JPH05275688A - Planar type power semiconductor element - Google Patents

Planar type power semiconductor element

Info

Publication number
JPH05275688A
JPH05275688A JP7197892A JP7197892A JPH05275688A JP H05275688 A JPH05275688 A JP H05275688A JP 7197892 A JP7197892 A JP 7197892A JP 7197892 A JP7197892 A JP 7197892A JP H05275688 A JPH05275688 A JP H05275688A
Authority
JP
Japan
Prior art keywords
type
layer
wafer
base layer
silicon substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7197892A
Other languages
Japanese (ja)
Inventor
Masaki Atsuta
昌己 熱田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP7197892A priority Critical patent/JPH05275688A/en
Publication of JPH05275688A publication Critical patent/JPH05275688A/en
Pending legal-status Critical Current

Links

Landscapes

  • Thyristors (AREA)

Abstract

PURPOSE:To provide a planar type power semiconductor element which is improved in trade off between a turn-OFF loss and a voltage blocking capacity. CONSTITUTION:A P-type silicon substrate 2 serving as a P<+>-type emitter layer is directly joined to an N-type silicon substrate 6 which serves as a base of high resistance for the formation of a wafer, an IGBT is formed of the wafer concerned and provided with a P-type base layer 7 whose junction terminates at the surface of the wafer, where a deep N<+>-type buffer layer 5 is selectively formed in a region of the surface of the N-type silicon substrate 6 where a main current of the element flows, and the surface of the substrate 6 is joined to the P<+>-type silicon substrate 2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、素子の主接合が半導体
ウェハ表面に終端する構造のプレーナ型電力用半導体素
子に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a planar type power semiconductor device having a structure in which the main junction of the device terminates on the surface of a semiconductor wafer.

【0002】[0002]

【従来の技術】IGBTやサイリスタ等の電力用半導体
素子のなかに、高抵抗n型ベース層の表面に選択的にp
型ベース層を拡散形成して、pベース/nベースの接合
(主接合)をウェハ表面に終端させるプレーナ型素子が
ある。この種のプレーナ型素子においては、順方向バイ
アス印加時の電界集中は主接合の接合終端領域で最も大
きい。したがって接合終端領域でブレークダウンを生じ
易い。
2. Description of the Related Art In a power semiconductor element such as an IGBT or a thyristor, p is selectively formed on the surface of a high resistance n-type base layer.
There is a planar type element in which a p-base / n-base junction (main junction) is terminated on the wafer surface by forming a die base layer by diffusion. In this type of planar element, the electric field concentration when applying a forward bias is greatest in the junction termination region of the main junction. Therefore, breakdown is likely to occur in the junction termination region.

【0003】この様なプレーナ型電力用半導体素子の電
圧阻止能力を向上させるには、高抵抗n型ベース層の厚
みを大きくすることが有効である。これは、pベース/
nベース接合に対する逆バイアス印加時に、n型ベース
層が厚いほどn型ベース層内に空乏層を拡げることがで
き、接合部の電界強度を低下させることができるからで
ある。ところが、高抵抗n型ベース層厚を大きくする
と、通電時に素子に蓄積されるキャリア量が増加し、タ
ーンオフ時のキャリア排出時間が増大する。これによ
り、ターンオフ損失が増大して素子特性が低下する。
In order to improve the voltage blocking capability of such a planar power semiconductor device, it is effective to increase the thickness of the high resistance n-type base layer. This is p base /
This is because when a reverse bias is applied to the n-base junction, the thicker the n-type base layer is, the more the depletion layer can be expanded in the n-type base layer, and the electric field strength at the junction can be reduced. However, when the thickness of the high-resistance n-type base layer is increased, the amount of carriers accumulated in the device during energization increases, and the carrier discharge time at turn-off increases. As a result, turn-off loss increases and device characteristics deteriorate.

