JPH05275636A - Complementary connected insulating gate type fet integrated circuit - Google Patents

Complementary connected insulating gate type fet integrated circuit

Info

Publication number
JPH05275636A
JPH05275636A JP3002271A JP227191A JPH05275636A JP H05275636 A JPH05275636 A JP H05275636A JP 3002271 A JP3002271 A JP 3002271A JP 227191 A JP227191 A JP 227191A JP H05275636 A JPH05275636 A JP H05275636A
Authority
JP
Japan
Prior art keywords
oxide film
channel
implanted
ion
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3002271A
Other languages
Japanese (ja)
Inventor
Tatsuji Asakawa
浅川辰司
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP3002271A priority Critical patent/JPH05275636A/en
Publication of JPH05275636A publication Critical patent/JPH05275636A/en
Pending legal-status Critical Current

Links

Landscapes

  • Element Separation (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

PURPOSE:To boost the breakdown voltage by a method wherein impurity ion- implanted layers are provided in a previously specified gap between source.drain diffused layers formed by diffused impurities. CONSTITUTION:Boron is implanted to be driven into the surface of an N-type substrate 1 to form a P-type well 3 using an oxide film 2 formed on the substrate 1 as a mask. Next, the oxide film 2 is removed and after the formation of a new oxide film 4 to be coated with a photoresist 5, boron ions are implanted in a channel stopper 6 of an N channel transistor (NT) and a gap 7 between channel-drain diffused layers of a P channel transistor (PT). Next, after removing the oxide film 4 and photoresist 5, the other oxide film 8 is formed and then phosphorus ions are implanted in another channel stopper 10 of PT and another gap 11 between channel-drain diffused layers of the NT. Through these procedures, high potential can be absorbed into the ion-implanted layers thereby enabling the breakdown voltage to be boosted.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は相補接続絶縁ゲート型電
界効果トランジスタ集積回路(CMOS・IC)の構成
方式に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of constructing a complementary connection insulated gate type field effect transistor integrated circuit (CMOS IC).

【0002】[0002]

【従来の技術】最近、プラズマや液晶など平面ディスプ
レイが登場する中で、駆動用の高耐圧トランジスタが要
望されてきており、とりわけ周辺制御部の論理回路とと
もに駆動部の高耐圧トランジスタ回路を集積したデバイ
スが求められている。
2. Description of the Related Art Recently, with the advent of flat displays such as plasma and liquid crystal, a high withstand voltage transistor for driving has been demanded, and in particular, a high withstand voltage transistor circuit of a driving unit is integrated with a logic circuit of a peripheral control unit. Devices are needed.

【0003】CMOS・ICは低消費電力、高速応答
性、高集積度の特徴をいかして、従来論理用ICとして
幅広く利用されてきているが、高耐圧のCMOSトラン
ジスタをともに集積化することができれば、上記分野等
へ、CMOSの特徴をいかした優れたデバイスを提供で
きる。
CMOS ICs have been widely used as conventional logic ICs due to their characteristics of low power consumption, high-speed response, and high degree of integration, but if high-voltage CMOS transistors can be integrated together. It is possible to provide an excellent device utilizing the characteristics of CMOS in the above fields and the like.

【0004】[0004]

【発明が解決しようとする課題】本発明の目的は、上記
のようなCMOS・ICを実現する構成方式を提供する
ことにあり、その要旨は、CMOS・ICにおいて、チ
ャネルストッパの形成工程と同工程で形成される不純物
のイオン打ち込み層を、不純物の熱拡散によって形成さ
れるソース・ドレイン拡散層とトランジスタのチャネル
領域との予め定められた間隙に設けることであり、従来
のCMOS・ICの製造工程と殆ど類似の工程で製造で
きることを意図している。
SUMMARY OF THE INVENTION An object of the present invention is to provide a configuration system for realizing the above-described CMOS IC, and its gist is the same as the step of forming a channel stopper in the CMOS IC. The impurity ion-implanted layer formed in the process is provided in a predetermined gap between the source / drain diffusion layer formed by thermal diffusion of the impurity and the channel region of the transistor. It is intended that it can be manufactured by a process similar to the process.

【0005】[0005]

【課題を解決するための手段】本発明の相補接続絶縁ゲ
ート型電界効果トランジスタ集積回路は、チャネルスト
ッパの形成工程と同工程で形成される不純物のイオン打
ち込み層を、不純物の熱拡散によって形成されるソース
・ドレイン拡散層とトランジスタのチャネル領域との予
め定められた間隙に設けることを特徴とする。
In a complementary connection insulated gate field effect transistor integrated circuit according to the present invention, an impurity ion-implanted layer formed in the step of forming a channel stopper is formed by thermal diffusion of impurities. It is characterized in that it is provided in a predetermined gap between the source / drain diffusion layer and the channel region of the transistor.

