉄より少し溶解速度が小さい傾向にある。したがって、本発明の合金は硫酸電解液に対しても有効である。
【0042】
また、中性塩電解法のように中性の塩類水溶液中で電解する場合には正極または負極として使用することができる。
【0043】
本発明の合金を硝酸電解の正極として用いる場合の硝酸の濃度および温度は厳密に限定されるものではないが、濃度が3%未満では硝酸電解に伴う硝酸の消耗を頻繁に補給する必要があって作業上不便である。また、50%を超えると硝酸ヒュームの発生が多くなって作業環境上好ましくないので、3〜50%が好適な濃度範囲である。電解液の温度は、10℃未満では硝酸電解の反応が遅く、80℃を超えるとヒュームの発生が多くなるので、10〜80℃が好適な温度範囲である。
【0044】
【実施例】
(実施例1)
表1に示す化学組成の37種類の本発明例の合金、および表2に示す11種類の比較例の合金を30Kg真空溶解炉を用いて、厚さ100mm、幅120mmの鋼塊を溶製した。これらを熱間鍛造により、厚さ30mmの板状とし、さらに熱間圧延により厚さ10mmの板を製作し た。さらに、溶体化熱処理後、表層1mm(両面)を機械切削により除去して厚さ8mmとした。これらより、40×50mmの大きさの溶解試験片を機械加工により切り出し、40×50mmの大きさの試験面に粗さ600番の研磨紙で湿式研磨を施した後、裏面にステンレス鋼製のリード線を溶接した。
【0045】
【表1】