【0004】この様なプレーナ型電力用半導体素子での
電圧阻止能力とターンオフ損失のトレードオフを改善す
る方法として、本発明者はすでに、素子内部の主電流が
主に流れる領域(以下,主動作領域という)のn型ベー
ス層厚に比べて、接合終端領域のそれを大きくすること
を提案している(特願昭62−041363号)。
As a method of improving the trade-off between the voltage blocking capability and the turn-off loss in such a planar type power semiconductor device, the present inventor has already found that the region in which the main current mainly flows (hereinafter referred to as the main operation). It is proposed to increase the thickness of the junction termination region in comparison with the thickness of the n-type base layer (referred to as region) (Japanese Patent Application No. 62-043163).

【0005】一方、電力用半導体素子のウェハを得る有
効な方法として、2枚の鏡面研磨された半導体基板を直
接接合する方法が知られている。図6(a) 〜(c) はこの
方法を用いてIGBTを製造する工程を示している。図
6(a) に示すように、p+ 型エミッタ層となる第1の半
導体基板であるp+ 型シリコン基板2とn型ベース層と
なる第2の半導体基板であるn型シリコン基板6を用意
し、n型シリコン基板6側には予めn+ 型バッファ層5
とp+ 型エミッタ層の一部となるp+ 型層4を形成す
る。これらを図6(b) に示すように直接接合して一体化
したウェハを得る。このウェハを用いて、n型ベース層
側を所定厚みに調整した後、図6(c) に示すように、p
型ベース層7,n+ 型エミッタ層8、MOSゲート等を
形成して、IGBTを得る。
On the other hand, a method of directly joining two mirror-polished semiconductor substrates is known as an effective method for obtaining a wafer for a power semiconductor device. 6 (a) to 6 (c) show steps of manufacturing an IGBT using this method. As shown in FIG. 6 (a), p + P + which is the first semiconductor substrate to be the emitter layer Providing a n-type silicon substrate 6 which is a second semiconductor substrate serving as the -type silicon substrate 2 and the n-type base layer, in advance to the n-type silicon substrate 6 side n + Type buffer layer 5
And p + P + which is a part of the emitter layer The mold layer 4 is formed. These are directly bonded as shown in FIG. 6 (b) to obtain an integrated wafer. After adjusting the n-type base layer side to a predetermined thickness using this wafer, as shown in FIG. 6 (c), p
Mold base layer 7, n + The type emitter layer 8 and the MOS gate are formed to obtain an IGBT.

【0006】この直接接合ウェハを用いたIGBTで
は、n+ 型バッファ層5がウェハ内に一様に形成されて
いる。このため、pベース/nベース間に逆バイアスが
印加されたとき、空乏層は図に破線で示すように伸び、
湾曲部19の曲率が小さいために強い電界集中が生じ
る。この電界集中を緩和して高い電圧阻止能力を得るた
めには、n型ベース層厚が大きい方がよいが、そうする
と前述のようにターンオフ損失が大きくなる。
In the IGBT using this direct bonding wafer, n + The mold buffer layer 5 is uniformly formed in the wafer. Therefore, when a reverse bias is applied between the p base and the n base, the depletion layer extends as shown by the broken line in the figure,
Since the curvature of the curved portion 19 is small, strong electric field concentration occurs. In order to alleviate this electric field concentration and obtain a high voltage blocking ability, it is preferable that the thickness of the n-type base layer is large, but if so, the turn-off loss becomes large as described above.

【0007】[0007]

【発明が解決しようとする課題】以上のように従来の直
接接合法によるウェハを用いたプレーナ型電力用半導体
素子では、ターンオフ損失を増大させなければ、十分高
い電圧阻止能力が得られないという問題があった。
As described above, in the conventional planar power semiconductor device using the wafer by the direct bonding method, a sufficiently high voltage blocking capability cannot be obtained unless the turn-off loss is increased. was there.

【0008】本発明は上記の点に鑑みなされたもので、
直接接合によるウェハを用いて、ターンオフ損失と電圧
阻止能力のトレードオフを改善したプレーナ型電力用半
導体素子を提供することを目的とする。
The present invention has been made in view of the above points,
An object of the present invention is to provide a planar power semiconductor device in which the trade-off between turn-off loss and voltage blocking capability is improved by using a wafer formed by direct bonding.