【0006】[0006]

【実施例】この本発明のCMOS・ICの実施例の断面
図を製造工程順に図1乃至図10に示し、以下順次説明
する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A sectional view of an embodiment of a CMOS IC according to the present invention is shown in FIGS.

【0007】まず、N型基板1上に形成した酸化膜2を
マスクにしてボロンイオンを打ち込み、ドライブインし
てP型ウェル3を形成する。(図1) 次に、酸化膜2を除去し、新たに酸化膜4を形成しフォ
トレジスト5の塗布後6、7の部分をエッチングしてN
チャネルトランジスタ(NT)のチャネルストッパ6及
びPチャネルトランジスタ(PT)のチャネルードレイ
ン拡散層間の予め定められた間隙7にボロンイオンを打
ち込む。この打ち込み層は、ゲート下のチャネル、及び
ドレイン拡散層との接続が確実に行われるように、ゲー
ト・ドレイン拡散層とオーバーラップするように形成さ
れる。(図2) 次に、酸化膜4、フォトレジスト5を除去した後、酸化
膜8を形成しフォトレジスト9の塗布後、10、11の
部分をエッチングして、PTのチャネルストッパ10、
NTのチャネルードレイン拡散層間の予め定められた間
隙11にリンイオンを打ち込む。図2と同様この打ち込
み層は、ゲート下のチャネルードレイン拡散層との接続
が確実に行われるように、ゲート、ドレイン拡散層とオ
ーバーラップするように形成される。(図3) 次に、PTのソース12、ドレイン13へのボロンの拡
散は、酸化膜8、フォトレジスト9の除去後に形成した
酸化膜11をマスクにして行われる。(図4) 図5においては、図4と同様にして、NTのソース1
5、ドレイン16へのリンの拡散は酸化膜14をマスク
にして行われる。
First, using the oxide film 2 formed on the N-type substrate 1 as a mask, boron ions are implanted and driven in to form the P-type well 3. (FIG. 1) Next, the oxide film 2 is removed, a new oxide film 4 is formed, and after the photoresist 5 is applied, portions 6 and 7 are etched to remove N.
Boron ions are implanted in a predetermined gap 7 between the channel stopper 6 of the channel transistor (NT) and the channel-drain diffusion layer of the P-channel transistor (PT). The implantation layer is formed so as to overlap the gate / drain diffusion layer so as to ensure the connection with the channel under the gate and the drain diffusion layer. (FIG. 2) Next, after removing the oxide film 4 and the photoresist 5, an oxide film 8 is formed and a photoresist 9 is applied. Then, portions 10 and 11 are etched to remove the PT channel stopper 10.
Phosphorus ions are implanted into a predetermined gap 11 between the NT channel-drain diffusion layers. Similar to FIG. 2, this implantation layer is formed so as to overlap the gate and drain diffusion layers so as to ensure the connection with the channel-drain diffusion layer under the gate. (FIG. 3) Next, the diffusion of boron into the source 12 and drain 13 of PT is performed using the oxide film 8 formed after the removal of the oxide film 8 and the photoresist 9 as a mask. (FIG. 4) In FIG. 5, as in FIG.
5. Diffusion of phosphorus to the drain 16 is performed using the oxide film 14 as a mask.

