JPH05275474A - Compound semiconductor integrated circuit and optical regenerative repeater - Google Patents

Compound semiconductor integrated circuit and optical regenerative repeater

Info

Publication number
JPH05275474A
JPH05275474A JP4073682A JP7368292A JPH05275474A JP H05275474 A JPH05275474 A JP H05275474A JP 4073682 A JP4073682 A JP 4073682A JP 7368292 A JP7368292 A JP 7368292A JP H05275474 A JPH05275474 A JP H05275474A
Authority
JP
Japan
Prior art keywords
integrated circuit
element isolation
compound semiconductor
semiconductor integrated
field effect
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP4073682A
Other languages
Japanese (ja)
Other versions
JP3092298B2 (en
Inventor
Osamu Kagaya
修 加賀谷
浩幸 ▲高▼澤
Hiroyuki Takazawa
Yoshinori Imamura
慶憲 今村
Junji Shigeta
淳二 重田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP04073682A priority Critical patent/JP3092298B2/en
Priority to US08/036,787 priority patent/US5523593A/en
Priority to KR1019930004812A priority patent/KR100312368B1/en
Publication of JPH05275474A publication Critical patent/JPH05275474A/en
Application granted granted Critical
Publication of JP3092298B2 publication Critical patent/JP3092298B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices adapted for rectifying, amplifying, oscillating or switching, or capacitors or resistors with at least one potential-jump barrier or surface barrier, e.g. PN junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof  ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate

Abstract

PURPOSE:To enable very high speed operation, by forming adjacent field effect transistors(FET's), and further forming an element isolation trenches whose depth reaches a semiinsulative substrate. CONSTITUTION:By photolithography and reactive etching, an SiON film 62, a P-type GaAs layer 3 and an undoped GaAs buffer layer 2 are etched, thereby forming element isolation trenches 9 whose depth reaches a semiinsulative GaAs substrate 1. The trenches 9 are arranged so as to surround each FET. Thereby oscillation of fine currents between the FET's and the substrate can be restrained, low frequency oscillation of drain currents of adjacent FET's is prevented, and very high speed operation is enabled.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は超高速性を有する電界効
果トランジスタ(FET)を用いた化合物半導体集積回
路にかかり、特にその高速性を高めるのに好適な素子分
離構造を持つ化合物半導体集積回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a compound semiconductor integrated circuit using a field effect transistor (FET) having an ultrahigh speed, and in particular, a compound semiconductor integrated circuit having an element isolation structure suitable for enhancing the high speed. Regarding

【0002】[0002]

【従来の技術】従来のFETを用いた化合物半導体集積
回路は、たとえば特開平2−49465号公報において
論じられている。その化合物半導体集積回路は図3に示
すように、隣接したFET(T1,T2,T3)の間に
半絶縁性GaAs基板31まで達する素子分離帯39を
設け、FET間の電気的分離、特にサイドゲート効果を
改善していた。図3においてT1,T2,T3はHEM
Tと呼ばれる型のFET、32はアンドープGaAsバ
ッファ層、33はn型AlGaAs電子供給層、34は
n型GaAsコンタクト層、35はオーミック電極、3
7はゲート電極、38は基板31まで達しない素子分離
帯である。
2. Description of the Related Art A compound semiconductor integrated circuit using a conventional FET is discussed in, for example, Japanese Patent Laid-Open No. 2-49465. As shown in FIG. 3, the compound semiconductor integrated circuit is provided with an element isolation band 39 which reaches the semi-insulating GaAs substrate 31 between adjacent FETs (T1, T2, T3), and electrically isolates the FETs, particularly the side. The gate effect was improved. In FIG. 3, T1, T2 and T3 are HEMs.
A type FET called T, 32 is an undoped GaAs buffer layer, 33 is an n-type AlGaAs electron supply layer, 34 is an n-type GaAs contact layer, 35 is an ohmic electrode, 3
Reference numeral 7 is a gate electrode, and 38 is an element isolation band that does not reach the substrate 31.

【0003】また他の従来例としては、たとえば特開平
3−87044において論じられている。その化合物半
導体集積回路は図4に示すように、GaAsFETの下
部に厚さ1000ÅのAlGaAsからなるヘテロ接合
バッファ層42と、隣接するFETの間にヘテロ接合界
面44まで達する素子間分離溝46を設けることにより
FETの電気的分離、特にサイドゲート効果を改善して
いた。図4において41は半絶縁性GaAs基板、43
はGaAs層、45はオーミック電極、47,48はオ
ーミック電極、49はゲート電極である。
Another conventional example is discussed in, for example, Japanese Patent Laid-Open No. 3-87044. As shown in FIG. 4, the compound semiconductor integrated circuit is provided with a heterojunction buffer layer 42 made of AlGaAs having a thickness of 1000 Å below a GaAsFET and an element isolation groove 46 reaching a heterojunction interface 44 between adjacent FETs. This has improved the electrical isolation of the FET, especially the side gate effect. In FIG. 4, 41 is a semi-insulating GaAs substrate, 43
Is a GaAs layer, 45 is an ohmic electrode, 47 and 48 are ohmic electrodes, and 49 is a gate electrode.