【0009】[0009]

【課題を解決するための手段】本発明は、第1導電型も
しくは第2導電型の第1の半導体基板と、第2導電型の
高抵抗ベース層を有する第2の半導体基板とを直接接合
して得られる半導体ウェハを用いて構成され、高抵抗ベ
ース層の表面に選択的に高抵抗ベース層との間で主接合
を構成する第1導電型半導体層が拡散形成されたプレー
ナ型電力用半導体素子において、第2の半導体基板の第
1の半導体基板と接合すべき面の主動作領域に、あらか
じめ深い第2導電型バッファ層が選択的に形成されてい
ることを特徴とする。
According to the present invention, a first semiconductor substrate of a first conductivity type or a second conductivity type is directly bonded to a second semiconductor substrate having a high resistance base layer of a second conductivity type. A planar power type power source, which is formed by using the semiconductor wafer obtained by the above, and in which a first conductivity type semiconductor layer which selectively forms a main junction with the high resistance base layer is formed on the surface of the high resistance base layer by diffusion. In the semiconductor element, a deep second conductivity type buffer layer is selectively formed in advance in a main operation region of a surface of the second semiconductor substrate to be joined to the first semiconductor substrate.

【0010】[0010]

【作用】本発明によると、直接接合ウェハを用いなが
ら、素子の主動作領域の高抵抗ベース層厚に比べて接合
終端領域のそれを大きくしたプレーナ型電力用半導体素
子が得られる。これにより、ターンオフ損失と電圧阻止
能力のトレードオフが改善される。
According to the present invention, it is possible to obtain a planar power semiconductor device in which the junction termination region is larger than the high resistance base layer thickness in the main operation region of the device while using the direct junction wafer. This improves the trade-off between turn-off loss and voltage blocking capability.

【0011】[0011]

【実施例】以下、図面を参照しながら本発明の実施例を
説明する。
Embodiments of the present invention will be described below with reference to the drawings.

【0012】図1は、本発明の一実施例に係るIGBT
の製造工程断面図である。図1(a)に示すように、p+
型エミッタ層となるp+ 型シリコン基板2と高抵抗nベ
ースとなるn型シリコン基板6を用意し、n型シリコン
基板6の主動作領域となる部分に選択的に、p+ 型エミ
ッタ層の一部となるp+ 型層4とn+ 型バッファ層5を
形成する。n型シリコン基板6の主動作領域の外側すな
わち接合終端領域よりも外側には、n+ がバッファ層5
より浅いn+ 型バッファ層3を形成する。次に、これら
の基板を図1(b) に示すように直接接合して、一体化さ
れたウェハを得る。破線20が接合界面を示している。
FIG. 1 shows an IGBT according to an embodiment of the present invention.
FIG. 5 is a cross-sectional view of the manufacturing process of As shown in FIG. 1 (a), p +
P + which becomes the emitter layer The n-type silicon substrate 2 and the n-type silicon substrate 6 serving as the high-resistance n-base are prepared, and p + P + which is a part of the emitter layer Mold layer 4 and n + The mold buffer layer 5 is formed. Outside the main operation region of the n-type silicon substrate 6, that is, outside the junction termination region, n + Is the buffer layer 5
Shallower n + The mold buffer layer 3 is formed. Next, these substrates are directly bonded as shown in FIG. 1 (b) to obtain an integrated wafer. The broken line 20 indicates the bonding interface.