【0008】次に、酸化膜14除去後フィールド酸化膜
17を形成し、ゲート領域及び後に配線とコンタクトさ
れるドレイン領域の酸化膜を除去し、新たにゲート酸化
膜18を形成する。(図6) 次に多結晶シリコン19をデポジションし、ボロンかリ
ンを拡散した後、ゲートサイズにエッチングする。(図
7) 次に、保護膜20を形成した後、電極取り出し用のコン
タクトのエッチングを行う。(図8) 次に、アルミニウムを蒸着後、エッチングして電極21
を形成する。(図9) 最後に、保護膜22を全面にデポジションする。(図1
0) この実施例において、トランジスタのゲート下のチャネ
ルードレイン拡散層間の予め定められた間隙への不純物
のイオン打ち込み層は、ドレイン電圧が低い時は、通常
のキャリアの導電層として働き、ドレイン電圧が高くな
ると、チャネルと基板側からこのイオン打ち込み層に空
乏層がのび、イオン打ち込み層内での電圧降下が大きく
なり、ドレイン電圧をこのイオン打ち込み層で吸収する
ことにより高耐圧化がはかられる。
Next, after the oxide film 14 is removed, a field oxide film 17 is formed, the oxide film in the gate region and in the drain region that will be in contact with the wiring later is removed, and a gate oxide film 18 is newly formed. (FIG. 6) Next, polycrystalline silicon 19 is deposited, boron or phosphorus is diffused, and then etched to the gate size. (FIG. 7) Next, after forming the protective film 20, the contact for electrode extraction is etched. (FIG. 8) Next, after depositing aluminum, etching is performed to form the electrode 21.
To form. (FIG. 9) Finally, the protective film 22 is deposited on the entire surface. (Fig. 1
0) In this embodiment, the ion-implanted layer of impurities into the predetermined gap between the channel-drain diffusion layer under the gate of the transistor acts as a normal carrier conductive layer when the drain voltage is low, As the voltage rises, a depletion layer extends from the channel and substrate to this ion-implanted layer, the voltage drop in the ion-implanted layer increases, and the drain voltage is absorbed by this ion-implanted layer, so that a high breakdown voltage can be achieved. ..

【0009】[0009]

【発明の効果】本発明によれば、このイオン打ち込み抵
抗層はチャネルストッパ形成工程と同工程で形成され、
新たな工程増を伴わず、またイオン打ち込み量を最適化
し、イオン打ち込み抵抗層の長さを所定の範囲で長くす
ることにより所望の高耐圧CMOSトランジスタが得ら
れる。
According to the present invention, this ion implantation resistance layer is formed in the same step as the channel stopper forming step,
A desired high breakdown voltage CMOS transistor can be obtained by increasing the length of the ion implantation resistance layer within a predetermined range by optimizing the ion implantation amount without adding new steps.

【0010】尚、本発明はゲートに多結晶シリコンを使
用したシリコンゲート構造のCMOS・ICの他、ゲー
ト材料にモリブテン、モリブテンシリサイド等各種の金
属を使用したCMOS・IC、更には、ゲート、配線共
通にアルミニウムで形成したアルミゲート構造のCMO
S・IC等に同様にその趣旨を適用できる。
In addition to the CMOS / IC having a silicon gate structure in which polycrystalline silicon is used for the gate, the present invention uses CMOS / IC in which various metals such as molybdenum and molybdenum silicide are used as the gate material, and further, the gate and the wiring. Aluminum gate structure CMO commonly made of aluminum
The same applies to S / IC and the like.

【0011】本発明の高耐圧CMOS・ICはディスプ
レイ分野の他、通信機器、音響機器分野に利用すること
により、システムの小型化、高機能化、更にはコストダ
ウンに貢献できるものである。
The high withstand voltage CMOS IC according to the present invention can be used not only in the field of displays but also in the fields of communication equipment and audio equipment to contribute to downsizing of the system, higher functionality, and further cost reduction.

【図面の簡単な説明】[Brief description of drawings]

【図1】〜[Figure 1]

【図10】本発明のCMOS・ICの実施例の製造工程
毎の断面図。
FIG. 10 is a sectional view of each of the manufacturing steps of the embodiment of the CMOS / IC of the present invention.

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成3年2月8日[Submission date] February 8, 1991

【手続補正1】[Procedure Amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0008[Correction target item name] 0008