Figure 0003799812
【0046】
【表2】
Figure 0003799812
【0047】
試験面以外の裏面、端面およびリード線を非電導性樹脂で被覆したものを用いて、溶解速度を調べるための試験を行った。
【0048】
試験溶液として50℃、15%HN03および50℃、20%H2SO4を用い、陽極電解時間を30分間、浸漬時間を60分間とした。
【0049】
また、陽極電解は試験片のリード線を定電流電解装置の正端子に接続し、対極の白金板(大きさ40×50mm)を負端子に接続して、電流密度が200mA/cm2となるように制御しながら行った。
【0050】
電解時間30分間と浸漬時間60分間におけるそれぞれの溶解速度を調べた。なお、溶解速度は試験前後の試験片の重量差から算出した。これらの試験結果を表3および表4に示す。
【0051】
【表3】
Figure 0003799812
【0052】
【表4】
Figure 0003799812
【0053】
なお、比較合金のうち、NO.40〜44、46および48は熱間圧延時に長さ10〜50mmの割れが発生したので、それを表4中に併記した。
【0054】
表3および表4から明らかなように、50℃、15%HNO3 中での本発明合金の浸漬時の溶解速度は37g/m2/h 以下であるのに対して、Cr含有率が1%未満の比較合金(NO.38)は浸漬による溶解速度が 102g/m2/hと大きい。また、陽極電解時における溶解速度は、本発明の合金では57g/m2/h以下 であるのに対し、Cr含有率が15%を超える比較合金(NO.39)は160g/m2/hと大きい。
【0055】
また、同じ条件で試験したNO.49の高珪素鋳鉄の溶解速度は陽極電解時が163g/m2/h、浸漬時が85g/m2/hであるから、いずれも本発明合金の溶解速度より大幅に大きい。一方、50℃、20%H2SO4中での本発明合金の浸漬時の溶解速度は172g/m2/h 以下であるのに対して、Cr含有率が1%未満の比較合金(NO.38)は浸漬による溶解速度が 365g/m2/hと大きく、Cr含有率が15%を超える比較合金(NO.39)は電解による溶解速度が350g/m2/hと大きい。
【0056】
同じ条件で試験した高珪素鋳鉄の溶解速度は陽極電解時が202g/m2/h、浸漬時が180g/m2/h であるから、いずれも本発明の合金の溶解速度より大きい。
【0057】
なお、比較合金のうち、NO.45およびNO.47は上記の試験では本発明の合金と同レベルの溶解速度を示したが、次の実施例2に示すように、溶接を施した試験片による試験では粒界腐食が発生した。また、上記の硝酸および硫酸水溶液以外に、中性塩水溶液として、70℃、20%Na2SO4を用い、電流密度を200mA/cm2 として電解実験を行った結果、本発明合金は正極または負極のいずれに使用しても溶解速度が10g/m2/h 未満であり、浸漬のみの場合の溶解速度も10g/m2/h未満であることを確認した。
【0058】
(実施例2)
表1の供試材のうち、NO.19〜37の本発明の合金およびNO.45および47の比較合金につき、中央部に突き合わせ溶接部を有する40×60mmの大きさ(厚さ8mm)の溶解試験片を作製し、実施例1と同様に50℃、15%HNO3 中で60分間陽極電解した。その結果、本発明の合金は電解による肉減りが認められたのみであったが、NO.45および47の比較合金は中央部の突き合わせ溶接部が粒界腐食して破断した。
【0059】
(実施例3)
表1の供試材のうち、NO.2、3、20および21の本発明の合金の試験片(大きさ40×50mm、リード線付き)を作製し、比較材として特開平5−195294号公報の実施例で開示されている方法に従って、IrO2 被覆Ti電極(電解面の大きさ40×50mm、リード線付き)を製作した。これらを正極、白金板(大きさ40×50mm)を負極として60℃、20%HNO3 中で電流密度を200mA/cm2 に制御しながら1000時間、連続電解した。その結果、比較材のIrO2被覆Ti電極は約2時間の電解によりIrO2被覆層が剥離して表面の電気抵抗が急増し、電解不能となった。これに対して本発明合金の試験片は1000時間の電解により約5〜6mmの肉減りは認められたが、電気抵抗は電解中ほとんど変化無く、安定した電解が可能であった。
【0060】
【発明の効果】
本発明の合金を用いた電極は、ステンレス鋼などの電解脱スケールに用いた際の電解液による溶解速度が小さい。また、電極の交換頻度が大幅に減少し、作業能率向上や生産コスト削減が達成されるなど、工業的価値が大きい。
【図面の簡単な説明】
【図1】硝酸水溶液中での陽極電解または浸漬による溶解速度とCr含有量の関係を示す図である。
【図2】間接通電電解装置の模式図である。
【図3】間接通電電解用電極の模式図である。
【符号の説明】
5 上電極
6 下電極
7 補強板
8 給電端子
9 鋼帯[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode alloy that has a low dissolution rate in an electrolytic solution used for electrolytic descaling of a steel material such as stainless steel and can be used in a nitric acid electrolytic solution.
[0002]
[Prior art]
In the manufacturing process of the stainless steel strip, annealing in a heating furnace is performed in order to soften the steel strip after cold rolling. And in order to remove the oxide scale of the stainless steel surface produced | generated by this annealing, the descaling process by pickling etc. is performed.
[0003]
The descaling method varies depending on the type of stainless steel. For example, in the case of an austenitic stainless steel such as SUS304, there is a method in which a molten alkali salt bath immersion treatment or a neutral salt electrolytic treatment is performed, followed by a nitric hydrofluoric acid immersion treatment. It is common.
The molten alkali salt bath immersion treatment is a method of immersing in a molten salt bath of about 500 ° C. containing sodium hydroxide or sodium nitrate as a main component. By this treatment, chromium oxide (Cr 2 O 3 ) in the scale dissolves out as sodium chromate (Na 2 CrO 4 ), so that descaling by subsequent nitric hydrofluoric acid pickling is facilitated.
[0004]
The neutral salt electrolysis is a method of electrolysis in an aqueous solution of a neutral salt such as sodium sulfate. As a result of this electrolysis, chromium oxide in the scale dissolves out as dichromate ions (Cr 2 O 7 2− ), so that descaling by the subsequent nitric hydrofluoric acid immersion treatment is facilitated.
[0005]
The nitric hydrofluoric acid dipping treatment is a descaling method of dipping in a mixed acid of nitric acid and hydrofluoric acid. By this treatment, the remaining chromium-deficient layer (metal layer having a relatively low chromium concentration) immediately below the scale is dissolved, and the scale is separated from the surface of the steel sheet.
[0006]
On the other hand, in the case of a ferritic stainless steel such as SUS430, a method of descaling by performing a molten alkali salt bath immersion treatment or a neutral salt electrolytic treatment and then performing a nitric acid electrolytic treatment is common. Nitric acid electrolysis is a method of electrolysis in an aqueous nitric acid solution, and when the residual scale containing iron as a main component dissolved in the molten alkali salt bath immersion treatment or neutral salt electrolysis treatment previously performed by this electrolysis dissolves. It is said.
[0007]
Among these descaling methods, the neutral salt electrolysis method and the nitric acid electrolysis method are both electrolysis methods in an aqueous solution.
[0008]
FIG. 2 is a schematic diagram showing an industrial indirect current electrolysis apparatus. The apparatus includes a pair of upper and lower positive electrodes 2 and 3 arranged side by side in the traveling direction of the steel strip 1, and these electrodes are connected to a power source 4. When the steel strip 1 passes between these electrodes, a current flows from the positive electrode to the steel strip and flows out from the steel strip to the negative electrode. Accordingly, cathodic electrolysis is performed when passing near the positive electrode, and anodic electrolysis is performed when passing near the negative electrode.
[0009]
Conventionally, the material of the positive electrode and the negative electrode is generally cast iron containing about 15% of silicon (hereinafter referred to as high silicon cast iron). Recently, iridium oxide (IrO 2 ) or the like is used as the positive electrode for titanium. Coated electrodes (hereinafter simply referred to as titanium electrodes) have been developed. For example, JP-A-3-267399 discloses a method of electrolytic pickling using a titanium electrode as an anode (positive electrode) and a stainless steel strip in nitric acid or sulfuric acid aqueous solution.
[0010]
Japanese Patent Laid-Open No. 5-295600 discloses a method of electrolyzing a stainless steel strip in a neutral salt or nitric acid aqueous solution, similarly using a titanium electrode as an anode (positive electrode), and Japanese Patent Laid-Open No. 5-195294. A method for producing a titanium electrode is disclosed.
[0011]
High silicon cast iron is so brittle that it can be damaged by a slight impact. Also, the dissolution rate of the electrode by electrolysis is considerably large and is easily consumed. Furthermore, since a special casting technique is required, the production cost of the electrode is high.
[0012]
On the other hand, the titanium electrode is excellent as a positive electrode for the neutral salt electrolysis method, but in the case of the nitric acid electrolysis method, the iridium oxide coating film is easily peeled off and has a relatively short life. Moreover, since expensive precious metals and titanium are used and the time required for production is long and a lot of man-hours are required, the cost of the electrode itself is increased.
[0013]
[Problems to be solved by the invention]
It is an object of the present invention to provide an electrode alloy (positive electrode material) for use in inexpensive electrolytic descaling that has a low dissolution rate in an electrolytic treatment solution and can be used in a nitric acid electrolytic solution.
[0014]
[Means for Solving the Problems]
The gist of the present invention relating to the electrode alloy used for electrolytic descaling is as follows.
[0015]
(1) By weight%, C: 0.003 to 0.5%, Si: 5% or less , Mn: 5% or less , Cr: 1 to 15% and Mo: 0 to 5%, the balance Fe and Electrode alloy used for electrolytic descaling consisting of inevitable impurities.
[0016]
(2) By weight, C: 0.003 to 0.5%, Si: 5% or less, Mn: 5% or less, Cr: 1 to 15%, Mo: 0 to 5% and Ni: 0.3 to An alloy for electrodes used for electrolytic descaling containing 5% and the balance Fe and inevitable impurities.
[0017]
(3) In the electrode alloy according to the above (1) or (2), in place of a part of Fe, by weight%, Ti: C × 4 to 2%, Nb: C × 8 to 4 Or the alloy for electrodes used for the electrolytic descaling containing 2 types.
[0018]
As a result of various studies by experiments to develop a material that is difficult to dissolve even when immersed in an electrolytic solution without and during electrolysis in an aqueous nitric acid solution, the present inventors obtained the following knowledge and obtained the present invention. It came to complete.
[0019]
As the material of a) the electrode, but the iron-based Cr-containing alloy is suitable only in the case of using as a positive electrode, a small dissolution rate by the electrolyte.
[0020]
b) In an iron-based Cr-containing alloy, the lower the Cr content, the lower the dissolution loss during electrolysis.
[0021]
c) However, when Cr is less than 1%, the electrolytic weight loss increases while being immersed in the electrolytic solution without electrolysis.
[0022]
d) For this reason, although the Cr content is Ru qs der from 1 to 15%, and in this amount since bending or deformation due to its own weight of the electrode occurs, it is necessary to increase the strength.
[0023]
e) In order to increase the strength, it is preferable to increase the C content or add Si, Mn and Ni.
[0024]
DETAILED DESCRIPTION OF THE INVENTION
The reason for limiting the chemical composition of the electrode alloy of the present invention will be described below. (Hereinafter,% is weight%)
C:
C is a component that has a great influence on the strength of the material, and differs depending on the content ratio with other components such as Cr, but the strength increases as the C content increases. If the amount is less than 0.003, the strength cannot be increased. On the other hand, if it exceeds 0.5%, the hardness increases, and troubles such as cracks are likely to occur during the production process. Therefore, the C content is set to 0.003 to 0.5%.
[0025]
In general, when the C content is low and the Cr content is high, a soft ferrite structure is formed, and the forming process is easy but the strength is low. Therefore, in this case, it is necessary to supplement the strength by adding one or more of Si, Mn, and Ni described later. On the contrary, when the C content is high and the Cr content is low, a hard martensite structure is formed, and the strength increases, but the hot workability and the cold workability tend to decrease. Therefore, it is preferable to perform processing after annealing under appropriate heat conditions.
[0026]
Si, Mn: Si and Mn are added as deoxidizers. Further, these elements, to enhance the strength, to reduce the oxides in the steel during steelmaking, helps to reduce non-metallic inclusions, if further making electrodes in casting, molten metal fluidity It also works to increase nest and reduce nest generation. If the strength can be ensured by increasing the C content, it may be less than 0.3%. However, when increasing the strength without increasing the C content, it is necessary to be 0.3% or more. However, if it exceeds 5%, the material becomes brittle and cracks are likely to occur during production.
[0027]
Cr:
Cr is a component that directly affects the dissolution loss of the electrode. If it is less than 1%, the electrode simply immersed in the electrolytic solution without electrolysis is easily dissolved, and the dissolution loss increases and above the liquid level. Start. On the other hand , the dissolution loss during electrolysis increases rapidly when it exceeds 15%. Therefore, the Cr content is preferably in the range of 1 to 15%, more preferably 3 to 10%.
[0028]
FIG. 1 is a graph showing the results of electrolysis with an aqueous nitric acid solution using iron-based alloys having different Cr contents as positive electrodes and platinum as negative electrodes, and examining dissolution loss of the positive electrodes.
[0029]
As is clear from the curve shown by the solid line in the figure, the lower the Cr content in the alloy, the lower the dissolution loss during electrolysis. As described above, the reason why the dissolution loss increases when the Cr content is high is presumed that Cr is dissolved as hexavalent chromium because the potential of the positive electrode surface during electrolysis is in a so-called transpassive potential region. The Further, as is apparent from the curve shown by the dotted line in FIG. 1, the dissolution loss while being immersed in the electrolytic solution without electrolysis increases as the Cr content decreases.
[0030]
Mo:
Mo has the effect of increasing the corrosion resistance and is added if necessary. However, Mo is expensive, and if the content increases, cracks are likely to occur during production, so the upper limit was made 5%. When improving corrosion resistance, it is preferable to make it contain 0.01% or more.
[0031]
Ni:
Ni functions to increase strength and corrosion resistance, and is contained if necessary. In order to obtain these effects, 0.3% or more is necessary. On the other hand, if it exceeds 5%, cracks are likely to occur during production. Therefore, the Ni content is set to 0.3 to 5%.
[0032]
Ti:
Ti has a strong property of forming carbides in steel, and Cr forms carbides in the heat-affected zone of welding and sensitizes them (that is, the Cr concentration in steel near Cr carbides decreases and corrosion resistance deteriorates). Since it has a function to prevent this, it is contained if necessary. However, since the effect of Ti addition does not appear sufficiently when the C content is large, the electrode material when assembling the electrode by welding has a low C content (specifically, C ≦ 0.1%). desirable. The Ti content needs to be at least 4 times the C content, but if it exceeds 2%, nonmetallic inclusions in the steel increase and the welding strength also deteriorates. Therefore, the content when Ti is contained is set to 4 × C to 2%.
[0033]
Nb:
Nb, as well as Ti, has a strong property of forming carbides in steel, and has a function of preventing Cr from forming carbides and sensitizing in the heat-affected zone of welding, so Nb is contained as necessary. However, if the C content is too high, the effect of Nb addition does not appear sufficiently, so the electrode material when assembling the electrode by welding has a low C content (specifically, C ≦ 0.1%). Is desirable. The addition amount of Nb needs to be 8 times or more of the C content. However, if it exceeds 4%, the hardness is remarkably increased, and troubles such as cracks during electrode production are likely to occur.
[0034]
As a more specific composition example of the electrode alloy of the present invention, when the electrode is assembled by welding, C: 0.1% or less, Si: 5% or less, Mn: 5% or less, Cr: 3 to 10 %, Ni: 5% or less, Mo: 5% or less, Ti: 4 × C to 2% or / and Nb: 8 × C to 4% (however, when both Ti and Nb are added, the content of Nb Is recommended to be in a range of 4 × C to 2%). However, Ni and Mo are not necessarily added, and Si and Mn are preferably added within the above range.
[0035]
Further, when the electrode is manufactured by using bolts and nuts instead of welding, or by directly casting, C: 0.5% or less, Si: 5% or less, Mn: 5% or less, Cr: It is recommended to contain 3 to 10%, and if necessary, Ni: 5% or less and Mo: 5% or less added.
[0036]
In addition, when the C content is relatively high, the content of Si or Mn may be lowered to less than 0.3%.
[0037]
The electrode alloy used for the electrolytic descaling of the present invention can be produced by the same method as stainless steel or carbon steel. That is, an alloy can be obtained by using iron alloy or scrap as a material and melting and refining these in an electric furnace and casting. After casting the molten metal into an electrode or casting the molten metal into a steel ingot or slab, these are hot-rolled into a plate shape, heat-treated to obtain the desired strength, and then pickled, etc. The oxide scale is removed and the electrode is processed by machining or welding.
[0038]
3A and 3B are schematic views of an electrode for indirect energization electrolysis, in which FIG. 3A is a plan view and FIG. 3B is a cross-sectional view (a cross section in a direction perpendicular to the sheet passing direction). The upper electrode 5 and the lower electrode 6 are disposed in an electrolytic cell (not shown) at a predetermined interval. The electrodes are fed from the feed terminal 8, and the steel strip 9 passes between the electrodes and is electrolyzed.
[0039]
In assembling the electrode, it is usually preferable to attach a reinforcing plate 7 or the like in order to prevent deflection and deformation due to its own weight more completely. Also, for example, when using a fairly thick material such as a plate thickness of 10 to 30 mm, it is difficult to make an L-shaped bent part by bending a single plate, so it is necessary to connect several plates together. preferable. Welding is the most reliable and recommended method for connecting such plates and attaching reinforcing plates. Bolts and nuts may be used, but it is necessary to tighten them sufficiently so that the contact resistance of the connecting portion does not increase, and to pay attention to increase in contact resistance due to corrosion, etc. associated with use.
[0040]
Further, as described above, it is possible to make the electrode directly by casting, but in this case, care must be taken so as not to cause a casting defect called a nest. In addition, when producing an electrode by a casting method, a material having a composition having a relatively high Si content is desirable in order to reduce casting defects.
[0041]
The electrode alloy of the present invention has been developed for use in a positive electrode for nitric acid electrolysis. Therefore, for example, when used in a negative electrode for nitric acid electrolysis, the dissolution weight loss becomes very large. Further, when used as a positive electrode in sulfuric acid, the dissolution rate is often 3 to 3 times that in nitric acid, but the dissolution rate tends to be slightly lower than that of conventional high silicon cast iron. Therefore, the alloy of the present invention is also effective for sulfuric acid electrolyte.
[0042]
Moreover, when electrolyzing in neutral salt aqueous solution like the neutral salt electrolysis method, it can be used as a positive electrode or a negative electrode.
[0043]
The concentration and temperature of nitric acid when the alloy of the present invention is used as a positive electrode for nitric acid electrolysis are not strictly limited. However, if the concentration is less than 3%, it is necessary to frequently replenish nitric acid consumption due to nitric acid electrolysis. It is inconvenient for work. Moreover, since generation | occurrence | production of nitric acid fumes will increase when it exceeds 50% and it is unpreferable on a working environment, 3 to 50% is a suitable density | concentration range. When the temperature of the electrolytic solution is less than 10 ° C., the reaction of nitric acid electrolysis is slow, and when it exceeds 80 ° C., the generation of fumes increases. Therefore, 10 to 80 ° C. is a suitable temperature range.
[0044]
【Example】
Example 1
A steel ingot having a thickness of 100 mm and a width of 120 mm was melted by using a 30 kg vacuum melting furnace for 37 kinds of alloys of the present invention having chemical compositions shown in Table 1 and 11 kinds of alloys of Comparative Examples shown in Table 2. . These were hot forged to form a plate having a thickness of 30 mm, and a plate having a thickness of 10 mm was manufactured by hot rolling. Furthermore, after the solution heat treatment, the surface layer 1 mm (both sides) was removed by mechanical cutting to a thickness of 8 mm. From these, a dissolution test piece having a size of 40 × 50 mm was cut out by machining, and wet-polishing was performed on the test surface having a size of 40 × 50 mm with abrasive paper having a roughness No. 600, and then the back surface was made of stainless steel. The lead wire was welded.
[0045]
[Table 1]
Figure 0003799812
[0046]
[Table 2]
Figure 0003799812
[0047]
A test for investigating the dissolution rate was performed using a back surface other than the test surface, an end surface and a lead wire covered with a non-conductive resin.
[0048]
50 ° C., 15% HN 0 3 and 50 ° C., 20% H 2 SO 4 were used as test solutions, the anodic electrolysis time was 30 minutes, and the immersion time was 60 minutes.
[0049]
In anodic electrolysis, the lead wire of the test piece is connected to the positive terminal of the constant current electrolysis apparatus, and the counter electrode platinum plate (size 40 × 50 mm) is connected to the negative terminal, resulting in a current density of 200 mA / cm 2. Was performed while controlling.
[0050]
Each dissolution rate was examined for an electrolysis time of 30 minutes and an immersion time of 60 minutes. The dissolution rate was calculated from the weight difference between the test pieces before and after the test. These test results are shown in Tables 3 and 4.
[0051]
[Table 3]
Figure 0003799812
[0052]
[Table 4]
Figure 0003799812
[0053]
Of the comparative alloys, NO. In Nos. 40 to 44, 46 and 48, cracks having a length of 10 to 50 mm occurred during hot rolling, and these were also shown in Table 4.
[0054]
As apparent from Tables 3 and 4, the dissolution rate of the alloy of the present invention when immersed in 50 ° C. and 15% HNO 3 is 37 g / m 2 / h or less, whereas the Cr content is 1 % Comparative alloy (NO.38) has a large dissolution rate by immersion of 102 g / m 2 / h. The dissolution rate during anodic electrolysis is 57 g / m 2 / h or less for the alloy of the present invention, whereas 160 g / m 2 / h for the comparative alloy (NO. 39) with a Cr content exceeding 15%. And big.
[0055]
In addition, NO. High silicon dissolution rate is anodic electrolysis time is 163g / m 2 / h of cast iron 49, because during immersion is 85g / m 2 / h, both much larger than the dissolution rate of the present invention alloys. On the other hand, the dissolution rate during immersion of the alloy of the present invention in 50 ° C. and 20% H 2 SO 4 is 172 g / m 2 / h or less, whereas the comparative alloy having a Cr content of less than 1% (NO .38) greater dissolution rate by immersion is a 365g / m 2 / h, compared alloy Cr content exceeds 15% (NO.39) is greater speed dissolution by electrolytic and 350g / m 2 / h.
[0056]
Since the dissolution rate of the high-silicon cast iron tested under the same conditions anodic electrolysis time is 202g / m 2 / h, during immersion is 180g / m 2 / h, is greater than the dissolution rate of the alloy of any invention.
[0057]
Of the comparative alloys, NO. 45 and NO. 47 showed the same level of dissolution rate as the alloy of the present invention in the above test, but as shown in Example 2 below, intergranular corrosion occurred in the test using the welded test piece. In addition to the above nitric acid and sulfuric acid aqueous solutions, as a neutral salt aqueous solution, 70 ° C., 20% Na 2 SO 4 was used, and the current density was 200 mA / cm 2. It was confirmed that the dissolution rate was less than 10 g / m 2 / h when used for any of the negative electrodes, and the dissolution rate in the case of immersion alone was also less than 10 g / m 2 / h.
[0058]
(Example 2)
Of the test materials in Table 1, NO. 19-37 alloys of the present invention and NO. For the comparative alloys 45 and 47, 40 × 60 mm (8 mm thick) dissolution test pieces having a butt weld at the center were prepared, and in the same manner as in Example 1, in 50 ° C. and 15% HNO 3 . Anodized for 60 minutes. As a result, the thickness of the alloy of the present invention was only recognized by electrolysis. The comparative alloys of 45 and 47 were fractured due to intergranular corrosion at the center butt weld.
[0059]
Example 3
Of the test materials in Table 1, NO. Test specimens (size 40 × 50 mm, with lead wires) of the alloys of the present invention of 2, 3, 20 and 21 were prepared, and in accordance with the method disclosed in the example of JP-A-5-195294 as a comparative material. An IrO 2 -coated Ti electrode (electrolytic surface size 40 × 50 mm, with lead wire) was manufactured. These were subjected to continuous electrolysis for 1000 hours while controlling the current density at 200 mA / cm 2 at 60 ° C. and 20% HNO 3 using a positive electrode and a platinum plate (size: 40 × 50 mm) as a negative electrode. As a result, the IrO 2 -coated Ti electrode as a comparative material peeled off the IrO 2 coating layer by electrolysis for about 2 hours, and the electrical resistance of the surface increased rapidly, making electrolysis impossible. In contrast, the test piece of the alloy of the present invention showed a thickness reduction of about 5 to 6 mm after 1000 hours of electrolysis, but the electrical resistance hardly changed during electrolysis, and stable electrolysis was possible.
[0060]
【The invention's effect】
An electrode using the alloy of the present invention has a low dissolution rate by an electrolytic solution when used for electrolytic descaling of stainless steel or the like. Moreover, the frequency of electrode replacement is greatly reduced, and the industrial efficiency is great, such as improvement of work efficiency and reduction of production cost.
[Brief description of the drawings]
FIG. 1 is a graph showing the relationship between the dissolution rate by anodic electrolysis or immersion in an aqueous nitric acid solution and the Cr content.
FIG. 2 is a schematic diagram of an indirect energization electrolysis apparatus.
FIG. 3 is a schematic view of an electrode for indirect energization electrolysis.
[Explanation of symbols]
5 Upper electrode 6 Lower electrode 7 Reinforcing plate 8 Feeding terminal 9 Steel strip

Claims (3)

重量%で、C:0.003〜0.5%、Si:5%以下、Mn:5%以下、Cr:1〜15%およびMo:0〜5%を含有し、残部Feおよび不可避的不純物からなる電解脱スケールに用いる電極用合金。In weight percent, C: 0.003 to 0.5%, Si: 5% or less , Mn: 5% or less , Cr: 1-15% and Mo: 0-5%, the balance Fe and inevitable impurities An electrode alloy used for electrolytic descaling. 重量%で、C:0.003〜0.5%、Si:5%以下、Mn:5%以下、Cr:1〜15%、Mo:0〜5%およびNi:0.3〜5%を含有し、残部Feおよび不可避的不純物からなる電解脱スケールに用いる電極用合金。C: 0.003-0.5%, Si: 5% or less, Mn: 5% or less, Cr: 1-15%, Mo: 0-5% and Ni: 0.3-5% by weight% An electrode alloy that is used for electrolytic descaling and containing the balance Fe and inevitable impurities. 請求項1または2記載の電極用合金において、Feの一部に替えて、重量%でTi:4×C〜2%、Nb:8×C〜4%の1種または2種を含有する電解脱スケールに用いる電極用合金。  3. The electrode alloy according to claim 1, wherein, instead of a part of Fe, an electrode containing one or two of Ti: 4 × C to 2% and Nb: 8 × C to 4% by weight. Alloy for electrodes used for detachment scale.
JP09304998A 1998-04-06 1998-04-06 Electrode alloys for electrolytic descaling Expired - Fee Related JP3799812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09304998A JP3799812B2 (en) 1998-04-06 1998-04-06 Electrode alloys for electrolytic descaling