【0013】こうして一体化されたウェハの高抵抗nベ
ース層側を所定厚みになるように研磨した後、図1(c)
に示すようにIGBTを形成する。すなわちまず、研磨
したnベース層表面に酸化膜10を形成し、フィールド
領域を覆うようにこれをパターニングする。ついでゲー
ト酸化膜11を形成し、この上に多結晶シリコン膜によ
るゲート電極12をパターン形成する。その後ゲート電
極12をマスクとしてボロンを選択拡散してp型ベース
層7を形成し、続いてn+ 型エミッタ層8およびn+
コンタクト層9を形成する。次に半絶縁性のSIPOS
膜をフィールド領域を覆うように形成して、抵抗性フィ
ールドプレート14とする。そしてAlの蒸着,パター
ニングを行って、p型ベース層7とn+ 型エミッタ層8
に同時にコンタクトするカソード電極15、およびコン
タクト層9を介してn型ベース層に接続される電極16
を形成する。カソード電極15は、抵抗性フィールドプ
レート14上でp型ベース層7の接合終端部から所定距
離外側に延在するようにパターニングされる。最後にp
+ 型基板2側にV/Ni/Au膜によるアモード電極1
を形成して、完成する。
After the high resistance n base layer side of the wafer thus integrated is polished to a predetermined thickness, FIG.
An IGBT is formed as shown in FIG. That is, first, the oxide film 10 is formed on the surface of the polished n base layer, and is patterned so as to cover the field region. Then, a gate oxide film 11 is formed, and a gate electrode 12 made of a polycrystalline silicon film is patterned on the gate oxide film 11. Thereafter, boron is selectively diffused using the gate electrode 12 as a mask to form the p-type base layer 7, and then n + Type emitter layer 8 and n + The mold contact layer 9 is formed. Next, semi-insulating SIPOS
A film is formed over the field region to form the resistive field plate 14. Then, Al is vapor-deposited and patterned to form the p-type base layer 7 and the n + Type emitter layer 8
Electrode 15 connected to the n-type base layer through the contact layer 9 simultaneously with the cathode electrode 15
To form. The cathode electrode 15 is patterned on the resistive field plate 14 so as to extend a predetermined distance outward from the junction termination of the p-type base layer 7. Finally p
+ Amode electrode 1 with V / Ni / Au film on the mold substrate 2 side
To complete.

【0014】この実施例のIGBTにおいて、pベース
/nベース接合に逆バイアスが印加されたとき、nベー
ス側に伸びる空乏層は、図に破線で示すようになる。主
動作領域でのnベース厚が従来の図6(c) のそれと同じ
とすると、接合終端領域でのnベース層厚は従来よりも
大きくなっている。したがって接合終端部直下の空乏層
湾曲部17の曲率は、図6(c) の湾曲部19のそれより
大きい。またpベース層7と湾曲部17間の距離も従来
のそれより大きくなっている。以上により、この実施例
によれば、従来と同じターンオフ損失で、従来よりも高
い電圧阻止能力が得られる。
In the IGBT of this embodiment, when a reverse bias is applied to the p base / n base junction, the depletion layer extending to the n base side is as shown by the broken line in the figure. Assuming that the n base thickness in the main operation region is the same as that of the conventional FIG. 6 (c), the n base layer thickness in the junction termination region is larger than that of the conventional one. Therefore, the curvature of the depletion layer curved portion 17 just below the junction termination portion is larger than that of the curved portion 19 in FIG. 6 (c). The distance between the p base layer 7 and the curved portion 17 is also larger than that of the conventional one. As described above, according to this embodiment, it is possible to obtain a higher voltage blocking capability than the conventional one with the same turn-off loss as the conventional one.

【0015】図2および図3は、別の実施例のIGBT
の製造工程断面図である。先の実施例と対応する部分に
は先の実施例と同一符号を付してある。この実施例では
先ず、p+ 型シリコン基板2の表面に、図2(a) に示す
ように溝を形成し、ついで溝が形成された面に、図2
(b) に示すように酸化膜18を形成する。その後酸化膜
18が形成された側の面を研磨して、図2(c) に示すよ
うに、溝の凸部はシリコン基板が露出し、凹部に酸化膜
18が残された状態で平坦な鏡面を得る。
2 and 3 show another embodiment of the IGBT.
FIG. 5 is a cross-sectional view of the manufacturing process of The parts corresponding to those of the previous embodiment are designated by the same reference numerals. In this embodiment, first, p + As shown in FIG. 2 (a), a groove is formed on the surface of the type silicon substrate 2, and then the surface on which the groove is formed is
An oxide film 18 is formed as shown in (b). Then, the surface on the side where the oxide film 18 is formed is polished, and as shown in FIG. 2 (c), the convex portion of the groove is flat with the silicon substrate exposed and the oxide film 18 left in the concave portion. Get the mirror surface.

【0016】もう一方のn型シリコン基板6には、図2
(d) に示すように、先の実施例と同様にp+ 型層4とn
+ 型バッファ層5を選択的に形成する。そしてこれらの
基板を直接接合して、図3(a) に示すようなウェハを得
る。以下このウェハに、先の実施例と同様の工程を経
て、図3(b) に示すようなIGBTを形成する。
The other n-type silicon substrate 6 has a structure shown in FIG.
As shown in (d), p + Mold layer 4 and n
+ The mold buffer layer 5 is selectively formed. Then, these substrates are directly bonded to obtain a wafer as shown in FIG. Thereafter, an IGBT as shown in FIG. 3B is formed on this wafer through the same steps as those in the previous embodiment.

【0017】この実施例の場合、接合終端領域のnベー
ス底部には、先の実施例のn+ 型バッファ層3に代わっ
て酸化膜18が埋め込まれた構造となっている。pベー
ス/nベース接合に逆バイアスが印加されたとき、空乏
層先端が酸化膜18に到達しても、酸化膜18中に電位
勾配が生じ、これによって接合電界が緩和される。した
がってこの実施例でも、電圧阻止能力とターンオフ損失
のトレードオフが改善される。
In the case of this embodiment, the n + base of the previous embodiment is provided at the bottom of the n base of the junction termination region. The structure is such that an oxide film 18 is buried in place of the mold buffer layer 3. When a reverse bias is applied to the p-base / n-base junction, even if the depletion layer tip reaches the oxide film 18, a potential gradient is generated in the oxide film 18 to relax the junction electric field. Therefore, also in this embodiment, the trade-off between the voltage blocking capability and the turn-off loss is improved.

【0018】以上では、IGBTの実施例を説明した
が、本発明はこれに限られるものではなく、直接接合ウ
ェハを用いて構成される他の各種プレーナ型電力用半導
体素子に本発明を適用することが可能である。
Although the embodiment of the IGBT has been described above, the present invention is not limited to this, and the present invention is applied to other various planar type power semiconductor devices configured by using a direct bonding wafer. It is possible.

【0019】例えば図4は、本発明をMOSゲート付き
サイリスタに適用した実施例である。この実施例でも、
図1と対応する部分には図1と同一符号を付してある。
この実施例の場合カソード電極15は、サイリスタ動作
させるためにp型ベース層7にコンタクトさせていない
が、その他の構成および製造工程は、図1のIGBTと
基本的に変わらない。この実施例でも先の実施例と同様
の効果が得られる。
For example, FIG. 4 shows an embodiment in which the present invention is applied to a thyristor with a MOS gate. Also in this example,
The parts corresponding to those in FIG. 1 are designated by the same reference numerals as those in FIG.
In this embodiment, the cathode electrode 15 is not in contact with the p-type base layer 7 for thyristor operation, but the other structure and manufacturing process are basically the same as those of the IGBT of FIG. In this embodiment, the same effect as that of the previous embodiment can be obtained.

【0020】図5は、プレーナ型高耐圧ダイオードに適
用した実施例である。この実施例でも、図1と対応する
部分には図1と同一符号を付してある。先の実施例のp
+ 型シリコン基板2に代わってこの実施例では、カソー
ド領域となるn+ 型シリコン基板21が用いられてい
る。n型ベース層6の表面に接合が終端するp型アノー
ド層22が拡散形成されて、これにアノード電極23が
形成され、n+ 型基板21の裏面にカソード電極24が
形成されている。そしてこの実施例でも、二つの基板の
接合界面20よりnベース側の主動作領域に、予め選択
的にn+ 型バッファ層5が形成されている。この実施例
によっても先の実施例と同様の効果が得られる。
FIG. 5 shows an embodiment applied to a planar type high breakdown voltage diode. Also in this embodiment, portions corresponding to those in FIG. 1 are designated by the same reference numerals. P in the previous example
+ In this embodiment, n +, which becomes the cathode region, is used instead of the type silicon substrate 2. The mold silicon substrate 21 is used. n-type p-type anode layer 22 junction terminating on the surface of the base layer 6 is formed diffusion anode electrode 23 is formed on this, n + A cathode electrode 24 is formed on the back surface of the mold substrate 21. Also in this embodiment, n + is selectively preliminarily selected in the main operation region on the n base side from the bonding interface 20 of the two substrates. The mold buffer layer 5 is formed. Also in this embodiment, the same effect as the previous embodiment can be obtained.