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0008】次に、酸化膜14除去後フィールド酸化膜
17を形成し、ゲート領域及び後に配線とコンタクトさ
れるドレイン領域の酸化膜を除去し、新たにゲート酸化
膜18を形成する。(図6) 次に多結晶シリコン19をデポジションし、ボロンかリ
ンを拡散した後、ゲートサイズにエッチングする。(図
7) 次に、保護膜20を形成した後、電極取り出し用のコン
タクトのエッチングを行う。(図8) 次に、アルミニウムを蒸着後、エッチングして電極21
を形成する。(図9) 最後に、保護膜22を全面にデポジションする。(図1
0) この実施例において、トランジスタのゲート下のチャネ
ル−ドレイン拡散層間の予め定められた間隙への不純物
のイオン打ち込み層は、ドレイン電圧が低い時は、通常
のキャリアの導電層として働き、ドレイン電圧が高くな
ると、チャネルと基板側からこのイオン打ち込み層に空
乏層がのび、イオン打ち込み層内での電圧降下が大きく
なり、ドレイン電圧をこのイオン打ち込み層で吸収する
ことにより高耐圧化がはかられる。すなわ ち、このよう
に機能する本発明のイオン打ち込み層自体は、日経エレ
クトロニクス(19 78,5−1)P.102〜P.1
27における高耐圧MOSFETの説明より明らかな
く周知なものであって、周知の如くまた上記の機能から
してもそのイオン打ち込み層の 不純物濃度は、絶対的に
もソース・ドレインに対しても低くなり、同時に形成さ
れるチャ ネルストッパの濃度も低いものとなる。
Next, after the oxide film 14 is removed, a field oxide film 17 is formed, the oxide film in the gate region and in the drain region that will be in contact with the wiring later is removed, and a gate oxide film 18 is newly formed. (FIG. 6) Next, polycrystalline silicon 19 is deposited, boron or phosphorus is diffused, and then etched to the gate size. (FIG. 7) Next, after forming the protective film 20, the contact for electrode extraction is etched. (FIG. 8) Next, after depositing aluminum, etching is performed to form the electrode 21.
To form. (FIG. 9) Finally, the protective film 22 is deposited on the entire surface. (Fig. 1
0) In this embodiment, the ion-implanted layer of impurities into the predetermined gap between the channel-drain diffusion layer under the gate of the transistor acts as a normal carrier conductive layer when the drain voltage is low, As the voltage rises, a depletion layer extends from the channel and substrate to this ion-implanted layer, the voltage drop in the ion-implanted layer increases, and the drain voltage is absorbed by this ion-implanted layer, so that a high breakdown voltage can be achieved. .. Chi words, such
The ion-implanted layer of the present invention which functions as
Kutronics ( 1978, 5-1) P. 102-P. 1
Clear than explanation of the high voltage MOSFET in 27
It is well known and, as is well known,
However, the impurity concentration of the ion-implanted layer is absolutely
And source / drain are both low,
Even the low concentration of tea Nerusutoppa to be.

【手続補正2】[Procedure Amendment 2]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0011[Correction target item name] 0011

【補正方法】変更[Correction method] Change

【補正内容】[Correction content]

【0011】以上、本発明の構成を集積回路に採用する
ことにより、次のような効果がもたらされ る。 (a)高耐圧トランジスタのイオン打ち込み層とチャネ
ルストッパを同一工程で形成する ことにより、製造工程
が簡略化され、コストが低減される。 (b)イオン打ち込み層とチャネルストッパを別工程で
形成すると、先に形成した層が後 工程での熱処理により
拡散してしまう。特に、イオン打ち込み層を先に形成し
た場合、チ ャネルストッパ形成時の熱処理によりこれが
チャネル側へ拡散し、高耐圧トランジスタの 耐圧に問題
が生ずるが、本発明では同時形成のため熱処理回数は少
ないので、イオン打ち 込み層の拡散の広がりの制御がし
やすくなる。チャネルストッパも同様に拡散の広がりの
制御が容易となるため、各層の配置の寸法を最適化し、
高集積化できる。 (c)チャネルストッパはイオン打ち込み層と同一の不
純物濃度の低い層となるので、こ れが拡散してトランジ
スタのドレインに近接または接触しても、その部分での
耐圧は劣化 しない。従って、チャネルストッパをドレイ
ンに近づけて 配置することも可能であり、高集積化でき
る。 (d)更に、チャネルストッパによりフィールド反転防
止ができ、集積回路としての耐圧 を高めることができ
る。このように、低コストで高耐圧化 、高集積化の可能
な本発明のCMOS・ICはディスプレイ分野の他、通
信機器、音響機 器分野に利用することにより、システム
の小型化、高機能化、更にはコストダウンにも貢 献でき
るものである。
As described above, the structure of the present invention is adopted in an integrated circuit.
By, Ru brought about the following effects. (A) Ion-implanted layer and channel of high breakdown voltage transistor
Manufacturing process by forming the stopper in the same process
Is simplified and the cost is reduced. (B) Separately implanting the ion-implanted layer and channel stopper
Once formed, the previously formed layer will be heat treated in a later step.
It spreads. Especially, the ion implantation layer is formed first.
If this is the heat treatment at the time Ji Yanerusutoppa formed
Diffuses to the channel side and causes a problem with the breakdown voltage of the high breakdown voltage transistor
However, the number of heat treatments is small because of simultaneous formation in the present invention.
Since there is no, and control of the spread of the diffusion of ions hitting inclusive layer
It will be easier. Similarly, the channel stopper also spreads the diffusion.
For easier control, optimize the dimensions of the placement of each layer,
High integration is possible. (C) The channel stopper has the same structure as the ion-implanted layer.
Since the pure things low concentration layer, This is diffuses transitional
Close to or in contact with the drain of the star,
Withstand voltage does not deteriorate . Therefore, drain the channel stopper.
It is also possible to place it close to the
It (D) Furthermore, the field stopper prevents field inversion.
Can be stopped and the breakdown voltage of the integrated circuit can be increased.
It In this way, high breakdown voltage and high integration are possible at low cost.
The CMOS IC of the present invention can be used not only in the display field but also in other fields.
Telecommunications equipment, by utilizing the acoustic equipment field, the system
Miniaturization of higher functionality, more it can contribute to cost reduction
It is something.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 チャネルストッパの形成工程と同工程で
形成される不純物のイオン打ち込み層を、不純物の熱拡
散によって形成されるソース・ドレイン拡散層とトラン
ジスタのチャネル領域との予め定められた間隙に設ける
ことを特徴とする相補接続絶縁ゲート型電界効果トラン
ジスタ集積回路。
1. An impurity ion-implanted layer formed in the step of forming a channel stopper is provided in a predetermined gap between a source / drain diffusion layer formed by thermal diffusion of impurities and a channel region of a transistor. A complementary connection insulated gate field effect transistor integrated circuit, which is provided.
JP3002271A 1991-01-11 1991-01-11 Complementary connected insulating gate type fet integrated circuit Pending JPH05275636A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3002271A JPH05275636A (en) 1991-01-11 1991-01-11 Complementary connected insulating gate type fet integrated circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3002271A JPH05275636A (en) 1991-01-11 1991-01-11 Complementary connected insulating gate type fet integrated circuit