【0004】[0004]

【発明が解決しようとする課題】化合物半導体を用いた
FETによって利得の高い増幅回路を作り上げる場合、
サイドゲート効果の抑制と共に、低周波振動と呼ばれる
現象を抑制することが重要である。この低周波振動とい
う現象は入力信号がない場合でも集積回路内のFETに
流れる電流が定常的に自己発振してしまう現象であり、
その周波数が室温で数Hz程度と非常に低いことから”
低周波振動”と呼ばれている。上記従来技術では低周波
振動に対する抑制効果が不完全であり、従来技術による
集積回路では異常な動作をするという問題があった。例
えば利得50dBのリミット増幅器を作った場合、集積
回路内で生じた低周波振動が増幅され、出力振幅を飽和
する大きさの低周波振動ノイズが生じる不良が多発し
た。
When an amplifier circuit having a high gain is constructed by an FET using a compound semiconductor,
It is important to suppress the phenomenon called low frequency vibration together with the suppression of the side gate effect. This phenomenon of low frequency oscillation is a phenomenon in which the current flowing through the FET in the integrated circuit steadily self-oscillates even when there is no input signal.
Because its frequency is very low, around a few Hz at room temperature "
This is called "low frequency vibration." In the above-mentioned prior art, the effect of suppressing low frequency vibration is incomplete, and there is a problem that the integrated circuit according to the prior art operates abnormally. For example, a limit amplifier with a gain of 50 dB is used. When it was made, the low-frequency vibration generated in the integrated circuit was amplified, and there were many defects in which low-frequency vibration noise of a size that saturates the output amplitude was generated.

【0005】本発明の目的は、低周波振動を低減できる
素子分離構造を提案し、超高速動作に最適な化合物半導
体集積回路およびその集積回路を用いた光再生中継器を
提供することにある。
It is an object of the present invention to propose an element isolation structure capable of reducing low frequency vibrations, and to provide a compound semiconductor integrated circuit most suitable for ultra-high speed operation and an optical regenerator using the integrated circuit.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
に、まず隣接した電界効果トランジスタの間の半導体表
面に孤立半導体層を選択成長によって形成し、さらに半
絶縁性基板まで達する深さの素子分離溝を形成した。
In order to achieve the above object, first, an isolated semiconductor layer is formed on a semiconductor surface between adjacent field effect transistors by selective growth, and a device having a depth reaching a semi-insulating substrate. A separation groove was formed.

【0007】[0007]

【作用】我々は低周波振動のメカニズムについて解析を
行ない、次のような結果が得られた。まず基板裏面電極
に対して基板表面の素子に負の(直流)電圧を印加して
ゆくと、ある電圧に達したとき基板電極と素子の間を流
れる電流が0.4Hz〜5Hzという低周波で振動し始
める。その電流の大きさは600μmの厚さの半絶縁性
GaAs基板を用いた場合、数nA程度であり、振動振
幅も1nA以下と非常に小さい。この現象は半絶縁性G
aAs基板が深い準位により負性抵抗を持ち、素子から
基板電極に向けて高電界ドメインが走行するためと理解
されている。
[Function] We analyzed the mechanism of low-frequency vibration and obtained the following results. First, when a negative (direct current) voltage is applied to the element on the front surface of the substrate with respect to the electrode on the back surface of the substrate, when a certain voltage is reached, the current flowing between the substrate electrode and the element is at a low frequency of 0.4 Hz to 5 Hz. It begins to vibrate. When a semi-insulating GaAs substrate having a thickness of 600 μm is used, the magnitude of the current is about several nA, and the vibration amplitude is very small, 1 nA or less. This phenomenon is semi-insulating
It is understood that the aAs substrate has a negative resistance due to a deep level, and a high electric field domain travels from the element toward the substrate electrode.

【0008】ところがその素子に隣接してFETがある
場合は、従来の素子分離技術では、素子と基板電極の間
に走行する高電界ドメインがFETのチャネル下部の電
位を変動し、FETのドレイン電流に大きな影響を及ぼ
す。例えば40μmの距離をへだてて隣接するゲート幅
50μmのFETのドレイン電流に現われる振動振幅は
100μA以上におよび、この大きな電流振動が回路動
作に重大な支障を与えている。
However, when an FET is adjacent to the element, in the conventional element isolation technique, the high electric field domain running between the element and the substrate electrode changes the potential under the channel of the FET, and the drain current of the FET is changed. Have a great effect on. For example, the oscillation amplitude appearing in the drain current of an FET having a gate width of 50 μm adjacent to each other over a distance of 40 μm is 100 μA or more, and this large current oscillation seriously hinders the circuit operation.

【0009】つまり、素子と基板間の微小電流が振動す
る現象を抑制すれば、FETのドレイン電流の振動を回
避し、集積回路としたときの低周波振動を抑制すること
ができる。
In other words, by suppressing the phenomenon in which the minute current between the element and the substrate vibrates, it is possible to avoid the vibration of the drain current of the FET and suppress the low frequency vibration in the integrated circuit.

【0010】図5は本発明の効果を示したグラフであ
る。縦軸には基板裏面電極と基板表面の素子の間に−1
0Vを印加した時の電流の振動振幅、横軸には素子分離
溝の深さを示した。横軸において素子分離溝は深さ0.
4μmで半絶縁性基板に達する。孤立半導体層を形成し
ない従来構造では、FET間に素子分離溝を設け、その
分離溝の深さを深くしても低周波振動に対する改善効果
は見られていない。ところが、素子の周辺に孤立半導体
層を配した構造では0.4μm以上すなわち半絶縁性基
板に達する深さ以上に深くすると、振動振幅は0.2n
A以下に低減し、低周波振動が著しく改善できることが
わかる。本発明ではこのように素子と基板の間の微小電
流の振動が抑制されるので、隣接するFETのドレイン
電流も振動せず、回路動作にも振動ノイズは現われなか
った。
FIG. 5 is a graph showing the effect of the present invention. The vertical axis indicates -1 between the substrate backside electrode and the substrate surface element.
The oscillation amplitude of the current when 0 V was applied, and the horizontal axis represents the depth of the element isolation groove. The element isolation groove has a depth of 0.
The semi-insulating substrate is reached at 4 μm. In the conventional structure in which the isolated semiconductor layer is not formed, even if the element isolation groove is provided between the FETs and the depth of the isolation groove is increased, the effect of improving the low frequency vibration is not observed. However, in the structure in which the isolated semiconductor layer is arranged around the element, when the depth is 0.4 μm or more, that is, the depth reaching the semi-insulating substrate, the vibration amplitude is 0.2 n.
It can be seen that the frequency is reduced to A or less and the low frequency vibration can be remarkably improved. In the present invention, since the vibration of the minute current between the element and the substrate is suppressed in this way, the drain current of the adjacent FET also does not vibrate, and the vibration noise does not appear in the circuit operation.

【0011】[0011]

【実施例】以下本発明の実施例1を図1,図2,図6に
よって説明する。図1は素子分離構造の平面図、図2は
HIGFET(Heterostructure Insulated-Gate FET)と
呼ばれるタイプのFETと素子分離構造の断面構造図、
図6(a)〜(c)はその製造工程を示した断面構造図
である。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT A first embodiment of the present invention will be described below with reference to FIGS. 1 is a plan view of an element isolation structure, FIG. 2 is a cross-sectional structure diagram of a type of FET called HIGFET (Heterostructure Insulated-Gate FET) and the element isolation structure,
6A to 6C are sectional structural views showing the manufacturing process.

【0012】まずその製造工程を説明する。図6(a)
において半絶縁性GaAs基板1上にMBE(分子線エ
ピタキシャル)法によってアンドープGaAsバッファ
層2、p型GaAs層3、n型GaAs能動層4、アン
ドープAlGaAs層5を連続的に順次成長する。成長
時の基板温度は約510℃が好適であった。ここで各層
の厚さおよび不純物濃度は、表1に示すとおりである。
半絶縁性GaAs基板1は通常アンドープLEC基板ま
たはCrドープLEC基板を用いる。またアンドープA
lGaAs層5の組成比は通常Al0.3 Ga0.7 Asを
選ぶ。
First, the manufacturing process will be described. Figure 6 (a)
In FIG. 3, an undoped GaAs buffer layer 2, a p-type GaAs layer 3, an n-type GaAs active layer 4, and an undoped AlGaAs layer 5 are successively grown on a semi-insulating GaAs substrate 1 by MBE (Molecular Beam Epitaxial) method. The substrate temperature during growth was preferably about 510 ° C. Here, the thickness and impurity concentration of each layer are as shown in Table 1.
As the semi-insulating GaAs substrate 1, an undoped LEC substrate or a Cr-doped LEC substrate is usually used. Undoped A
The composition ratio of the 1GaAs layer 5 is usually selected from Al0.3 Ga0.7 As.

【0013】[0013]

【表1】 ─────────────────────────────────── 層名 成長膜厚(nm) 不純物濃度(1/cm3) 不純物 ─────────────────────────────────── アンドープAlGaAs層5 24 − − n型GaAs能動層4 15 3.6E18 Si p型GaAs層3 300 3.0E16 Be アンドープGaAsバッファ層2 300 − − ─────────────────────────────────── 次に図6(b)においてFETとなる部分の領域をSi
O2膜で覆い、ウエットエッチ液を用いてそれ以外の領
域の半導体表面をエッチングする。そのエッチング深さ
は200nmとする。次にSiO2膜を除去したのち、
厚さ600nmのWSix(タングステンシリサイド)
膜をスパッタ法により被着し、フォトリソグラフィーと
ドライエッチ加工を行なって耐熱性ゲート電極7を形成
する。ここでSiの組成比xは0.45とするのが適当
であった。またソース−ゲート間の抵抗を小さくするた
めに、耐熱性ゲート電極7を形成したあとにSiをイオ
ン注入する場合もある。その場合のイオン注入条件は、
加速エネルギー40keV,ドーズ量1×1014/cm2で
ある。
[Table 1] ─────────────────────────────────── Layer name Growth film thickness (nm) Impurity concentration ( 1 / cm3) Impurity ─────────────────────────────────── Undoped AlGaAs layer 5 24 − − n-type GaAs Active layer 4 15 3.6E18 Si p-type GaAs layer 3 300 3.0E16 Be undoped GaAs buffer layer 2 300 −− ───────────────────────── ─────────── Next, in FIG.
The surface of the semiconductor is covered with an O 2 film and the surface of the semiconductor other than the above is etched using a wet etchant. The etching depth is 200 nm. Next, after removing the SiO2 film,
600nm thick WSix (tungsten silicide)
The film is deposited by the sputtering method and subjected to photolithography and dry etching to form the heat resistant gate electrode 7. Here, it was appropriate that the composition ratio x of Si was 0.45. Further, in order to reduce the resistance between the source and the gate, Si may be ion-implanted after forming the heat resistant gate electrode 7. Ion implantation conditions in that case are
The acceleration energy is 40 keV and the dose amount is 1 × 10 14 / cm 2.

【0014】次に図6(c)においてプラズマCVD法
により厚さ100nmのSiON膜62を全面に堆積
し、フォトリソグラフィーと反応性イオンエッチング法
によりFETのソース,ドレイン電極部分と、孤立半導
体層を形成する部分のSiON膜をエッチングし、窓を
あける。エッチングガスとしては通常CF4とO2ガス
を用いる。その後さらに反応性イオンエッチング法によ
り半導体表面を70nmの深さまでエッチングし、FE
Tのソース,ドレイン電極にあたる部分のアンドープA
lGaAs層5を除去する。この時のエッチングガスに
はSiCl4を用いる。
Next, in FIG. 6C, a 100 nm thick SiON film 62 is deposited on the entire surface by plasma CVD, and the source and drain electrode portions of the FET and the isolated semiconductor layer are formed by photolithography and reactive ion etching. The SiON film in the portion to be formed is etched to open a window. CF4 and O2 gas are usually used as the etching gas. Then, the semiconductor surface is further etched to a depth of 70 nm by the reactive ion etching method, and FE
Undoped A of the source and drain electrodes of T
The lGaAs layer 5 is removed. SiCl4 is used as the etching gas at this time.