【0021】[0021]

【発明の効果】以上述べたように本発明によれば、直接
接合によるウェハを用いて、ターンオフ損失と電圧阻止
能力のトレードオフを改善したプレーナ型電力用半導体
素子を提供することができる。
As described above, according to the present invention, it is possible to provide a planar type power semiconductor device in which the trade-off between the turn-off loss and the voltage blocking ability is improved by using a wafer formed by direct bonding.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のIGBTの製造工程を示す
図。
FIG. 1 is a diagram showing a manufacturing process of an IGBT according to an embodiment of the present invention.

【図2】他の実施例のIGBTの製造工程を示す図。FIG. 2 is a diagram showing a manufacturing process of an IGBT of another embodiment.

【図3】同実施例のIGBTの製造工程を示す図。FIG. 3 is a view showing a manufacturing process of the IGBT of the same embodiment.

【図4】他の実施例のMOSゲート付きサイリスタを示
す図。
FIG. 4 is a diagram showing a thyristor with a MOS gate according to another embodiment.

【図5】他の実施例のプレーナ型ダイオードを示す図。FIG. 5 is a diagram showing a planar diode according to another embodiment.

【図6】従来のIGBTの製造工程を示す図。FIG. 6 is a diagram showing a manufacturing process of a conventional IGBT.

【符号の説明】[Explanation of symbols]

1…アノード電極、 2…p+ 型シリコン基板(p+ 型エミッタ層)、 3…n+ 型バッファ層、 4…p+ 型層、 5…n+ 型バッファ層、 6…n型シリコン基板(高抵抗n型ベース層)、 7…p型ベース層、 8…n+ 型カソード層、 10…酸化膜、 11…ゲート酸化膜、 12…ゲート電極、 14…抵抗性フィールドプレート、 15…アノード電極。1 ... Anode electrode, 2 ... p + Type silicon substrate (p + Type emitter layer), 3 ... n + Type buffer layer, 4 ... p + Mold layer, 5 ... n + Type buffer layer, 6 ... n type silicon substrate (high resistance n type base layer), 7 ... p type base layer, 8 ... n + Type cathode layer, 10 ... Oxide film, 11 ... Gate oxide film, 12 ... Gate electrode, 14 ... Resistive field plate, 15 ... Anode electrode.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】第1導電型もしくは第2導電型の第1の半
導体基板と、第2導電型の高抵抗ベース層を有する第2
の半導体基板とを直接接合して得られる半導体ウェハを
用いて構成され、前記高抵抗ベース層の表面に選択的に
高抵抗ベース層との間で主接合を構成する第1導電型半
導体層が拡散形成されたプレーナ型電力用半導体素子に
おいて、前記第2の半導体基板の前記第1の半導体基板
と接合すべき面の素子の主電流が流れる領域に、予め深
い第2導電型バッファ層が選択的に形成されていること
を特徴とするプレーナ型電力用半導体素子。
1. A second semiconductor substrate having a first conductivity type or a second conductivity type first semiconductor substrate and a second conductivity type high-resistance base layer.
A semiconductor substrate obtained by directly bonding to the semiconductor substrate, and a first conductivity type semiconductor layer selectively forming a main bond with the high resistance base layer on the surface of the high resistance base layer. In the diffused planar power semiconductor device, a deep second conductivity type buffer layer is selected in advance in a region where a main current of the device on the surface of the second semiconductor substrate to be joined to the first semiconductor substrate flows. Planer type power semiconductor device characterized by being formed in a uniform manner.
JP7197892A 1992-03-30 1992-03-30 Planar type power semiconductor element Pending JPH05275688A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7197892A JPH05275688A (en) 1992-03-30 1992-03-30 Planar type power semiconductor element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7197892A JPH05275688A (en) 1992-03-30 1992-03-30 Planar type power semiconductor element