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP55157191A Division JPS5780759A (en) 1980-11-07 1980-11-07 Complementary connection insulated gate type field effect transistor integrated circuit

Publications (1)

Publication Number Publication Date
JPH05275636A true JPH05275636A (en) 1993-10-22

Family

ID=11524708

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3002271A Pending JPH05275636A (en) 1991-01-11 1991-01-11 Complementary connected insulating gate type fet integrated circuit

Country Status (1)

Country Link
JP (1) JPH05275636A (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546584A (en) * 1978-09-29 1980-04-01 Nec Corp Complementary insulated gate field effect semiconductor device and method of fabricating the same
JPS56133865A (en) * 1980-03-21 1981-10-20 Seiko Epson Corp Complementary mos transistor with high breakdown voltage

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5546584A (en) * 1978-09-29 1980-04-01 Nec Corp Complementary insulated gate field effect semiconductor device and method of fabricating the same
JPS56133865A (en) * 1980-03-21 1981-10-20 Seiko Epson Corp Complementary mos transistor with high breakdown voltage

Similar Documents

Publication Publication Date Title
US6518623B1 (en) Semiconductor device having a buried-channel MOS structure
US5047358A (en) Process for forming high and low voltage CMOS transistors on a single integrated circuit chip
US5013678A (en) Method of making an integrated circuit comprising load resistors arranged on the field oxide zones which separate the active transistor zones
US6127213A (en) Method for simultaneously forming low voltage and high voltage devices
TW355833B (en) Method of manufacturing a radiation-resistant semiconductor integrated circuit
JP2900870B2 (en) MOS type field effect transistor and method of manufacturing the same
JPH10154814A (en) Active matrix substrate and manufacture thereof
JP3230184B2 (en) Method for manufacturing semiconductor device
JPH05275636A (en) Complementary connected insulating gate type fet integrated circuit
JP3200978B2 (en) Method for manufacturing semiconductor device
JPH1022503A (en) Mis semiconductor device and its manufacture
JP2004303791A (en) Thin film transistor structure and its manufacturing method
JP3274653B2 (en) MOS type field effect transistor and method of manufacturing the same
JPH07142739A (en) Manufacture of polycrystal line silicon thin-film transistor
JPH02197166A (en) High breakdown strength mos type semiconductor device
JPH04179162A (en) Semiconductor device and manufacture thereof
JPH04313238A (en) Semiconductor device
JPH1154630A (en) Semiconductor and fabrication thereof
JPH0456280A (en) Semiconductor device and manufacture thereof
JPH08274313A (en) Semiconductor device and its manufacture
KR100192958B1 (en) Method of fabricating a high withstand voltage mos transistor
JP2001326347A (en) Semiconductor device and its manufacturing method
JPH06196642A (en) Semiconductor device and manufacture thereof
JPS6051278B2 (en) Insulated gate field effect transistor
KR20060010461A (en) Method for fabricating logic device