JPH05275193A - Plasma generating device - Google Patents

Plasma generating device

Info

Publication number
JPH05275193A
JPH05275193A JP4097271A JP9727192A JPH05275193A JP H05275193 A JPH05275193 A JP H05275193A JP 4097271 A JP4097271 A JP 4097271A JP 9727192 A JP9727192 A JP 9727192A JP H05275193 A JPH05275193 A JP H05275193A
Authority
JP
Japan
Prior art keywords
plate
discharge
gas
electrode
plasma
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4097271A
Other languages
Japanese (ja)
Inventor
Hideomi Koinuma
秀臣 鯉沼
Tadashi Shiraishi
正 白石
Kiyoto Inomata
清人 猪俣
Toru Inoue
亨 井上
Shigenori Hayashi
茂則 林
Shoji Miyanaga
昭治 宮永
Shunpei Yamazaki
舜平 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Semiconductor Energy Laboratory Co Ltd
Original Assignee
Semiconductor Energy Laboratory Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Semiconductor Energy Laboratory Co Ltd filed Critical Semiconductor Energy Laboratory Co Ltd
Priority to JP4097271A priority Critical patent/JPH05275193A/en
Priority to US08/035,921 priority patent/US5549780A/en
Publication of JPH05275193A publication Critical patent/JPH05275193A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C59/00Surface shaping of articles, e.g. embossing; Apparatus therefor
    • B29C59/14Surface shaping of articles, e.g. embossing; Apparatus therefor by plasma treatment

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Plasma Technology (AREA)

Abstract

PURPOSE:To generate sheet-form plasma by furnishing a plate-shaped insulative member in contact with one of a pair of parallel electrode plates, sending into the gap a gas chiefly containing He in atmospheric condition, and applying a high frequency power. CONSTITUTION:In contact with a casing 2 an insulative plate 3 is installed between an electrode plate 1 and the casing 2. An AC field is applied from a power supply 4, and into the discharge space 5 a gas chiefly containing He is fed from a gas container 7 via a rate-of-flow limiter 8. The electrode plate 1 is made of W, etc., and coated, if necessary, with an Au film, while the insulative plate 3 is made of alumina, etc., which prevents transition to arc discharge. Thereby the gas is sent at a uniform speed in a single direction into the gap between the plate 3 and casing 1 to establish a discharging condition by a high frequency power, and active seeds in plasma generated are pushed to outside the electrode with the gas stream. A sheet form plasma uniform in at a radical concentration is produced in the space near the electrodeplate. Therein the gap between the insulative plate and casing is selected to under 1mm and the insulative member is given the ratio of its thickness in mm to specific dielectric factor as below 0.2.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、大気圧状態において、
シート状(板状)でかつ低温である放電プラズマを安定
に得ることができるプラズマ発生装置に関するものであ
る。
BACKGROUND OF THE INVENTION The present invention is
The present invention relates to a plasma generation device that is sheet-shaped (plate-shaped) and can stably obtain low-temperature discharge plasma.

【0002】[0002]

【従来技術】大気圧状態は低電界では絶縁体であるが、
直流、交流、インパルス等の高電界を印加すると絶縁破
壊を起こし電流が流れるようになる(自続放電)。自続
放電はコロナ放電、グロー放電、アーク放電に分けられ
る。平等電界のときには自続放電に移るとただちに全路
破壊し、グロー放電もしくはアーク放電に移行するが、
不平等電界のときにはまず、電界の強い局部のみ絶縁破
壊され、コロナ放電が起こる。その後さらに電界を強く
すると全路破壊に発展していく。大気圧空気中では通常
全路破壊に移行するとき、グロー放電を経ずに速やかに
アーク放電に移行することが多い。これは、アーク放電
の特徴は入射イオンに起因する電極加熱による熱電子放
出(陰極輝点の存在)であるが、高圧力では電極に入射
するイオン数が低圧力時に比べて多いため、非常に短い
時間で電極が加熱され、熱電子放出されるようになるた
めと考えられている。電流が2A以下の場合にはグロー
放電する場合も知られているが、制御性が良くないとい
う問題がある。一般に溶接加工、切断等の応用に用いら
れているのはアーク放電である。
2. Description of the Related Art Atmospheric pressure is an insulator at low electric fields,
When a high electric field such as direct current, alternating current, or impulse is applied, dielectric breakdown occurs and current begins to flow (self-sustaining discharge). Self-sustaining discharge is divided into corona discharge, glow discharge, and arc discharge. In the case of a uniform electric field, when it goes to self-sustaining discharge, all the roads are destroyed immediately, and it goes to glow discharge or arc discharge.
In the case of an unequal electric field, first, only local parts where the electric field is strong are dielectrically broken down, and corona discharge occurs. After that, if the electric field is further increased, the road will be destroyed. In the atmospheric pressure air, when the all-road breakdown usually occurs, the arc discharge often occurs rapidly without the glow discharge. This is because arc discharge is characterized by thermionic emission (existence of cathode luminescent spots) due to electrode heating caused by incident ions, but at high pressure the number of ions incident on the electrode is higher than at low pressure, so it is extremely It is considered that the electrode is heated in a short time and thermions are emitted. It is known that glow discharge occurs when the current is 2 A or less, but there is a problem that the controllability is not good. Generally, arc discharge is used for applications such as welding and cutting.

【0003】アーク放電はその電極温度の高さ、陽光柱
温度(ガス温度)の高さを利用して、被加工物を溶解、
溶断することに用いられている。しかし、アーク放電を
用いた場合には、被加工部の温度が2000〜6000Kの高温
となるので、被加工物を加熱することなく加工すること
ができないという問題があった。
The arc discharge utilizes the high electrode temperature and positive column temperature (gas temperature) to melt the workpiece,
It is used for fusing. However, when the arc discharge is used, the temperature of the processed portion becomes as high as 2000 to 6000K, so that there is a problem that the processed object cannot be processed without heating.

【0004】そこで、室温での基盤処理、加工等を可能
とするため、大気圧でのグロー放電を安定に生じさせる
試みが行われている(S.Kanazawa et.al. J.Phys.D:App
l.Phys.21(1988)838-840)。大気圧で安定にグロー放電
させるためには、1.放電空間をHeで充満する事、2.電極
間に(放電経路に)絶縁体を挿入する事、3.少なくとも
一方の電極は針状もしくはブラシ状とする事、4.印加電
界の周波数は3kHz以上とする事、が必要条件として知ら
れている。絶縁体は放電がアーク放電に移行しないよう
にするため、印加電界周波数が3kHz以上なのは絶縁体を
通して電流を流すため、電極形状を針状もしくはブラシ
状とするのは、電界を不均一電界とすることにより放電
を開始しやすいようにするためである。これらの方法に
よりポリイミド等の有機物、シリコン等の無機物の表面
をエッチング等処理を行うことも試みられている。しか
しながら、これら方法は、大気圧で処理するものであり
ながら、反応空間内を一旦真空に減圧しその後ヘリウム
等のガスを充填するという工程を経ねばならない。ま
た、基板の処理は基板表面に均等に行われ、微小な領域
を選択的に処理することができないという欠点があっ
た。
Therefore, in order to enable substrate treatment and processing at room temperature, attempts have been made to stably generate glow discharge at atmospheric pressure (S. Kanazawa et.al. J. Phys. D: App
L. Phys. 21 (1988) 838-840). In order to achieve stable glow discharge at atmospheric pressure, 1. fill the discharge space with He, 2. insert an insulator between the electrodes (in the discharge path), 3. at least one electrode is needle-shaped or It is known as a necessary condition that it has a brush shape, and that the frequency of the applied electric field is 3 kHz or more. In order to prevent discharge from shifting to arc discharge in the insulator, when the applied electric field frequency is 3 kHz or more, current flows through the insulator, so making the electrode shape needle-shaped or brush-shaped makes the electric field a non-uniform electric field. This is to make it easier to start the discharge. It has also been attempted to subject the surfaces of organic substances such as polyimide and inorganic substances such as silicon to etching and the like by these methods. However, in these methods, although the treatment is carried out at atmospheric pressure, it is necessary to temporarily reduce the pressure in the reaction space to a vacuum and then fill it with a gas such as helium. In addition, the substrate is uniformly processed on the surface of the substrate, and it is not possible to selectively process a minute area.

【0005】そこで、本発明者らは前記の欠点を克服す
るため、一旦真空に減圧する工程を経ることなく安定な
低温プラズマを開放系の大気圧状態で形成し、該プラズ
マを微小な領域に閉じ込め、微小領域の加工、表面処
理、エッチングを可能とするプラズマ発生装置とそれを
用いたエッチング方法の発明を行なった。(特願平2−
286883)
Therefore, in order to overcome the above-mentioned drawbacks, the present inventors formed stable low-temperature plasma in an open system atmospheric pressure state without temporarily depressurizing it to a minute region. The invention of a plasma generator capable of confining, processing of a minute region, surface treatment, and etching and an etching method using the same was carried out. (Patent application 2-
286883)

【0006】これは、金属等の導電体で構成された電極
を同心円筒状に配し、該電極の隙間に円筒状絶縁体を同
心円となるようにまた、外側電極に接するように挿入
し、該絶縁体と中心電極の隙間にヘリウムを主体とする
気体を大気圧状態で送流状態に保持し、前記電極間に交
流電界を印加して前記ヘリウムを主体とする気体を電離
することにより前記絶縁体と中心電極の隙間にプラズマ
を生ぜせしめ、さらに該プラズマにエッチングガスを導
入し、エッチングに供するものである。
In this method, electrodes made of a conductor such as metal are arranged in a concentric cylindrical shape, and a cylindrical insulator is inserted into the gap between the electrodes so as to form a concentric circle and contact the outer electrode. A gas containing helium as a main component is maintained in a flow state under atmospheric pressure in a gap between the insulator and the center electrode, and an AC electric field is applied between the electrodes to ionize the gas containing helium as a main component. Plasma is generated in the gap between the insulator and the center electrode, and an etching gas is further introduced into the plasma for use in etching.