【0015】次に図6(d)において窓の開いたSiO
N膜62をマスクとして、MOCVD(有機金属熱分
解)法により高濃度n型選択成長層60および高濃度n
型孤立半導体層61を同時に成長する。成長時の温度は
通常700℃とし、原料ガスとしてはトリメチルガリウ
ムとアルシンを用いる。該層60および61はSiまた
はSeを4×1018/cm3の濃度でドープした厚さ320
nmのGaAsから成る。高濃度n型孤立半導体層61
の形状は図1に示すように一辺が7μmの正方形とし、
3μmの間隔で等間隔に並べる。
Next, in FIG. 6 (d), a window-opened SiO film is formed.
Using the N film 62 as a mask, the high-concentration n-type selective growth layer 60 and the high-concentration n are formed by MOCVD (Metal Organic Thermal Decomposition) method.
The type isolated semiconductor layer 61 is grown at the same time. The growth temperature is usually 700 ° C., and trimethylgallium and arsine are used as source gases. The layers 60 and 61 have a thickness 320 of Si or Se doped at a concentration of 4 × 10 18 / cm 3.
nm GaAs. High concentration n-type isolated semiconductor layer 61
The shape of is a square with a side of 7 μm as shown in FIG.
They are arranged at equal intervals of 3 μm.

【0016】次に図6(e)においてフォトリソグラフ
ィーと反応性イオンエッチング法によりSiON膜6
2,p型GaAs層3およびアンドープGaAsバッフ
ァ層2をエッチングし、半絶縁性基板1まで達する深さ
の素子分離溝9を形成する。該溝9の幅は1μm、深さ
は0.5μmとし、半絶縁性GaAs基板1に到達させ
る。該溝9の形状は図1に示すように、各FETの周囲
を囲むようにする。そして上記高濃度n型孤立半導体層
61は該溝9の周囲を囲むような配置となる。特に該溝
9の加工において、ECRと呼ばれる反応イオンエッチ
ング法を用い、エッチングガスとしてSiCl4 、マイ
クロ波放電パワー密度1.54kW/m2、圧力44m
Paの条件で加工を行なうと、深さ0.5μmの溝を形
成してもそのサイドエッチ量を0.2μm以下に抑える
ことができ、該溝9の加工形状を極めて良好にできる。
Next, referring to FIG. 6 (e), the SiON film 6 is formed by photolithography and reactive ion etching.
2, the p-type GaAs layer 3 and the undoped GaAs buffer layer 2 are etched to form an element isolation groove 9 having a depth reaching the semi-insulating substrate 1. The groove 9 has a width of 1 μm and a depth of 0.5 μm and reaches the semi-insulating GaAs substrate 1. As shown in FIG. 1, the shape of the groove 9 surrounds each FET. The high-concentration n-type isolated semiconductor layer 61 is arranged so as to surround the trench 9. Particularly in the processing of the groove 9, a reactive ion etching method called ECR is used, SiCl4 is used as an etching gas, microwave discharge power density is 1.54 kW / m2, and pressure is 44 m.
When processing is performed under the condition of Pa, even if a groove having a depth of 0.5 μm is formed, the side etch amount can be suppressed to 0.2 μm or less, and the processed shape of the groove 9 can be made extremely excellent.

【0017】このあと高濃度n型選択成長層60の上に
リフトオフ法によりオーミック電極8を形成し、図1お
よび図2のような素子分離構造および電界効果トランジ
スタができあがる。その後オーミック電極8および耐熱
性ゲート電極7の上に配線を行なって、集積回路が完成
する。なお上記高濃度n型孤立半導体層61には配線を
行なわず、該層61の電位は全てフロートとした。
After that, the ohmic electrode 8 is formed on the high-concentration n-type selective growth layer 60 by the lift-off method, and the element isolation structure and the field effect transistor as shown in FIGS. 1 and 2 are completed. After that, wiring is performed on the ohmic electrode 8 and the heat resistant gate electrode 7 to complete the integrated circuit. No wiring was formed in the high-concentration n-type isolated semiconductor layer 61, and the potential of the layer 61 was all float.

【0018】図7により本実施例の効果を説明する。図
7は隣接したFETのドレイン電流を測定したグラフで
ある。基板裏面電極は0V,一方のFETのソース電位
は−8V,注目したFETのソース電位は−1V,FE
T間の間隔は40μmである。従来の素子分離構造では
100μA以上の振幅で振動していたのに対し、本実施
例1の素子分離構造ではドレイン電流は一定値を示し、
低周波振動現象を完全に防止することができた。
The effect of this embodiment will be described with reference to FIG. FIG. 7 is a graph in which drain currents of adjacent FETs are measured. The backside electrode of the substrate is 0V, the source potential of one FET is -8V, the source potential of the noted FET is -1V, FE
The spacing between T is 40 μm. The conventional element isolation structure oscillates with an amplitude of 100 μA or more, whereas the element isolation structure of the first embodiment shows a constant drain current.
The low frequency vibration phenomenon could be completely prevented.

【0019】このように本実施例1によれば、FETと
基板間の微小電流の振動を抑制により、隣接するFET
のドレイン電流の低周波振動を防止することができる。
As described above, according to the first embodiment, by suppressing the vibration of the minute current between the FET and the substrate, the adjacent FET is
It is possible to prevent low frequency oscillation of the drain current of the.

【0020】また本実施例1によれば、高濃度n型選択
成長層60および高濃度n型孤立半導体層61のパタン
密度が高くかつチップ内でほぼ均一であるため、MOC
VD法による選択成長膜厚の面内分布を均一にする効果
がある。
Further, according to the first embodiment, since the pattern density of the high-concentration n-type selective growth layer 60 and the high-concentration n-type isolated semiconductor layer 61 is high and almost uniform in the chip, the MOC
This has the effect of making the in-plane distribution of the selectively grown film thickness by the VD method uniform.