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09304998A JP3799812B2 (en) 1998-04-06 1998-04-06 Electrode alloys for electrolytic descaling

Publications (2)

Publication Number Publication Date
JPH11286752A JPH11286752A (en) 1999-10-19
JP3799812B2 true JP3799812B2 (en) 2006-07-19

Family

ID=14071663

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09304998A Expired - Fee Related JP3799812B2 (en) 1998-04-06 1998-04-06 Electrode alloys for electrolytic descaling

Country Status (1)

Country Link
JP (1) JP3799812B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100453708C (en) * 2004-10-16 2009-01-21 太原钢铁(集团)有限公司 High silicon content ferrous alloy electrode plate for pickling cells and method for making same

Also Published As

Publication number Publication date
JPH11286752A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
US12054797B2 (en) Austenitic stainless steel material and welded joint
WO2008084838A1 (en) Ferritic stainless steel sheet for water heater excellent in corrosion resistance at welded part and steel sheet toughness
JP6298881B2 (en) Ferritic stainless steel and manufacturing method thereof
JP2004526866A (en) Method for producing stainless steel with improved corrosion resistance
JP2588646B2 (en) High speed pickling method for steel metal
JPH06279951A (en) Ferritic stainless steel for water heater
JP2011236499A (en) Stainless steel and method of manufacturing the same
JP3799812B2 (en) Electrode alloys for electrolytic descaling
JP3792335B2 (en) Finishing electrolytic pickling method in descaling of stainless steel strip
JPS6199650A (en) Alloy for electrically conductive roll
JP2005015816A (en) Can body for water heater with excellent corrosion resistance
JP6745373B1 (en) Stainless steel excellent in corrosion resistance and method of manufacturing the same
JP2577619B2 (en) Method and apparatus for descaling alloy steel strip
Kelly Stainless steels
JP2002348700A (en) DESCALING METHOD FOR COLD-ROLLED AND ANNEALED Cr-BASED STAINLESS STEEL SHEET
JPS6219263B2 (en)
JP2577618B2 (en) Method and apparatus for descaling alloy steel strip
JP2965423B2 (en) Pickling of ferritic stainless steel sheet containing high Cr
JP5901229B2 (en) Aluminum alloy, joined body of aluminum alloy and stainless steel, and heat exchanger
JPS63157828A (en) Electrifying roll for electroplating
JPH0730424B2 (en) Energizing roll alloy for electric plating
JPH052760B2 (en)
JPH0726233B2 (en) Cladded steel sheet and its continuous manufacturing method and apparatus
JP2005232546A (en) Descaling method for stainless cold rolled annealed steel sheet
JP3112257B2 (en) Method for electrolytic descaling of Ni annealed plate or Ni alloy annealed plate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20041119

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20041227

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20060104

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060301

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100512

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110512

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120512

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130512

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140512

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees