JPH05275314A - Stepper - Google Patents
StepperInfo
- Publication number
- JPH05275314A JPH05275314A JP4070811A JP7081192A JPH05275314A JP H05275314 A JPH05275314 A JP H05275314A JP 4070811 A JP4070811 A JP 4070811A JP 7081192 A JP7081192 A JP 7081192A JP H05275314 A JPH05275314 A JP H05275314A
- Authority
- JP
- Japan
- Prior art keywords
- wafer
- focus
- autofocus
- value
- irradiated
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
- Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、オートフォーカス機能
を有するステッパに関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a stepper having an autofocus function.
【0002】[0002]
【従来の技術】従来のオートフォーカス機能をもったス
テッパでは、ウェハのセンターあるいは、ハード的な特
定点にオートフォーカス用ビームが照射され、その反射
光からフォーカス値が算出され、そのフォーカス値によ
り焦点位置が制御される構成となっている。2. Description of the Related Art In a conventional stepper having an autofocus function, a center of a wafer or a specific hardware point is irradiated with an autofocus beam, a focus value is calculated from the reflected light, and a focus value is calculated based on the focus value. The position is controlled.
【0003】[0003]
【発明が解決しようとする課題】ところで、従来技術で
は、オートフォーカス用ビームは、ある特定点に照射さ
れその反射光によりオートフォーカス値を演算し、フォ
ーカス制御するので、たとえば、下地に段差がある場
合、その上部と下部ではビームの照射位置のずれによ
り、フォーカス値に誤差を生じる。この誤差により、パ
ターン解像は著しく低下する結果となり、LSIの超微
細化に伴い、益々致命的となる。By the way, in the prior art, the beam for autofocus is irradiated to a certain specific point and the autofocus value is calculated by the reflected light thereof to control the focus. In this case, an error occurs in the focus value due to the deviation of the beam irradiation position between the upper part and the lower part. Due to this error, the pattern resolution is remarkably lowered, and becomes more and more fatal with the miniaturization of the LSI.
【0004】本発明は以上の点に鑑みてなされたもので
あり、フォーカス値の誤差をなくし、パターン解像度を
向上することができるオートフォーカス機能を有するス
テッパを提供することを目的とする。The present invention has been made in view of the above points, and an object of the present invention is to provide a stepper having an autofocus function capable of eliminating the error of the focus value and improving the pattern resolution.
【0005】[0005]
【課題を解決するための手段】上記の目的を達成するた
めに、本発明のステッパはオートフォーカス用ビームが
照射されるウェハの照射位置情報を入力する入力部と、
その位置情報に基づいて得られる上記ビーム照射点にお
けるウェハの断面形状と、その断面形状により得られる
フォーカスオフセット入力値とに基づいてオートフォー
カス値を演算する演算部と、その演算部の演算結果に基
づいて、上記ウェハ上にオートフォーカス用ビームを照
射するビーム照射部と、そのビームが上記ウェハを反射
する反射ビームの反射信号を検出する検出部とにより構
成されるとともに、上記反射信号に基づいて演算された
オートフォーカス値によりフォーカス制御を行うよう構
成されたことによって特徴付けられる。In order to achieve the above object, a stepper of the present invention comprises an input section for inputting irradiation position information of a wafer irradiated with an autofocus beam,
A cross-sectional shape of the wafer at the beam irradiation point obtained based on the position information, a calculation unit that calculates the autofocus value based on the focus offset input value obtained by the cross-sectional shape, and the calculation result of the calculation unit. Based on the above-mentioned reflection signal, the beam irradiation unit for irradiating the beam for autofocus on the wafer and the detection unit for detecting the reflection signal of the reflection beam which reflects the wafer. It is characterized by being configured to perform focus control by the calculated autofocus value.
【0006】[0006]
【作用】入力部にオートフォーカス用ビームが照射され
るウェハの照射位置情報を入力することにより、その位
置におけるウェハの断面形状が得られる。したがって、
その断面形状に対応するフォーカスオフセット値および
その断面形状に基づいたオートフォーカス値が得られ
る。By inputting the irradiation position information of the wafer on which the autofocus beam is irradiated to the input section, the sectional shape of the wafer at that position can be obtained. Therefore,
A focus offset value corresponding to the sectional shape and an autofocus value based on the sectional shape are obtained.
【0007】また、そのオートフォーカス値に応じて照
射されたビームの反射ビームの反射信号に基づいて、再
びそのオートフォーカス値を得て、フォーカス制御を行
うので誤差のない最適なフォーカス制御となる。Further, the autofocus value is obtained again based on the reflection signal of the reflected beam of the beam emitted according to the autofocus value, and the focus control is performed, so that the optimum focus control without error is performed.
【0008】[0008]
【実施例】図1は本発明実施例のブロック構成図であ
る。この図面を参照しつつ、本発明実施例を説明する。FIG. 1 is a block diagram of an embodiment of the present invention. Embodiments of the present invention will be described with reference to the drawings.
【0009】本発明のステッパは、ビームを照射するウ
ェハ上の座標点を入力するビーム照射座標入力部1と、
ステッパメインCPU2aのもとに演算を行うフォーカ
スコントロール演算回路2bを有する演算部2と、その
演算結果に基づいてビームを照射する照射部3および照
射された光の反射ビームを検出する反射ビーム検出部4
とにより構成されている。The stepper of the present invention comprises a beam irradiation coordinate input section 1 for inputting coordinate points on a wafer for beam irradiation.
An arithmetic unit 2 having a focus control arithmetic circuit 2b that performs an operation under the stepper main CPU 2a, an irradiation unit 3 that irradiates a beam based on the operation result, and a reflected beam detection unit that detects a reflected beam of the emitted light. Four
It is composed of and.
【0010】以上の構成よりなる本発明実施例の動作を
次に説明する。まず、ビーム照射入力部1では、オート
フォーカス用ビームが照射されるウェハの照射点の座標
をキー入力する。この入力座標の入力値によりビーム照
射点におけるウェハの断面形状が得られ、また、その断
面形状によりフォーカスオフセット入力値が得られる。
ステッパメインCPU2のもとで、フォーカスコントロ
ール演算回路2bにおいては、この断面形状とフォーカ
スオフセット入力値とに基づいて、オートフォーカス値
の演算が行なわれる。このオートフォーカス値は照射点
におけるウェハの断面形状と、フォーカスオフセット入
力値とに基づいて求められる。さらに、オートフォーカ
ス用ビーム照射部4では、この演算結果に基づいて焦点
位置の制御がなされ、オートフォーカス用ビームが照射
される。そして、反射ビーム検出部5では、ウェハ上に
照射されたビームが反射する反射ビームの反射信号を検
出し、その反射信号は再び、ステッパメインCPU2の
もとで、フォーカスコントロール演算回路2bにおい
て、再びオートフォーカス値が演算され、先に得られた
演算値の補正がなされ、この結果、誤差のない最適なフ
ォーカス制御となる。The operation of the embodiment of the present invention having the above configuration will be described below. First, in the beam irradiation input unit 1, the coordinates of the irradiation point of the wafer to which the beam for autofocus is irradiated are keyed. The cross-sectional shape of the wafer at the beam irradiation point is obtained from the input value of this input coordinate, and the focus offset input value is obtained from the cross-sectional shape.
Under the stepper main CPU 2, the focus control calculation circuit 2b calculates the autofocus value based on the sectional shape and the focus offset input value. This autofocus value is obtained based on the wafer cross-sectional shape at the irradiation point and the focus offset input value. Further, in the auto-focus beam irradiation unit 4, the focus position is controlled based on the calculation result, and the auto-focus beam is irradiated. Then, the reflected beam detection unit 5 detects the reflected signal of the reflected beam reflected by the beam irradiated on the wafer, and the reflected signal is again detected by the focus control arithmetic circuit 2b under the stepper main CPU 2 again. The autofocus value is calculated, and the previously obtained calculated value is corrected, resulting in optimum focus control without error.
【0011】この実施例では、下地段差がある場合で
も、その断面形状が明らかとなり、その上部と下部の差
により、照射すべきビームの焦点距離を求めることがで
きる。このように、任意の点でのフォーカス値の算出が
可能となる。In this embodiment, even if there is a step difference in the underlying layer, its cross-sectional shape becomes clear, and the focal length of the beam to be irradiated can be obtained from the difference between the upper part and the lower part. In this way, the focus value can be calculated at any point.
【0012】[0012]
【発明の効果】以上説明したように、本発明のステッパ
によれば、オートフォーカス用ビームが照射されるウェ
ハの照射点の位置情報を入力することにより、その点で
の断面形状が明らかとなり、その形状に応じたフォーカ
ス値を得てフォーカス制御を行うよう構成したので、フ
ォーカス値の誤差を改善できる。さらに、そのフォーカ
ス値に応じて照射されたビームの反射ビームの反射信号
に基づいて、再びそのオートフォーカス値を得て、フォ
ーカス制御を行うので誤差のない最適なフォーカス制御
を行うことができる。この結果、得られるパターンは解
像度の向上したものとなり、LSIの微細化に対応でき
るものとなる。As described above, according to the stepper of the present invention, by inputting the positional information of the irradiation point of the wafer to which the beam for autofocus is irradiated, the sectional shape at that point becomes clear, Since the focus control is performed by obtaining the focus value according to the shape, the focus value error can be improved. Further, since the autofocus value is obtained again based on the reflection signal of the reflected beam of the beam emitted according to the focus value and the focus control is performed, the optimum focus control without error can be performed. As a result, the obtained pattern has an improved resolution, and can correspond to the miniaturization of the LSI.
【図1】本発明実施例のブロック構成図FIG. 1 is a block diagram of an embodiment of the present invention.
1・・・・ビーム照射座標入力部 2・・・・演算部 2a・・・・ステッパメインCPU 2b・・・・フォーカスコントロール演算回路 3・・・・オートフォーカスビーム照射部 4・・・・反射ビーム検出部 1 ... Beam irradiation coordinate input unit 2 ... Calculation unit 2a ... Stepper main CPU 2b ... Focus control calculation circuit 3 ... Autofocus beam irradiation unit 4 ... Reflection Beam detector
Claims (1)
ウェハの照射位置情報を入力する入力部と、その位置情
報に基づいて得られる上記ビーム照射点におけるウェハ
の断面形状と、その断面形状により得られるフォーカス
オフセット入力値とに基づいてオートフォーカス値を演
算する演算部と、その演算部の演算結果に基づいて、上
記ウェハ上にオートフォーカス用ビームを照射するビー
ム照射部と、そのビームが上記ウェハを反射する反射ビ
ームの反射信号を検出する検出部とにより構成されると
ともに、上記反射信号に基づいて演算されたオートフォ
ーカス値によりフォーカス制御を行うよう構成されたス
テッパ。1. An input unit for inputting irradiation position information of a wafer to which an autofocus beam is irradiated, a cross-sectional shape of the wafer at the beam irradiation point obtained based on the position information, and the cross-sectional shape. A calculation unit that calculates the autofocus value based on the focus offset input value, a beam irradiation unit that irradiates an autofocus beam on the wafer based on the calculation result of the calculation unit, and the beam that irradiates the wafer. A stepper configured to include a detection unit that detects a reflection signal of a reflected reflection beam, and to perform focus control with an autofocus value calculated based on the reflection signal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4070811A JPH05275314A (en) | 1992-03-27 | 1992-03-27 | Stepper |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP4070811A JPH05275314A (en) | 1992-03-27 | 1992-03-27 | Stepper |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05275314A true JPH05275314A (en) | 1993-10-22 |
Family
ID=13442331
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP4070811A Pending JPH05275314A (en) | 1992-03-27 | 1992-03-27 | Stepper |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05275314A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5690785A (en) * | 1995-03-13 | 1997-11-25 | Yamaha Corporation | Lithography control on uneven surface |
KR19980015613A (en) * | 1996-08-23 | 1998-05-25 | 문정환 | Focus adjustment method of exposure apparatus |
JP2006086312A (en) * | 2004-09-16 | 2006-03-30 | Renesas Technology Corp | Semiconductor device manufacturing method |
-
1992
- 1992-03-27 JP JP4070811A patent/JPH05275314A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5690785A (en) * | 1995-03-13 | 1997-11-25 | Yamaha Corporation | Lithography control on uneven surface |
KR19980015613A (en) * | 1996-08-23 | 1998-05-25 | 문정환 | Focus adjustment method of exposure apparatus |
JP2006086312A (en) * | 2004-09-16 | 2006-03-30 | Renesas Technology Corp | Semiconductor device manufacturing method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0230578B1 (en) | Scanning laser microscope | |
KR101974990B1 (en) | Focus monitoring method using asymmetry embedded imaging target | |
JPH05275314A (en) | Stepper | |
JPS587823A (en) | Alignment method and device thereof | |
KR100776496B1 (en) | Method for wafer leveling | |
KR100720215B1 (en) | Photomask correction device | |
JP2001085300A (en) | Method for detecting mark and manufacture of electron beam device and semiconductor device | |
JPH11233398A (en) | Aligner and exposure method | |
JPH07151514A (en) | Superposition accuracy measuring method and measuring device | |
JPH09106945A (en) | Alignment method of particle beam, irradiation method and device using the method | |
JP2636676B2 (en) | Exposure apparatus and focusing method thereof | |
JPS6369226A (en) | Particle-beam exposure device | |
JPH04168718A (en) | Aligner | |
JP2720193B2 (en) | Wafer foreign matter identification method | |
JPH1195410A (en) | Method and device for inspecting defect of photomask | |
JP2006308400A (en) | Method of detecting mark position and device thereof | |
JPH10230381A (en) | Working device | |
JP2001284233A (en) | Reduction projection exposure system and method | |
KR980010641A (en) | Aligned Key Recognition Method for Semiconductor Exposure Equipment | |
JPH01128523A (en) | Position detector | |
JPH03184316A (en) | Manufacture of semiconductor device | |
JPH10270335A (en) | Apparatus for focusing | |
JP2005147773A (en) | Pattern size measurement method | |
JPS6030578A (en) | Device for detecting sectional shape of shoulder part of welding groove and central position of groove | |
JP2009266859A (en) | Exposure method and manufacturing method of semiconductor device |