【0021】上記実施例1においてFETの種類をHI
GFETとしたが、これらはもちろんMESFET(MEt
al-Semiconductor Field Effect Transistor) あるいは
HEMT(High-Electron Mobility Transistor) であっ
てもよい。
In the first embodiment, the type of FET is HI.
GFET, but of course these are MESFET (MEt
It may be an al-Semiconductor Field Effect Transistor) or a HEMT (High-Electron Mobility Transistor).

【0022】次に本発明の実施例2を図8によって説明
する。図8はHIGFETと素子分離構造の断面構造図
である。実施例1との違いは、アンドープGaAsバッ
ファ層2の代わりにアンドープGaAsバッファ層8
2,アンドープAlGaAsバッファ層83およびアン
ドープGaAsバッファ層84を設け、さらに素子分離
溝89を該アンドープAlGaAsバッファ層83に達
する深さまで設けた点である。アンドープGaAsバッ
ファ層82の膜厚は100nm,アンドープAlGaA
sバッファ層83の膜厚は300nmで組成比はAl0.
3Ga0.7As,アンドープGaAsバッファ層84の膜
厚は300nmとした。
Next, a second embodiment of the present invention will be described with reference to FIG. FIG. 8 is a sectional structural view of the HIGFET and the element isolation structure. The difference from the first embodiment is that the undoped GaAs buffer layer 8 is used instead of the undoped GaAs buffer layer 2.
2. An undoped AlGaAs buffer layer 83 and an undoped GaAs buffer layer 84 are provided, and an element isolation groove 89 is further provided to a depth reaching the undoped AlGaAs buffer layer 83. The film thickness of the undoped GaAs buffer layer 82 is 100 nm, and undoped AlGaA
The thickness of the s buffer layer 83 is 300 nm and the composition ratio is Al0.
The film thickness of 3 Ga0.7 As and undoped GaAs buffer layer 84 was 300 nm.

【0023】本実施例2によれば、HIGFETの低周
波振動現象を抑制できると共にサイドゲート耐圧を向上
するため、FET間の間隔を15μm程度に縮小でき
る。その結果FET間の配線容量および配線インダクタ
ンスによる帯域劣化が改善され、集積回路の高速性を向
上することができる。またチップ面積を小さくし、生産
コストを下げる効果もある。
According to the second embodiment, since the low frequency oscillation phenomenon of the HIGFET can be suppressed and the side gate breakdown voltage is improved, the distance between the FETs can be reduced to about 15 μm. As a result, band deterioration due to the wiring capacitance and wiring inductance between the FETs is improved, and the high speed operation of the integrated circuit can be improved. It also has the effect of reducing the chip area and reducing the production cost.

【0024】次に本発明の実施例3を図9,図10およ
び図11により説明する。図9は基本増幅器の回路図、
図10はリミット増幅器のブロックダイヤグラム、図1
1は光再生中継器の構成図である。
Next, a third embodiment of the present invention will be described with reference to FIGS. 9, 10 and 11. FIG. 9 is a circuit diagram of a basic amplifier,
FIG. 10 is a block diagram of the limit amplifier, and FIG.
1 is a block diagram of an optical regenerator.

【0025】本実施例3は実施例1もしくは実施例2で
示した素子分離構造を具体的に集積回路および光再生中
継器に応用した例である。まず図9に示した回路図のF
ETを図1および図2のような素子分離構造、または図
8に示した素子分離構造を用いて形成し、1段の基本増
幅器とした。ダイオードには通常ソースとドレインを短
絡したFETを用いており、その分離構造にも上記本発
明の素子分離構造を用いた。FETにはゲート長0.3
μmのHIGFETを用いた。次に図10に示すように
この基本増幅器を4個組み合わせて、リミット増幅器集
積回路を形成する。このリミット増幅器を図11のタイ
ミング抽出回路として使い、光通信用の光再生中継器を
構成する。
The third embodiment is an example in which the element isolation structure shown in the first or second embodiment is specifically applied to an integrated circuit and an optical regenerator. First, F of the circuit diagram shown in FIG.
ET was formed using the element isolation structure as shown in FIGS. 1 and 2 or the element isolation structure shown in FIG. 8 to form a single-stage basic amplifier. An FET having a short-circuited source and drain is usually used as the diode, and the element isolation structure of the present invention is also used as the isolation structure. Gate length is 0.3 for FET
A μm HIGFET was used. Next, as shown in FIG. 10, four basic amplifiers are combined to form a limit amplifier integrated circuit. This limit amplifier is used as the timing extraction circuit in FIG. 11 to construct an optical regenerator for optical communication.

【0026】本実施例3によれば低周波振動によるノイ
ズを持たない高利得、超高速リミット増幅器を実現で
き、さらに超高速、例えば10ギガビット毎秒で正常に
動作する光再生中継器を実現できる。
According to the third embodiment, it is possible to realize a high-gain, ultra-high-speed limit amplifier which does not have noise due to low-frequency vibration, and an optical regenerative repeater that operates normally at ultra-high speed, for example, 10 gigabits per second.

【0027】本実施例3において、図11の中の前置増
幅器、利得可変増幅器、主増幅器、および識別器に対し
ても図9の基本増幅回路を適用してもよい。その場合各
々の集積回路における低周波振動によるノイズを抑制で
き、光再生中継器の受信感度をさらに向上できる。
In the third embodiment, the basic amplifier circuit shown in FIG. 9 may be applied to the preamplifier, the variable gain amplifier, the main amplifier and the discriminator shown in FIG. In that case, noise due to low frequency vibration in each integrated circuit can be suppressed, and the receiving sensitivity of the optical regenerator can be further improved.