【0007】本発明者らによって上記の如く、開放系の
大気圧条件におけるプラズマ発生装置が研究/開発さ
れ、大気圧での低温プラズマ実用化の可能性が出てきた
訳であるが、依然として解決すべき問題も多い。その一
つが大気中に引き出されるプラズマの放電面積=プラズ
マによる処理面積の問題である。
As described above, the inventors of the present invention have researched / developed a plasma generator under an open atmospheric pressure condition, and have realized the possibility of practical application of low-temperature plasma at atmospheric pressure. There are many problems to be solved. One of them is the problem of the discharge area of plasma drawn into the atmosphere = the processing area of the plasma.

【0008】本発明者らの発明を含めて、従来提案され
た大気圧条件下での低温プラズマ放電形式を整理する
と、次の2種類に大別できる。
Including the inventions of the present inventors, the conventionally proposed low-temperature plasma discharge types under atmospheric pressure conditions can be roughly classified into the following two types.

【0009】1.平行平板型放電装置を応用したもの 過去において幾つか提案がなされたもの。基本的な構成
は、片方に誘電体板を設置した、2枚の平行電極板によ
って放電空間を形成し、プラズマ源ガスによって大気圧
状態に保った放電容器内にこれらを格納し大気圧放電を
行う。成膜/またはエッチング加工を行う試料は電極上
に設置される。プラズマは対向する電極板の空隙におい
てのみ存在する。
1. Application of parallel plate discharge device Some proposals have been made in the past. The basic structure is such that a discharge space is formed by two parallel electrode plates with a dielectric plate installed on one side, and these are stored in a discharge vessel kept at atmospheric pressure by a plasma source gas to discharge atmospheric pressure discharge. To do. A sample to be film-formed / etched is placed on the electrode. The plasma exists only in the gaps between the facing electrode plates.

【0010】2.針状/ビーム状プラズマを利用したも
の 上記の記載において述べた、本発明者らの過去の発明が
代表的なものである。すなわち円筒状の電極の空隙中心
に針状の電極を設け、大気圧状態で放電を行う。電極の
空隙のみではなく、ガス流によってビーム状のプラズマ
を得る。
2. Utilizing Needle / Beam Plasma The past inventions of the present inventors described in the above description are typical. That is, a needle-shaped electrode is provided at the center of the void of a cylindrical electrode, and electric discharge is performed under atmospheric pressure. Beam-shaped plasma is obtained not only by the electrode gap but also by the gas flow.

【0011】上記2件は放電面積と言う点では実用的と
はしがたい。まず従来の平行平板型の場合はあくまでも
容器内部における非開放系の放電であり、容器及び排気
装置を要する。本発明者らが従来試みてきた、完全な開
放系においてプラズマを成膜/加工等に応用すると言う
点では実用的では無いし、試料共に容器に格納するので
はいかに放電面積が大きくともフレキシビリティに欠け
る。
The above two cases are not practical in terms of discharge area. First, in the case of the conventional parallel plate type, the discharge is a non-open system inside the container, and a container and an exhaust device are required. It is not practical in terms of applying plasma to film formation / processing etc. in a completely open system, which the present inventors have tried so far, and storing the sample together in the container provides flexibility even if the discharge area is large. Lacks.

【0012】開放系における成膜/加工を、針状/ビー
ム状のプラズマ発生装置を利用して行うことが過去に提
案されている。すなわち針状/ビーム状プラズマ発生装
置を直列に配列し、シート状のプラズマに近い放電状態
を近似しようというものである。しかしこの方法の場合
は、先の記述の様に針状/ビーム状プラズマ内部では中
心部と外部でラジカル密度が極端に異なるため、その差
が電極の位置によるシートの内部でのラジカル密度のば
らつきと成って現れる。従って均一なシート状プラズマ
を、開放系の大気圧状態で得ることは実現されていな
い。
It has been proposed in the past to perform film formation / processing in an open system by using a needle-shaped / beam-shaped plasma generator. That is, needle-shaped / beam-shaped plasma generators are arranged in series to approximate a discharge state similar to a sheet-shaped plasma. However, in the case of this method, as described above, the radical density inside the needle-shaped / beam-shaped plasma is extremely different between the central portion and the outer portion, and the difference is the difference in radical density inside the sheet depending on the position of the electrode. And appears. Therefore, it has not been realized to obtain a uniform sheet-like plasma in an open atmospheric pressure state.

【0013】[0013]

【発明が解決しようとする課題】本発明は反応容器及び
排気装置を必要とせず、開放系の大気圧状態で大面積の
シート状プラズマを発生させる装置を提供し、これによ
り開放系において大面積の成膜またはエッチング加工を
可能とすることを目的とする。
DISCLOSURE OF THE INVENTION The present invention provides a device for generating a large area sheet-like plasma in an open system at atmospheric pressure without the need for a reaction vessel and an exhaust device, thereby providing a large area in the open system. The purpose is to enable film formation or etching processing of.