Publications (1)

Publication Number Publication Date
JPH05275688A true JPH05275688A (en) 1993-10-22

Family

ID=13476066

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7197892A Pending JPH05275688A (en) 1992-03-30 1992-03-30 Planar type power semiconductor element

Country Status (1)

Country Link
JP (1) JPH05275688A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6054748A (en) * 1997-03-18 2000-04-25 Kabushiki Kaisha Toshiba High voltage semiconductor power device
US6452219B1 (en) 1996-09-11 2002-09-17 Denso Corporation Insulated gate bipolar transistor and method of fabricating the same
JP2007042826A (en) * 2005-08-03 2007-02-15 Fuji Electric Holdings Co Ltd Semiconductor device and its manufacturing method
JP2011103403A (en) * 2009-11-11 2011-05-26 Shindengen Electric Mfg Co Ltd Thyristor
JP2012182302A (en) * 2011-03-01 2012-09-20 Toyota Motor Corp Semiconductor device
US9257543B2 (en) 2013-11-26 2016-02-09 Mitsubishi Electric Corporation Reverse-conducting insulated gate bipolar transistor and diode with one structure semiconductor device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6452219B1 (en) 1996-09-11 2002-09-17 Denso Corporation Insulated gate bipolar transistor and method of fabricating the same
US6054748A (en) * 1997-03-18 2000-04-25 Kabushiki Kaisha Toshiba High voltage semiconductor power device
JP2007042826A (en) * 2005-08-03 2007-02-15 Fuji Electric Holdings Co Ltd Semiconductor device and its manufacturing method
JP2011103403A (en) * 2009-11-11 2011-05-26 Shindengen Electric Mfg Co Ltd Thyristor
JP2012182302A (en) * 2011-03-01 2012-09-20 Toyota Motor Corp Semiconductor device
US9257543B2 (en) 2013-11-26 2016-02-09 Mitsubishi Electric Corporation Reverse-conducting insulated gate bipolar transistor and diode with one structure semiconductor device
US9437721B2 (en) 2013-11-26 2016-09-06 Mitsubishi Electric Corporation Reverse-conducting IGBT with buffer layer and separation layer for reducing snapback
US9601485B2 (en) 2013-11-26 2017-03-21 Mitsubishi Electric Corporation Reverse-conducting IGBT with buffer layer and separation layer for reducing snapback

Similar Documents

Publication Publication Date Title
KR0161356B1 (en) Method of manufacturing semiconductor
US6949434B2 (en) Method of manufacturing a vertical semiconductor device
JP2590284B2 (en) Semiconductor device and manufacturing method thereof
JP2995723B2 (en) Vertical current semiconductor device using wafer bonding and method of manufacturing the same
US5141889A (en) Method of making enhanced insulated gate bipolar transistor
KR0134794B1 (en) Conductivity-modulated semiconductor device with high breakdown voltage
JPS6115370A (en) Semiconductor device
JP3321189B2 (en) Power semiconductor device
JPS6046551B2 (en) Semiconductor switching device and its manufacturing method
KR950014279B1 (en) Semiconductor device and its making method
JPH04127480A (en) High breakdown strength low resistance semiconductor device
JPH08107049A (en) Method of wafer bonding of power unit
JPH023266A (en) Bipolar semiconductor device having conductive recombination layer
JP2002261281A (en) Manufacturing method of insulated gate bipolar transistor
JPH05275688A (en) Planar type power semiconductor element
JPH09116152A (en) Power semiconductor element
JPH08274351A (en) Dielectric isolation semiconductor device and its manufacture
US4910573A (en) Gate turn-off thyristor and method of producing same
JP2579928B2 (en) Semiconductor device and method of manufacturing the same
JP2964609B2 (en) Insulated gate bipolar transistor and method of manufacturing the same
JPH0982955A (en) Manufacture of semiconductor device
JP2000058867A (en) Semiconductor device and manufacture thereof
JPH11112005A (en) Semiconductor device
JP4302329B2 (en) Semiconductor device
JPS6318675A (en) Semiconductor device