【0028】次に本発明の実施例4を図12により説明
する。実施例1との違いは高濃度n型孤立半導体層61
を素子分離溝9の周囲に1列だけ並べた点である。
Next, a fourth embodiment of the present invention will be described with reference to FIG. The difference from the first embodiment is the high-concentration n-type isolated semiconductor layer 61.
Is a line in which only one row is arranged around the element isolation groove 9.

【0029】本実施例4によれば、集積回路のマスク図
面の製作作業において、該層61,該溝9およびFET
を1セットのデータとして登録し作業することができ、
マスクレイアウト作業の効率を向上することができる。
またマスク製作時の数値データの量も大幅に少なくなる
ため、マスク製作時の電算機処理にかかる費用を削減す
ることができる。
According to the fourth embodiment, the layer 61, the groove 9 and the FET are used in the process of manufacturing the mask drawing of the integrated circuit.
You can register and work as one set of data,
The efficiency of mask layout work can be improved.
Further, the amount of numerical data at the time of manufacturing a mask is significantly reduced, so that it is possible to reduce the cost for computer processing at the time of manufacturing a mask.

【0030】次に本発明の実施例5を図13により説明
する。実施例1との違いは高濃度n型孤立半導体層61
の代わりに孤立オーミック電極98を用いた点である。
該電極98は配線を設けず、その電位は全てフロートで
ある。
Next, a fifth embodiment of the present invention will be described with reference to FIG. The difference from the first embodiment is the high-concentration n-type isolated semiconductor layer 61.
The point is that an isolated ohmic electrode 98 is used instead of.
The electrode 98 has no wiring and its potential is all floating.

【0031】本実施例5によれば、孤立パタンである該
電極98を高濃度n型選択成長層60と独立のプロセス
によって形成することができ、例えば該層60の形成プ
ロセスをイオン注入法に変えるなどの変更が可能とな
り、プロセスの自由度を上げることができる。
According to the fifth embodiment, the electrode 98, which is an isolated pattern, can be formed by a process independent of the high concentration n-type selective growth layer 60. For example, the formation process of the layer 60 is an ion implantation method. Changes such as changes can be made, and the process flexibility can be increased.

【0032】[0032]

【発明の効果】本発明によれば、電界効果トランジスタ
およびその集積回路における低周波振動現象を抑制で
き、超高速動作に最適な化合物半導体電界効果トランジ
スタによる集積回路および光再生中継器を提供すること
ができる。
According to the present invention, it is possible to provide an integrated circuit and an optical regenerator using a compound semiconductor field effect transistor which can suppress a low frequency oscillation phenomenon in the field effect transistor and its integrated circuit and which is optimum for an ultra-high speed operation. You can

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例1の素子分離構造の平面図であ
る。
FIG. 1 is a plan view of an element isolation structure according to a first embodiment of the present invention.

【図2】本発明の実施例1の電界効果トランジスタおよ
び素子分離構造の断面図である。
FIG. 2 is a sectional view of a field effect transistor and an element isolation structure of Example 1 of the present invention.

【図3】従来の素子分離構造の例を示した図である。FIG. 3 is a diagram showing an example of a conventional element isolation structure.

【図4】従来の素子分離構造の例を示した図である。FIG. 4 is a diagram showing an example of a conventional element isolation structure.

【図5】本発明の効果を示した図である。FIG. 5 is a diagram showing an effect of the present invention.

【図6】(a)〜(e)は本発明の実施例1の電界効果
トランジスタおよび素子分離構造の製造工程を説明する
断面構造図である。
6 (a) to 6 (e) are cross-sectional structural views illustrating a manufacturing process of a field effect transistor and an element isolation structure of Example 1 of the present invention.

【図7】本発明の実施例1による効果を示したグラフで
ある。
FIG. 7 is a graph showing the effect of the first embodiment of the present invention.

【図8】本発明の実施例2の電界効果トランジスタおよ
び素子分離構造の断面図である。
FIG. 8 is a sectional view of a field effect transistor and an element isolation structure of Example 2 of the present invention.

【図9】本発明の実施例3の基本増幅器の回路図であ
る。
FIG. 9 is a circuit diagram of a basic amplifier according to a third embodiment of the present invention.

【図10】本発明の実施例3のリミット増幅器のブロッ
クダイアグラムである。
FIG. 10 is a block diagram of a limit amplifier according to a third embodiment of the present invention.

【図11】本発明の実施例3の光再生中継器の構成図で
ある。
FIG. 11 is a configuration diagram of an optical regenerator according to a third embodiment of the present invention.

【図12】本発明の実施例4の素子分離構造の平面図で
ある。
FIG. 12 is a plan view of an element isolation structure of Example 4 of the present invention.

【図13】本発明の実施例5の素子分離構造の平面図で
ある。
FIG. 13 is a plan view of an element isolation structure of Example 5 of the present invention.

【符号の説明】[Explanation of symbols]