【0014】[0014]

【課題を解決するための手段】本発明は、近接させた2
枚の電極板の間において単一方向、かつ均一速度でガス
を流し、電極間に加えた高周波電力により放電状態と
し、この放電により発生したプラズマ中の活性種をガス
流によって電極外に押し出し、ラジカル濃度において均
一なシート状(板状)のプラズマを電極板近傍の空間中
に発生せしめる構成に関する。
SUMMARY OF THE INVENTION The present invention provides two adjacent devices.
Gas is made to flow in a single direction and at a uniform speed between the electrode plates, and a high-frequency power applied between the electrodes creates a discharge state.The active species in the plasma generated by this discharge are pushed out of the electrode by the gas flow, and the radical concentration Relates to a structure for generating uniform sheet-shaped (plate-shaped) plasma in the space near the electrode plate.

【0015】本発明は、平行の対向した導電体で構成さ
れた一対の電極板と、該一対の電極板が構成する隙間に
一方の電極に接するようにして設けられた板状絶縁体
と、該絶縁体と露呈された電極板の隙間にヘリウムまた
はアルゴンを主体とする気体を大気圧状態で、かつ一方
向への送流状態に保持する構成と、前記電極間に交流電
界を印加する構成とを有することを特徴とするものであ
る。
According to the present invention, a pair of electrode plates made of parallel and opposed conductors, and a plate-shaped insulator provided in contact with one electrode in a gap formed by the pair of electrode plates, A structure in which a gas containing helium or argon as a main component is held in the gap between the insulator and the exposed electrode plate at atmospheric pressure and in a unidirectional flow state, and an AC electric field is applied between the electrodes It is characterized by having.

【0016】図1に本発明のプラズマ発生装置の概念図
を示す。電極板(1)と外側匡体(2)との間に外側匡
体(2)に密接して絶縁体板(3)を配し、電極板
(1)と外側匡体(2)を各々電極としてそれらに交流
電源(4)より交流電界を印加する。放電空間(5)に
はヘリウム等の希ガスを主成分とするガスをボンベ
(7)より流量制御器(8)を通して送流状態で供給す
る。また、(9)は成膜またはエッチングが行なわれる
際の基板であり、(10)は基板ホルダーである。しか
しながら、基板を設置する構成については、図の形式に
限定されるものではない。
FIG. 1 shows a conceptual diagram of the plasma generator of the present invention. An insulator plate (3) is placed between the electrode plate (1) and the outer casing (2) in close contact with the outer casing (2), and the electrode plate (1) and the outer casing (2) are respectively arranged. An AC electric field is applied to them as an electrode from an AC power supply (4). A gas containing a rare gas such as helium as a main component is supplied to the discharge space (5) from a cylinder (7) through a flow rate controller (8) in a flow state. Further, (9) is a substrate when film formation or etching is performed, and (10) is a substrate holder. However, the configuration for installing the substrate is not limited to the format shown in the figure.

【0017】電極板(1)は直接プラズマに曝されるた
めタングステン、タンタル等スパッタに強い金属が有効
である。また、ヘリウム等の希ガスを主体とする気体に
弗素、塩素等エッチング作用の強いハロゲン系の元素を
含むガスを添加し、エッチングを行なう場合には、金、
白金等のハロゲン系元素にエッチングされにくい金属で
電極板(1)を構成するか、電極板(1)の表面に金、
白金等をコーティングするのがよい。
Since the electrode plate (1) is directly exposed to plasma, metals such as tungsten and tantalum which are strong against sputtering are effective. Further, when etching is carried out by adding a gas containing a halogen-based element having a strong etching action such as fluorine or chlorine to a gas mainly composed of a rare gas such as helium, gold,
The electrode plate (1) is made of a metal that is difficult to be etched by halogen-based elements such as platinum, or the surface of the electrode plate (1) is made of
It is better to coat with platinum or the like.

【0018】電極板(1)の表面には、深さにして1〜
2mm程度のブラシ状もしくは櫛歯状の凹凸を設けても
良い。これは電極板(1)と外側キョウ体(2)の間の
電界を不平等とし、放電の開始を容易とするためであ
る。ただし前記条件はあくまで望ましい条件であり、単
純な平板であってしても放電を起こす限りは本発明の内
容を限定するものではない。
The surface of the electrode plate (1) has a depth of 1 to
Brush-shaped or comb-shaped irregularities of about 2 mm may be provided. This is to make the electric field between the electrode plate (1) and the outer body (2) unequal to facilitate the initiation of discharge. However, the above conditions are only desirable conditions, and the contents of the present invention are not limited as long as a discharge is generated even with a simple flat plate.

【0019】絶縁体(3)は前記電極間で放電がアーク
放電に移行しないように設けたものであり、石英ガラ
ス、アルミナ等の無機物、テフロン、ポリイミド、ポリ
エチレン、ポリエチレンテレフタレート等の有機物を用
いることができる。尚、放電に曝され、多少温度が上昇
する可能性が存在するため、耐熱性の高い石英ガラス、
アルミナ等が有効である。また、絶縁体の誘電率は大き
いほど中心導体と絶縁体間のギャップにかかる電圧は高
くなるため、より放電開始しやすくなる。よって、アル
ミナ、ソーダガラス等が有効である。絶縁体の厚さは絶
縁体の比誘電率によって変わり、また、電極板と絶縁体
間ギャップはあまり大きすぎると実用的な交流電源の出
力電圧を越えるため、以下の範囲にすることが適当であ
る。即ち、絶縁体と中心電極の隙間は5mm以下、好ま
しくは1mm以下であり、前記絶縁体の比誘電率と厚さ
の関係は、厚さ(mm)/比誘電率=1以下、好ましく
は0.2以下とするのがよい。
The insulator (3) is provided so that the discharge does not transfer to an arc discharge between the electrodes, and an inorganic substance such as quartz glass or alumina, or an organic substance such as Teflon, polyimide, polyethylene or polyethylene terephthalate is used. You can In addition, since there is a possibility that the temperature will rise to some extent when exposed to electric discharge, quartz glass with high heat resistance,
Alumina or the like is effective. Further, the larger the dielectric constant of the insulator is, the higher the voltage applied to the gap between the central conductor and the insulator is, so that the discharge is more easily started. Therefore, alumina and soda glass are effective. The thickness of the insulator changes according to the relative permittivity of the insulator, and if the gap between the electrode plate and the insulator is too large, it exceeds the practical output voltage of the AC power supply. is there. That is, the gap between the insulator and the center electrode is 5 mm or less, preferably 1 mm or less, and the relationship between the relative permittivity and the thickness of the insulator is as follows: thickness (mm) / relative permittivity = 1 or less, preferably 0 It is better to be less than or equal to 2.

【0020】電極板−絶縁体板に印加する高周波電力の
周波数は、幅広く設定することが出来る。本発明では工
業用周波数として一般的な 13.56 MHzを使用した。ただ
しプラズマの組成・密度が周波数によって異なる為、周
波数に関しては目的に応じた選択が許される。
The frequency of the high frequency power applied to the electrode plate-insulator plate can be set widely. In the present invention, a general industrial frequency of 13.56 MHz is used. However, since the composition and density of plasma differ depending on the frequency, the frequency can be selected according to the purpose.

【0021】以下装置に導入されるガスに関して記述す
る。本発明者らの過去の発明を含むこれまでの大気圧放
電では、放電空間(5)に供給される希ガスを主成分と
するガスはヘリウムが70%以上含まれていることが必
要としてきたが、本発明の装置ではアルゴンによる放電
も、ヘリウムの場合を若干上回る程度すなわち50W+
数Wの電力投入によって可能であった。添加ガスとして
Ne、Ar、Kr、Xe等の希ガスの他にCF4 、CC
4 、NF3 、等ハロゲンを含むガスを用いることもで
き、該ハロゲン系ガスを用いると珪素基板等に対するエ
ッチング加工が可能となる。なおCF4 を添加ガスとし
た場合はCF4 濃度を4%以上にすると放電しないとい
う実験事実がある。エッチングの対象が有機基板材料で
ある場合は、添加ガスを酸素とするとよい。また、CH
4 、C2 4 等の炭化水素系ガスを添加すると炭素膜の
成膜も可能である。SiH4 等を用いれば珪素膜の成膜
も可能であるが、開放状態での成膜となるため危険性が
高い。
The gas introduced into the apparatus will be described below. In the conventional atmospheric pressure discharge including the past inventions of the present inventors, it has been required that the gas containing noble gas as the main component supplied to the discharge space (5) contains 70% or more of helium. However, in the device of the present invention, the discharge by argon is slightly higher than that of helium, that is, 50 W +.
It was possible by turning on the power of several W. In addition to rare gases such as Ne, Ar, Kr, Xe, CF 4 and CC as additive gas
It is also possible to use a gas containing halogen such as l 4 , NF 3 or the like, and by using the halogen-based gas, it becomes possible to perform etching on a silicon substrate or the like. When CF 4 is used as the additive gas, there is an experimental fact that no discharge occurs when the CF 4 concentration is 4% or more. When the target of etching is an organic substrate material, the additive gas may be oxygen. Also, CH
It is also possible to form a carbon film by adding a hydrocarbon gas such as 4 , C 2 H 4 or the like. It is possible to form a silicon film by using SiH 4 or the like, but it is highly dangerous because the film is formed in an open state.

【0022】反応ガスの供給は、本発明のプラズマ発生
装置の放電空間(5)において流量/流速が出来るかぎ
り均一であることが望ましい。流速/流量はシート状プ
ラズマの長さ/均一性を決定する要因の一つであり、供
給ガス流量を制御することにより、ラジカルの到達距離
を制御することができる。本発明のプラズマ発生装置で
は放電空間(5)に至るまでの溝を装置内部に設け、供
給ガスの均一化をはかった。電極−絶縁体ギャップの断
面積を8mm2 とした場合200sccmのガス供給で
流速は約40mm/secとなる。供給ガス流量を増せ
ばそれに比例して流速は増し、ラジカルの到達距離も長
くなる。
It is desirable that the supply of the reaction gas be as uniform as possible in flow rate / velocity in the discharge space (5) of the plasma generator of the present invention. The flow velocity / flow rate is one of the factors that determine the length / uniformity of the sheet-like plasma, and the reaching distance of radicals can be controlled by controlling the supply gas flow rate. In the plasma generator of the present invention, the groove extending to the discharge space (5) is provided inside the device to make the supply gas uniform. When the cross-sectional area of the electrode-insulator gap is 8 mm 2 , the gas flow rate of 200 sccm gives a flow rate of about 40 mm / sec. When the flow rate of the supply gas is increased, the flow velocity is increased in proportion to the flow rate, and the reaching distance of the radicals is also increased.

【0023】上記のように反応ガスを希ガスに混合して
放電空間に導入するほかに、例えばヘリウムを用いる場
合は、準安定励起ヘリウム原子の寿命の長いことを利用
して、ガス流によりヘリウムラジカルを基板表面等反応
させたい領域に輸送し、該領域に別に反応ガスを外部ノ
ズル等で供給する方法もある。この場合、反応させたい
領域にはイオンは到達せず、ラジカルのみ供給させ得る
から、被反応物に電流が流れることがない。よって、被
反応物として生体(人体/あるいは動・植物/微生物)
を選ぶこともできる。
In addition to mixing the reaction gas with the rare gas and introducing it into the discharge space as described above, for example, when helium is used, the fact that metastable excited helium atoms have a long life makes it possible to use helium in a gas flow. There is also a method in which radicals are transported to a region such as the substrate surface where a reaction is desired and a reaction gas is separately supplied to the region by an external nozzle or the like. In this case, since ions do not reach the region to be reacted and only radicals can be supplied, current does not flow to the reaction target. Therefore, living organisms (human body / or animals / plants / microorganisms) are to be reacted.
You can also choose.

【0024】[0024]

【実施例】【Example】

「実施例1」第2図に本発明を利用した実施例のプラズ
マ発生装置の断面図をしめす。平行平板電極部分は、電
極板(1)、絶縁体板(3)、外側匡体(2)より構成
される。絶縁体板(3)は外側匡体(2)に密接して設
けられている。本実施例では電極板(1)はステンレ
ス、絶縁体板(3)は石英ガラス、外側匡体(2)はス
テンレスを用いた。電極板(1)は3つのテフロンシー
ルド(20)(21)(22)にて他と絶縁され、MH
V同軸接栓(11)に接続されている。そして電極板
(1)にはMHV同軸接栓(11)につながれた同軸ケ
ーブル(図示せず)を介して交流電源(13.56NHzより交
流電界が印加される。電極板(1)と絶縁体板(3)の
間に供給されるヘリウムは、ガス導入口(12)より供
給され、テフロン製絶縁体(13)に彫り込んだガス溝
を通って供給される。テフロン製絶縁体(13)は不要
な場所での放電を防止する役割もある。外側匡体(2)
と電極板ホルダー(16)は天板(17)において螺子
固定される。電極板ホルダー(16)と天板(17)は
ステンレスで作製され、外側匡体体(2)と共に接地電
位に保たれる。電極板および対向する絶縁体板の幅すな
わち放電部幅は8mm、絶縁体厚さは1.0mmであ
る。また、(9)はエッチングや成膜を行なう際の基板
であり、(10)は基板ホルダーである。
"Embodiment 1" FIG. 2 shows a sectional view of a plasma generator of an embodiment utilizing the present invention. The parallel plate electrode portion is composed of an electrode plate (1), an insulator plate (3), and an outer casing (2). The insulator plate (3) is provided in close contact with the outer casing (2). In this example, the electrode plate (1) was made of stainless steel, the insulator plate (3) was made of quartz glass, and the outer casing (2) was made of stainless steel. The electrode plate (1) is insulated from the other by three Teflon shields (20), (21) and (22).
It is connected to the V coaxial plug (11). An AC electric field (13.56 NHz) is applied to the electrode plate (1) via a coaxial cable (not shown) connected to the MHV coaxial plug (11). The helium supplied during (3) is supplied from the gas inlet (12) and through the gas groove carved in the Teflon insulator (13), which does not require the Teflon insulator (13). It also has the role of preventing electric discharge in various places.
The electrode plate holder (16) is screwed to the top plate (17). The electrode plate holder (16) and the top plate (17) are made of stainless steel and are kept at the ground potential together with the outer casing (2). The width of the electrode plate and the opposing insulator plate, that is, the width of the discharge portion is 8 mm, and the insulator thickness is 1.0 mm. Further, (9) is a substrate for etching and film formation, and (10) is a substrate holder.

【0025】上記の装置にヘリウムを100sccmを
供給し、周波数13.56MHzの高周波電力を50W加えたと
ころ、該放電部幅全域において安定な放電が得られ、こ
の状態を10分間以上に渡って保持しても、過熱など装置
上の障害はなんら発生しなかった。
When 100 sccm of helium was supplied to the above apparatus and 50 W of high frequency power of 13.56 MHz was applied, stable discharge was obtained over the entire width of the discharge part, and this state was maintained for 10 minutes or more. However, there was no trouble on the device such as overheating.

【0026】放電によって形成されたプラズマの温度を
プラズマを熱電対に吹きつけることによって、測定した
ところ、室温〜70℃程度の温度を示した。
The temperature of the plasma formed by the discharge was measured by blowing the plasma on a thermocouple, and the temperature was about room temperature to 70 ° C.

【0027】「実施例2」本実施例は、本発明のプラズ
マ発生装置を用いて他の希ガスとしてアルゴンを用い、
放電を試みた例である。すでに述べた通り、本発明者ら
が提案するところのビーム状プラズマ発生装置を含む大
気圧放電では、原料ガスとしてヘリウムガスを70%以
上含んでいることが必要であったが、本発明のプラズマ
発生装置では、70%以下のヘリウム濃度、あるいはヘ
リウムを使用しなくても安定な放電が可能であった。本
実施例では実施例1におけるヘリウムガスに変えてアル
ゴンガスを100sccm供給し、放電を試みた。
Example 2 In this example, the plasma generator of the present invention was used, and argon was used as another noble gas.
This is an example of attempting discharge. As described above, in the atmospheric pressure discharge including the beam-shaped plasma generator proposed by the present inventors, it was necessary to contain 70% or more of helium gas as a raw material gas. In the generator, a helium concentration of 70% or less, or stable discharge was possible without using helium. In this example, argon gas was supplied at 100 sccm instead of the helium gas in Example 1, and an attempt was made to discharge.

【0028】実施例1と同様の条件において放電を試み
たところ、ヘリウムよりも若干高い投入電力54Wにお
いて、ヘリウムとほぼ同様の安定した放電を確認した。
ビーム状プラズマ発生装置において高電力(100W以
上)を投入し、アルゴンガスを強制的に放電させた場合
の様な微細なアーク放電は認められず、過熱障害も発生
しなかった。
When an attempt was made to discharge under the same conditions as in Example 1, it was confirmed that a stable discharge similar to that of helium was obtained at an input power of 54 W, which was slightly higher than that of helium.
In the beam-shaped plasma generator, a high electric power (100 W or more) was applied and the minute arc discharge as in the case where the argon gas was forcibly discharged was not recognized, and the overheat failure did not occur.

【0029】なお、図面においては、プラズマを用いた
加工または成膜の対象となる基体が示されていないが、
本実施例のプラズマ発生装置で得られたプラズマを利用
する時は、5で発生した常圧低温プラズマを基体に吹き
つければよい。なお、図2に示す本実施例のプラズマ発
生装置は掌にのるほどの大きさであり、基体に近づけて
基体表面にプラズマを照射することができる。
Although the drawing does not show the substrate to be processed or film-formed using plasma,
When using the plasma obtained by the plasma generator of this embodiment, the atmospheric pressure low temperature plasma generated in 5 may be blown onto the substrate. The plasma generator of the present embodiment shown in FIG. 2 has a size that fits in the palm of the hand, and plasma can be irradiated onto the surface of the substrate while being brought close to the substrate.

【0030】[0030]

【発明の効果】以上述べたように、本発明のプラズマ発
生装置を用いることにより、シート状のプラズマ放電を
大気圧条件において安定に発生させることが出来、ビー
ム状プラズマ等の従来におけるものよりも大面積のエッ
チングまたは成膜効果が期待される基板表面処理装置に
道を開くことができた。
As described above, by using the plasma generator of the present invention, it is possible to stably generate a sheet-shaped plasma discharge under atmospheric pressure conditions, and it is possible to generate a sheet-shaped plasma discharge more than conventional ones such as a beam-shaped plasma. We were able to open the way to a substrate surface treatment system where large-area etching or film formation effects are expected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のプラズマ発生装置の概略図を示す。FIG. 1 shows a schematic view of a plasma generator of the present invention.

【図2】本発明のプラズマ発生装置の実施例を示す。FIG. 2 shows an embodiment of the plasma generator of the present invention.

【符号の説明】[Explanation of symbols]

1 電極板 2 外部匡体 3 絶縁体板 4 交流電源 5 放電空間 7 ボンベ 8 流量制御器 9 基板 10 基板ホルダー 20 テフロンシールド 21 テフロンシールド 22 テフロンシールド 11 MHV同軸接栓 13 テフロン製絶縁体 16 電極板ホルダー 17 天井板 1 Electrode Plate 2 External Enclosure 3 Insulator Plate 4 AC Power Supply 5 Discharge Space 7 Cylinder 8 Flow Controller 9 Substrate 10 Substrate Holder 20 Teflon Shield 21 Teflon Shield 22 Teflon Shield 11 MHV Coaxial Plug 13 Teflon Insulator 16 Electrode Plate Holder 17 Ceiling board

───────────────────────────────────────────────────── フロントページの続き (72)発明者 林 茂則 神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内 (72)発明者 宮永 昭治 神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内 (72)発明者 山崎 舜平 神奈川県厚木市長谷398番地 株式会社半 導体エネルギー研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shigenori Hayashi, 398 Hase, Atsugi City, Kanagawa Prefecture, Semiconducting Energy Laboratory Co., Ltd. 72) Inventor Shunpei Yamazaki 398 Hase, Atsugi City, Kanagawa Prefecture Semiconductor Energy Laboratory Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】平行の対向した導電体で構成された一対の
電極板と、該一対の電極板が構成する隙間に一方の電極
に接するようにして設けられた板状絶縁体と、該絶縁体
と露呈された電極板の隙間にヘリウムまたはアルゴンを
主体とする気体を大気圧状態で、かつ一方向への送流状
態に保持する構成と、前記電極間に交流電界を印加する
構成とを有することを特徴とするプラズマ発生装置。
1. A pair of electrode plates composed of parallel opposing conductors, a plate-shaped insulator provided in contact with one electrode in a gap formed by the pair of electrode plates, and the insulation. A configuration in which a gas containing helium or argon as a main component is maintained in the gap between the body and the exposed electrode plate in an atmospheric pressure state and in a flow direction in one direction, and a configuration in which an AC electric field is applied between the electrodes are provided. A plasma generator characterized by having.
JP4097271A 1990-10-23 1992-03-24 Plasma generating device Pending JPH05275193A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP4097271A JPH05275193A (en) 1992-03-24 1992-03-24 Plasma generating device
US08/035,921 US5549780A (en) 1990-10-23 1993-03-22 Method for plasma processing and apparatus for plasma processing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4097271A JPH05275193A (en) 1992-03-24 1992-03-24 Plasma generating device

Publications (1)

Publication Number Publication Date
JPH05275193A true JPH05275193A (en) 1993-10-22

Family

ID=14187871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4097271A Pending JPH05275193A (en) 1990-10-23 1992-03-24 Plasma generating device

Country Status (1)

Country Link
JP (1) JPH05275193A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788870A3 (en) * 1996-02-08 1998-02-04 Bridgestone Corporation Process for surface treatment of vulcanized rubber and process for production of rubber-based composite material
US6013153A (en) * 1996-02-08 2000-01-11 Bridgestone Corporation Process for surface treatment of vulcanized rubber and process for production of rubber-based composite material
US6429400B1 (en) 1997-12-03 2002-08-06 Matsushita Electric Works Ltd. Plasma processing apparatus and method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0788870A3 (en) * 1996-02-08 1998-02-04 Bridgestone Corporation Process for surface treatment of vulcanized rubber and process for production of rubber-based composite material
US6013153A (en) * 1996-02-08 2000-01-11 Bridgestone Corporation Process for surface treatment of vulcanized rubber and process for production of rubber-based composite material
US6429400B1 (en) 1997-12-03 2002-08-06 Matsushita Electric Works Ltd. Plasma processing apparatus and method

Similar Documents

Publication Publication Date Title
JP2657850B2 (en) Plasma generator and etching method using the same
US5549780A (en) Method for plasma processing and apparatus for plasma processing
US5221427A (en) Plasma generating device and method of plasma processing
EP1171900B1 (en) Large area atmospheric-pressure plasma jet
JP2001508951A (en) Atmospheric pressure plasma jet
US20020063537A1 (en) Appaaratus for generating low temperature plasma at atmospheric pressure
US20020129902A1 (en) Low-temperature compatible wide-pressure-range plasma flow device
EP1507281B1 (en) Arrangement, method and electrode for generating a plasma
KR890013966A (en) Plasma processing method and apparatus
EP1520289A1 (en) Dielectric barrier discharge apparatus and process for treating a substrate
JP3345079B2 (en) Atmospheric pressure discharge device
JPH05275191A (en) Atmospheric pressure discharge method
JP2002058995A (en) Plasma treating device and plasma treating method
JPH05275193A (en) Plasma generating device
JPH05275190A (en) Method and device of etching
JPH06108257A (en) Atmospheric pressure blow-off plasma reaction device
JP3175891B2 (en) Plasma generator and etching method using the same
Janča et al. Diagnostics and application of the high frequency plasma pencil
JPH07211654A (en) Plasma generating system and operating method thereof
KR100552388B1 (en) Atmospheric pressure plasma processing apparatus and its process
JPH07220895A (en) Atmospheric pressure glow discharge electrode and plasma processing method therewith
JPS61136678A (en) Formation of high-hardness carbon film
WO2003046970A1 (en) Low temperature compatible wide-pressure-range plasma flow device
JPH11209105A (en) Ozonizer
JPH07207468A (en) Etching device and etching method