1…半絶縁性GaAs基板、2…アンドープGaAsバ
ッファ層、3…p型GaAs層、4…n型GaAs能動
層、5…アンドープAlGaAs層、7…耐熱性ゲート
電極、8…オーミック電極、9…素子分離溝、31…半
絶縁性GaAs基板、32…アンドープGaAsバッフ
ァ層、33…n型AlGaAs電子供給層、34…n型
GaAsコンタクト層、35…オーミック電極、37…
ゲート電極、38…素子分離帯、39…素子分離帯、4
1…半絶縁性GaAs基板、42…AlGaAsバッフ
ァ層、43…GaAs層、44…ヘテロ接合界面、45
…オーミック電極、46…素子間分離溝、47,48…
オーミック電極、49…ゲート電極、60…高濃度n型
選択成長層、61…高濃度n型孤立半導体層、62…S
iON膜、82…アンドープGaAsバッファ層、83
…アンドープAlGaAsバッファ層、84…アンドー
プGaAsバッファ層、89…素子分離溝、98…孤立
オーミック電極、T1〜T3…FET(HEMT)。
1 ... Semi-insulating GaAs substrate, 2 ... Undoped GaAs buffer layer, 3 ... P-type GaAs layer, 4 ... N-type GaAs active layer, 5 ... Undoped AlGaAs layer, 7 ... Heat-resistant gate electrode, 8 ... Ohmic electrode, 9 ... Element isolation groove, 31 ... Semi-insulating GaAs substrate, 32 ... Undoped GaAs buffer layer, 33 ... N-type AlGaAs electron supply layer, 34 ... N-type GaAs contact layer, 35 ... Ohmic electrode, 37 ...
Gate electrode, 38 ... Element isolation band, 39 ... Element isolation band, 4
1 ... Semi-insulating GaAs substrate, 42 ... AlGaAs buffer layer, 43 ... GaAs layer, 44 ... Heterojunction interface, 45
... Ohmic electrodes, 46 ... Isolation trenches between elements, 47, 48 ...
Ohmic electrode, 49 ... Gate electrode, 60 ... High-concentration n-type selective growth layer, 61 ... High-concentration n-type isolated semiconductor layer, 62 ... S
iON film, 82 ... Undoped GaAs buffer layer, 83
... undoped AlGaAs buffer layer, 84 ... undoped GaAs buffer layer, 89 ... element isolation trench, 98 ... isolated ohmic electrode, T1 to T3 ... FET (HEMT).

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.5 識別記号 庁内整理番号 FI 技術表示箇所 H04B 10/16 (72)発明者 重田 淳二 東京都国分寺市東恋ケ窪1丁目280番地 株式会社日立製作所中央研究所内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 5 Identification number Reference number within the agency FI Technical indication location H04B 10/16 (72) Inventor Junji Shigeta 1-280, Higashi-Kengokubo, Kokubunji-shi, Tokyo Hitachi Central In the laboratory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】半絶縁性基板上にエピ成長により形成した
複数個の電界効果トランジスタからなる化合物半導体集
積回路において、隣接した電界効果トランジスタの間の
半導体表面に選択的に成長した孤立半導体層を設け、か
つ隣接した電界効果トランジスタの間に半絶縁性基板ま
で達する素子分離溝を設けたことを特徴とする化合物半
導体集積回路。
1. A compound semiconductor integrated circuit comprising a plurality of field effect transistors formed by epi growth on a semi-insulating substrate, wherein an isolated semiconductor layer selectively grown on a semiconductor surface between adjacent field effect transistors. A compound semiconductor integrated circuit, wherein an element isolation groove reaching the semi-insulating substrate is provided between adjacent field effect transistors.
【請求項2】ヘテロ接合バッファ層を有する複数個の電
界効果トランジスタからなる化合物半導体集積回路にお
いて、隣接した電界効果トランジスタの間の半導体表面
に選択的に成長した孤立半導体層を設け、かつ隣接した
電界効果トランジスタの間にヘテロ接合界面まで達する
素子分離溝を設けたことを特徴とする化合物半導体集積
回路。
2. A compound semiconductor integrated circuit comprising a plurality of field effect transistors having a heterojunction buffer layer, wherein a selectively grown isolated semiconductor layer is provided on and adjacent to a semiconductor surface between adjacent field effect transistors. A compound semiconductor integrated circuit characterized in that an element isolation groove reaching a heterojunction interface is provided between field effect transistors.
【請求項3】上記請求項1または請求項2に記載の化合
物半導体集積回路において、上記素子分離溝を各電界効
果トランジスタの周囲を囲むように形成し、上記孤立半
導体層を該素子分離溝の外側に複数個配置したことを特
徴とした化合物半導体集積回路。
3. The compound semiconductor integrated circuit according to claim 1 or 2, wherein the element isolation trench is formed so as to surround each field effect transistor, and the isolated semiconductor layer is formed in the element isolation trench. A compound semiconductor integrated circuit characterized in that a plurality of them are arranged outside.
【請求項4】上記請求項3に記載の化合物半導体集積回
路において、上記孤立半導体層を上記素子分離溝の外側
に等間隔に配置し、該孤立半導体層の間隔が該孤立半導
体層の幅より短いことを特徴とした化合物半導体集積回
路。
4. The compound semiconductor integrated circuit according to claim 3, wherein the isolated semiconductor layers are arranged at equal intervals outside the element isolation trench, and the intervals of the isolated semiconductor layers are greater than the width of the isolated semiconductor layers. A compound semiconductor integrated circuit characterized by being short.
【請求項5】複数個の電界効果トランジスタからなる化
合物半導体集積回路において、隣接した電界効果トラン
ジスタの間の半導体表面に他の素子と電気的に接続され
ていない電極を設け、かつ隣接した電界効果トランジス
タの間に半絶縁性基板まで達する素子分離溝を設けたこ
とを特徴とする化合物半導体集積回路。
5. A compound semiconductor integrated circuit comprising a plurality of field effect transistors, wherein an electrode not electrically connected to another element is provided on the semiconductor surface between adjacent field effect transistors, and the adjacent field effect transistors are provided. A compound semiconductor integrated circuit characterized in that an element isolation groove reaching a semi-insulating substrate is provided between transistors.
【請求項6】上記請求項1ないし請求項5記載のいずれ
かの化合物半導体集積回路を用いたことを特徴とする光
再生中継器。
6. An optical regenerator using the compound semiconductor integrated circuit according to any one of claims 1 to 5.
JP04073682A 1992-03-30 1992-03-30 Compound semiconductor integrated circuit and optical regenerator Expired - Fee Related JP3092298B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP04073682A JP3092298B2 (en) 1992-03-30 1992-03-30 Compound semiconductor integrated circuit and optical regenerator
US08/036,787 US5523593A (en) 1992-03-30 1993-03-25 Compound semiconductor integrated circuit and optical regenerative repeater using the same
KR1019930004812A KR100312368B1 (en) 1992-03-30 1993-03-26 Compound semiconductor integrated circuit and optical regenerator using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP04073682A JP3092298B2 (en) 1992-03-30 1992-03-30 Compound semiconductor integrated circuit and optical regenerator

Publications (2)

Publication Number Publication Date
JPH05275474A true JPH05275474A (en) 1993-10-22
JP3092298B2 JP3092298B2 (en) 2000-09-25

Family

ID=13525233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP04073682A Expired - Fee Related JP3092298B2 (en) 1992-03-30 1992-03-30 Compound semiconductor integrated circuit and optical regenerator

Country Status (2)

Country Link
JP (1) JP3092298B2 (en)
KR (1) KR100312368B1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739559A (en) * 1994-03-17 1998-04-14 Hitachi, Ltd. Compound semiconductor integrated circuit with a particular high resistance layer
US6218685B1 (en) 1998-01-08 2001-04-17 Matsushita Electronics Corporation Semiconductor device and method for fabricating the same
JP2008147607A (en) * 2006-12-07 2008-06-26 Samsung Sdi Co Ltd Semiconductor device, organic light emitting display device with the same, and method of manufacturing the semiconductor device
US7759698B2 (en) 2006-02-14 2010-07-20 National Institute Of Advanced Industrial Science And Technology Photo-field effect transistor and integrated photodetector using the same
CN107680977A (en) * 2017-08-29 2018-02-09 上海集成电路研发中心有限公司 A kind of back-illuminated type pixel cell structure for reducing dark current and forming method thereof
CN107706201A (en) * 2017-08-29 2018-02-16 上海微阱电子科技有限公司 A kind of back-illuminated type pixel cell structure for reducing dark current and forming method thereof
CN107919372A (en) * 2017-10-26 2018-04-17 上海集成电路研发中心有限公司 A kind of back-illuminated cmos image sensors pixel unit and preparation method thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5739559A (en) * 1994-03-17 1998-04-14 Hitachi, Ltd. Compound semiconductor integrated circuit with a particular high resistance layer
US6218685B1 (en) 1998-01-08 2001-04-17 Matsushita Electronics Corporation Semiconductor device and method for fabricating the same
US7759698B2 (en) 2006-02-14 2010-07-20 National Institute Of Advanced Industrial Science And Technology Photo-field effect transistor and integrated photodetector using the same
JP2008147607A (en) * 2006-12-07 2008-06-26 Samsung Sdi Co Ltd Semiconductor device, organic light emitting display device with the same, and method of manufacturing the semiconductor device
US8981348B2 (en) 2006-12-07 2015-03-17 Samsung Display Co., Ltd. Semiconducting element, organic light emitting display including the same, and method of manufacturing the semiconducting element
CN107680977A (en) * 2017-08-29 2018-02-09 上海集成电路研发中心有限公司 A kind of back-illuminated type pixel cell structure for reducing dark current and forming method thereof
CN107706201A (en) * 2017-08-29 2018-02-16 上海微阱电子科技有限公司 A kind of back-illuminated type pixel cell structure for reducing dark current and forming method thereof
CN107680977B (en) * 2017-08-29 2020-06-09 上海集成电路研发中心有限公司 Back-illuminated pixel unit structure for reducing dark current and forming method thereof
CN107706201B (en) * 2017-08-29 2020-06-30 上海微阱电子科技有限公司 Back-illuminated pixel unit structure for reducing dark current and forming method thereof
CN107919372A (en) * 2017-10-26 2018-04-17 上海集成电路研发中心有限公司 A kind of back-illuminated cmos image sensors pixel unit and preparation method thereof

Also Published As

Publication number Publication date
KR930020752A (en) 1993-10-20
JP3092298B2 (en) 2000-09-25
KR100312368B1 (en) 2002-11-08

Similar Documents

Publication Publication Date Title
JPS60120551A (en) Semiconductor integrated circuit device
US5266506A (en) Method of making substantially linear field-effect transistor
US5294566A (en) Method of producing a semiconductor integrated circuit device composed of a negative differential resistance element and a FET transistor
JP3092298B2 (en) Compound semiconductor integrated circuit and optical regenerator
US6033942A (en) Method of forming a metal-semiconductor field effect transistors having improved intermodulation distortion using different pinch-off voltages
KR100329682B1 (en) Compound semiconductor integrated circuit
US5523593A (en) Compound semiconductor integrated circuit and optical regenerative repeater using the same
US5949097A (en) Semiconductor device, method for manufacturing same, communication system and electric circuit system
KR0174879B1 (en) Method for isolating compound semiconductor device
JP3036404B2 (en) Semiconductor device and manufacturing method thereof
EP0367411A2 (en) Heterojunction semiconductor devices and methods of making the same
JPH03145139A (en) Field-effect transistor and manufacture thereof
JPH08330325A (en) Fabrication of field effect transistor
JPS59181060A (en) Semiconductor device
JP3319486B2 (en) Heterojunction semiconductor device and manufacturing method thereof
EP0276981B1 (en) Semiconductor integrated circuit device and method of producing same
JP3164150B2 (en) Method for manufacturing field effect transistor
JP2829754B2 (en) Heterojunction electrostatic induction transistor and method of manufacturing the same
JPH05283439A (en) Semiconductor device
Cheng et al. Silicon Oxide enhanced Schottky gate In 0.53 Ga 0.47 As FET's with a self-aligned recessed gate structure
JPH05235045A (en) Field-effect transistor
JP2834172B2 (en) Field effect transistor
JPH04212428A (en) Manufacture of semiconductor device
JPH06163598A (en) High electron mobility transistor
Gräber et al. The Permeable Junction Base Transistor with a new Gate of extremely high doped p++-GaAs

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080728

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees