JPH0527481B2 - - Google Patents

Info

Publication number
JPH0527481B2
JPH0527481B2 JP31091186A JP31091186A JPH0527481B2 JP H0527481 B2 JPH0527481 B2 JP H0527481B2 JP 31091186 A JP31091186 A JP 31091186A JP 31091186 A JP31091186 A JP 31091186A JP H0527481 B2 JPH0527481 B2 JP H0527481B2
Authority
JP
Japan
Prior art keywords
pure nickel
hot
slab
thickness
manufacturing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP31091186A
Other languages
Japanese (ja)
Other versions
JPS63168259A (en
Inventor
Shoichi Tsunematsu
Hiroaki Dosai
Kazuyuki Hasebe
Yoshio Kobayashi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Sumitomo Metal Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Industries Ltd filed Critical Sumitomo Metal Industries Ltd
Priority to JP31091186A priority Critical patent/JPS63168259A/en
Publication of JPS63168259A publication Critical patent/JPS63168259A/en
Publication of JPH0527481B2 publication Critical patent/JPH0527481B2/ja
Granted legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B3/00Rolling materials of special alloys so far as the composition of the alloy requires or permits special rolling methods or sequences ; Rolling of aluminium, copper, zinc or other non-ferrous metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21BROLLING OF METAL
    • B21B45/00Devices for surface or other treatment of work, specially combined with or arranged in, or specially adapted for use in connection with, metal-rolling mills

Description

【発明の詳細な説明】[Detailed description of the invention]

産業上の利用分野 この発明は、苛性ソーダ、食品、薬品工業など
において電極板、容器、熱交換器などに多く用い
られる純ニツケルホツトコイルの製造方法に係わ
り、詳しくは従来の鋳塊から作られるスラブを素
材とする製造方法に比べ、耳割れや表面疵の少な
い高品質の純ニツケルホツトコイルを製造する方
法に関する。 従来技術 従来の純ニツケルホツトコイルは、高周波炉で
溶製した小型鋳塊をプレス分塊してスラブとし、
ステツケルミル、プラネタリーミルまたは4段レ
バースミルなどで熱間圧延して製造する方法が一
般的に行われている。そして、最近では、電気炉
−真空精錬炉(VOD)で溶製された大型鋳塊を
プレス分塊または分塊圧延して作られたスラブか
ら製造されている。 第3図は上記大型鋳塊からホツトコイルを作る
際の製造工程を示したものである。この製造工程
では電気炉−VODで溶製された純ニツケルの大
型鋳塊を分塊圧延してスラブとし、その表面を手
入れしたのち酸化防止剤を塗布して連続熱間圧延
を行う。 上記方法により大型鋳塊を分塊圧延して得られ
たスラブは、圧延加工組織となつており、結晶粒
が細粒化するとともに熱間加工性が向上し、連続
熱間圧延においてホツトコイルの耳割れの防止お
よび加熱温度低下による粒界酸化の軽減により表
面疵の減少が期待できる。しかし、連続鋳造スラ
ブを素材とする方法に比べ分塊圧延が必要な上、
鋳塊のトツプとボトムの両端切除による歩留り低
下により製造コストが高くなる。 発明が解決しようとする問題点 しかしながら、連続鋳造スラブは、特有の柱状
晶を有し、結晶粒が粗大で熱間加工性が悪い。ま
た、純ニツケル材は組織がオーステナイト単相の
ため凝固時に粒界に低融点の不純物や析出物が濃
化し、熱間圧延時に耳割れや表面疵が発生する欠
点がある。さらに、純ニツケル材は、高Ni−Fe
合金やモネルメタルなどの高Ni−Cu合金に比べ
加熱時の粒界酸化は少ないが、コイル表面性状を
向上させるには粒界酸化防止対策が必要である。
このため、連続鋳造スラブからホツトコイルを製
造する技術はいまだ確立されていないのが現状で
ある。 この発明は、上記の現状にかんがみ、連続鋳造
スラブより純ニツケルホツトコイルを製造する際
の問題点、すなわち熱間加工性の悪化、不純物お
よび析出物の濃化による耳割れおよび表面疵、コ
イル表面性状を向上させるために必要な粒界酸化
防止対策などを解決して、耳割れ、表面疵の少な
い高品質の純ニツケルホツトコイルを製造する方
法を提供するものである。 問題点を解決するための手段 本発明者らは、上記目的を達成するため種々研
究の結果、P、Sなど不純物の低減、スラブ加熱
温度の適性な管理、および適性な厚さの酸化防止
剤の塗布を行うことにより、耳割れおよび表面疵
の少ない純ニツケルホツトコイルを製造できるこ
とを知見し、この発明を完成するに至つた。 すなわち、この発明は、重量比で、Ni≧99.0
%、Fe≦0.40%、C≦0.15%、Si≦0.35%、Mn≦
0.35%、Cu≦0.25%、P≦0.008%、S≦0.005%
および残部不可避的不純物よりなる純ニツケル材
の連続鋳造スラブを、表面の手入れをして金属
Cr粉末を主成分とする酸化防止剤を厚さ50〜
300um塗布した後、1080〜1200℃の温度域に加熱
して連続熱間圧延するのである。 作 用 電気炉−VODで溶製し不純物を減らし、特に
P≦0.008%、S≦0.005%と極めて低い範囲に抑
制した純ニツケル材を連続鋳造して得たスラブ
を、第1図に示すように表面の手入れをし酸化防
止剤を塗布した後、加熱して連続熱間圧延を施す
ことにより、耳割れ、表面疵の少ない高品質の純
ニツケルホツトコイルを得ることができる。 この発明において対象材の化学成分を限定した
理由について説明する。 純ニツケルのNi含有量は規格SAE HSJ1086、
ASTM DS56Bで99.0%以上と決められているの
で、この発明においても99.0%以上の含有とし
た。 また、不純物Si、Mn、Cuの含有量も上記規格
で決められており、この発明におけるSi、Mn、
Cu含有量はその上限値に一致するものであり、
耐蝕性を向上させるために可能な限りこれら不純
物の含有量を低減することが望ましい。 他に不純物として含有するCは、430〜650℃の
温度範囲において黒鉛として粒界に析出し、脆化
の原因となるので0.15%以下とした。 Feは0.4%を超えると熱間加工時の割れ発生の
原因となるので0.40%とした。 Pは粒界に析出し熱間加工時の割れ発生の原因
となるので0.008%以下とした。 SはPと同様に、粒界に析出し熱間変形能を低
下させ、熱間加工時の割れ発生の原因となるので
0.005%以下とした。 この発明において、熱間圧延におけるスラブの
加熱温度を限定したのは次の理由による。 第2図に示すように、空気中における純ニツケ
ル、モネルメタル(70%Ni−Cu合金)、42%Ni
−Fe合金の1時間当たりの酸化進行速度(mm/
Hr)を比べると、純ツケルは他の合金に比べ酸
化進行速度が小さく、加熱中の酸化スケールの発
生は少ない。しかし、スラブ表面の酸化スケール
および表面疵は、その後の工程で表面研磨機で除
去する必要がある。 この酸化スケールおよび表面疵を低減するため
加熱温度を1080〜1200℃の範囲に限定した。すな
わち、加熱温度が1080℃未満では連続熱間圧延機
の性能限界のため圧延が困難であり、またかろう
じて低温圧延をしても耳割れや表面疵が発生し効
率の良い生産はできない。一方1200℃を超えると
酸化防止剤が塗布されていてもスラブ表面の酸化
が大きくなり、耳割れや酸化スケールの発生によ
り、その後の加工工程において表面疵が増加し、
表面疵を除去するための工数が増加し、また製品
歩留の低下を来す。 スラブ表面に塗布する金属Cr粉末を主成分と
する酸化防止剤は、スラブの粒界酸化を防止し熱
間加工性の向上に有効である。しかし、その被膜
の厚さが50μm未満では塗布効果があがらず、逆
に300umを超え厚くなると均一に塗布することが
困難であり、塗布できても熱間圧延時に生じる押
込み疵などの表面疵の発生原因となる。また、塗
布効果も飽和してしまう。そのため、酸化防止剤
は厚さ50〜300umの範囲で被膜を形成させること
が望ましい。 上記のごとく、スラブ表面に厚さ50〜300μmの
酸化防止剤の被膜を形成して、1080〜1200℃の温
度範囲に加熱して連続熱間圧延を施せば、酸化防
止剤の被膜と適性な加熱温度との相乗効果により
スラブの粒界酸化が防止され、その結果耳割れや
表面疵の少ない高品質の純ニツケルホツトコイル
を製造することができる。 実施例 第1表に化学成分を示したこの発明の実施によ
る供試材AおよびBの純ニツケル材を電気炉−
VODで溶製し、連続鋳造機により厚さ150mm、幅
1000mmの連続鋳造スラブを鋳造し、表面を手入れ
して表面疵を除去した後、金属Cr粉末を約60%
含有する酸化防止剤を塗布して厚さ150μmの被膜
を形成し、連続加熱炉により1180℃に加熱し6時
間保持した後、連続圧延機を使つて厚さ6.0mmの
ホツトコイルを製造した。また、比較のため、従
来の製造方法による第1表の供試材CおよびDの
純ニツケル材を電気炉−VODで溶製し、鋳型に
注入して鋳塊とした後、分塊圧延して同じ寸法の
分塊スラブとし、以下上記発明の実施例と同様の
工程を経てホツトコイルを製造した。そして、耳
割れ、表面疵、酸化層を調べ、良好(〇)、やや
良好(△)、不良(×)の3段階で評価した。そ
の結果を第2表に示す。 第2表よりこの発明の実施による供試材AとB
は耳割れ、表面疵、および酸化層が少なくいずれ
も良好な評価を得ているに対し、従来法による供
試材Cはいずれの試験項目もやや良好であるが、
供試材Dはいずれの試験項目も不良であり、この
発明の方法によるホツトコイルの性状が優れてい
ることがわかる。
Industrial Application Field This invention relates to a method for manufacturing pure nickel hot coils, which are often used for electrode plates, containers, heat exchangers, etc. in the caustic soda, food, and pharmaceutical industries. This invention relates to a method for manufacturing high-quality pure nickel hot coils with fewer edge cracks and surface flaws than manufacturing methods using nickel as a material. Conventional technology Conventional pure nickel hot coils are made by press-blowing a small ingot melted in a high-frequency furnace and making it into a slab.
A commonly used manufacturing method is hot rolling in a Steckel mill, planetary mill, four-stage lever mill, or the like. Recently, large ingots melted in an electric furnace/vacuum smelting furnace (VOD) are press-blunted or slab-rolled to produce slabs. FIG. 3 shows the manufacturing process for making a hot coil from the large ingot. In this manufacturing process, a large ingot of pure nickel melted in an electric furnace (VOD) is bloomed into a slab, the surface of which is treated, an antioxidant is applied, and continuous hot rolling is performed. The slab obtained by blooming a large ingot by the above method has a rolled texture, with finer grains and improved hot workability. A reduction in surface flaws can be expected by preventing cracking and reducing grain boundary oxidation by lowering the heating temperature. However, compared to methods using continuous cast slabs, blooming is required, and
The manufacturing cost increases due to a decrease in yield due to cutting off both the top and bottom ends of the ingot. Problems to be Solved by the Invention However, continuous casting slabs have unique columnar crystals, coarse grains, and poor hot workability. In addition, since pure nickel material has a single austenite phase structure, it has the disadvantage that low melting point impurities and precipitates are concentrated at grain boundaries during solidification, and edge cracks and surface flaws occur during hot rolling. Furthermore, pure nickel material has high Ni-Fe
Although there is less grain boundary oxidation during heating compared to alloys and high Ni-Cu alloys such as Monel metal, measures to prevent grain boundary oxidation are required to improve the coil surface quality.
For this reason, the technology for manufacturing hot coils from continuously cast slabs has not yet been established. In view of the above-mentioned current situation, this invention addresses the problems encountered when producing pure nickel hot coils from continuous casting slabs, namely, deterioration of hot workability, edge cracks and surface flaws due to concentration of impurities and precipitates, and coil surface defects. The present invention provides a method for manufacturing high-quality pure nickel hot coils with few edge cracks and surface defects by solving the grain boundary oxidation prevention measures necessary to improve properties. Means for Solving the Problems In order to achieve the above object, the present inventors have conducted various studies and found that the reduction of impurities such as P and S, appropriate control of the slab heating temperature, and the use of antioxidants of appropriate thickness. It was discovered that a pure nickel hot coil with fewer edge cracks and surface flaws could be produced by applying the above coating, and the present invention was completed. That is, in this invention, Ni≧99.0 in terms of weight ratio
%, Fe≦0.40%, C≦0.15%, Si≦0.35%, Mn≦
0.35%, Cu≦0.25%, P≦0.008%, S≦0.005%
Continuously cast slabs of pure nickel material, consisting of the remaining unavoidable impurities and the remaining unavoidable impurities, are made into metal by carefully cleaning the surface.
Antioxidant containing Cr powder as the main component to a thickness of 50~
After coating 300um, it is heated to a temperature range of 1080~1200℃ and continuously hot rolled. Function A slab obtained by continuous casting of pure nickel material melted in an electric furnace-VOD to reduce impurities and suppressed to an extremely low range of P≦0.008% and S≦0.005% is shown in Figure 1. After cleaning the surface and applying an antioxidant, it is heated and subjected to continuous hot rolling to obtain a high quality pure nickel hot coil with few edge cracks and surface flaws. The reason why the chemical components of the target material are limited in this invention will be explained. The Ni content of pure nickel conforms to the standard SAE HSJ1086,
Since ASTM DS56B stipulates the content to be 99.0% or more, this invention also sets the content to be 99.0% or more. In addition, the contents of impurities Si, Mn, and Cu are also determined by the above standards, and in this invention, Si, Mn, and
The Cu content corresponds to its upper limit,
In order to improve corrosion resistance, it is desirable to reduce the content of these impurities as much as possible. C, which is also contained as an impurity, precipitates at grain boundaries as graphite in the temperature range of 430 to 650°C and causes embrittlement, so it was set to 0.15% or less. If Fe exceeds 0.4%, it causes cracking during hot working, so it was set at 0.40%. Since P precipitates at grain boundaries and causes cracking during hot working, the content was set to 0.008% or less. Like P, S precipitates at grain boundaries and reduces hot deformability, causing cracking during hot working.
It was set to 0.005% or less. In this invention, the heating temperature of the slab during hot rolling is limited for the following reason. As shown in Figure 2, pure nickel, monel metal (70% Ni-Cu alloy), 42% Ni in air
- Oxidation progress rate per hour of Fe alloy (mm/
Compared to other alloys, pure Tsukeru's oxidation progress rate is lower than that of other alloys, and less oxide scale is generated during heating. However, oxide scale and surface flaws on the slab surface need to be removed by a surface polisher in a subsequent process. In order to reduce this oxide scale and surface flaws, the heating temperature was limited to a range of 1080 to 1200°C. That is, if the heating temperature is lower than 1080°C, rolling is difficult due to the performance limit of the continuous hot rolling mill, and even if low-temperature rolling is performed, edge cracks and surface defects occur, making efficient production impossible. On the other hand, when the temperature exceeds 1200℃, oxidation of the slab surface increases even if an antioxidant is applied, and surface cracks and oxide scales occur, which increases surface defects in subsequent processing steps.
The number of man-hours required to remove surface flaws increases, and the product yield also decreases. An antioxidant mainly composed of metallic Cr powder applied to the slab surface is effective in preventing grain boundary oxidation of the slab and improving hot workability. However, if the thickness of the coating is less than 50 μm, the coating effect will not be improved, and if it is thicker than 300 μm, it will be difficult to coat it uniformly, and even if it can be coated, it will cause surface defects such as indentation scratches that occur during hot rolling. It causes the occurrence. Moreover, the coating effect also becomes saturated. Therefore, it is desirable that the antioxidant forms a film with a thickness in the range of 50 to 300 um. As mentioned above, if an antioxidant film with a thickness of 50 to 300 μm is formed on the slab surface and continuous hot rolling is performed by heating it to a temperature range of 1080 to 1200°C, it will be possible to form an antioxidant film with a thickness of 50 to 300 μm. The synergistic effect with the heating temperature prevents grain boundary oxidation of the slab, and as a result, it is possible to manufacture high-quality pure nickel hot coils with fewer edge cracks and surface flaws. Example Pure nickel materials, test materials A and B according to the present invention whose chemical components are shown in Table 1, were heated in an electric furnace.
Made by VOD and continuous casting machine to a thickness of 150mm and width.
After casting a 1000mm continuous casting slab and cleaning the surface to remove surface flaws, about 60% of the metal Cr powder is removed.
The contained antioxidant was applied to form a film with a thickness of 150 μm, heated to 1180° C. in a continuous heating furnace and held for 6 hours, and then a hot coil with a thickness of 6.0 mm was manufactured using a continuous rolling mill. In addition, for comparison, pure nickel materials of sample materials C and D in Table 1 were melted using a conventional manufacturing method in an electric furnace-VOD, poured into a mold to form an ingot, and then bloomed. A blooming slab of the same size was obtained, and a hot coil was manufactured through the same steps as in the above-mentioned embodiments of the invention. Then, edge cracks, surface flaws, and oxidized layers were examined and evaluated in three stages: good (◯), somewhat good (△), and poor (×). The results are shown in Table 2. From Table 2, sample materials A and B according to the implementation of this invention
Sample material C obtained by the conventional method was evaluated to be good in all test items with few edge cracks, surface flaws, and oxidized layers.
Sample material D was defective in all test items, indicating that the hot coil produced by the method of the present invention had excellent properties.

【表】【table】

【表】 ○:良好
△:やや良好
×:不良
発明の効果 この発明は、上記のごとく、純ニツケル材を連
続鋳造したのち熱間圧延する際に結晶粒界に析出
する低融点の不純物による耳割れや表面疵が少な
く、また酸化防止剤の被膜厚さと熱間圧延時の適
性な加熱温度域との相乗作用により、スラブの粒
界酸化防止が図られ、耳割れや表面疵の少ない高
品質の純ニツケルホツトコイルを歩留よく製造す
ることができ、製造コストの大幅低減に寄与でき
る。
[Table] ○: Good △: Slightly good ×: Bad Effects of the invention As mentioned above, this invention has been developed to prevent cracks caused by low melting point impurities that precipitate at grain boundaries when pure nickel material is continuously cast and then hot rolled. There are fewer cracks and surface flaws, and due to the synergistic effect of the antioxidant coating thickness and the appropriate heating temperature range during hot rolling, grain boundary oxidation of the slab is prevented, resulting in high quality with fewer edge cracks and surface flaws. It is possible to manufacture pure nickel hot coils with high yield, contributing to a significant reduction in manufacturing costs.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図はこの発明の製造方法を示す工程図、第
2図は純ニツケル、高Ni−Cu合金、および高Ni
−Fe合金の空気中における酸化進行速度を示す
グラフ、第3図は従来の鋳塊からの製造方法を示
す工程図である。
Figure 1 is a process diagram showing the manufacturing method of this invention, and Figure 2 is a diagram showing pure nickel, high Ni-Cu alloy, and high Ni
A graph showing the oxidation progress rate of -Fe alloy in air, and FIG. 3 is a process chart showing a conventional manufacturing method from an ingot.

Claims (1)

【特許請求の範囲】[Claims] 1 重量比で、Ni≧99.0%、Fe≦0.40%、C≦
0.15%、Si≦0.35%、Mn≦0.35%、Cu≦0.25%、
P≦0.008%、S≦0.005%、残部不可避的不純物
よりなる純ニツケル材の連続鋳造スラブを、表面
の手入れをして金属Cr粉末を主成分とする酸化
防止剤を厚さ50〜300μm塗布した後、1080〜1200
℃の温度域に加熱して連続熱間圧延することを特
徴とする純ニツケルホツトコイルの製造方法。
1 Weight ratio: Ni≧99.0%, Fe≦0.40%, C≦
0.15%, Si≦0.35%, Mn≦0.35%, Cu≦0.25%,
A continuously cast slab of pure nickel material, consisting of P≦0.008%, S≦0.005%, and the remainder being unavoidable impurities, was surface-treated and coated with an antioxidant mainly composed of metallic Cr powder to a thickness of 50 to 300 μm. After, 1080~1200
A method for producing a pure nickel hot coil characterized by continuous hot rolling by heating to a temperature range of °C.
JP31091186A 1986-12-29 1986-12-29 Production of hot coil for pure nickel Granted JPS63168259A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31091186A JPS63168259A (en) 1986-12-29 1986-12-29 Production of hot coil for pure nickel

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31091186A JPS63168259A (en) 1986-12-29 1986-12-29 Production of hot coil for pure nickel

Publications (2)

Publication Number Publication Date
JPS63168259A JPS63168259A (en) 1988-07-12
JPH0527481B2 true JPH0527481B2 (en) 1993-04-21

Family

ID=18010871

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31091186A Granted JPS63168259A (en) 1986-12-29 1986-12-29 Production of hot coil for pure nickel

Country Status (1)

Country Link
JP (1) JPS63168259A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2077338B1 (en) * 2006-10-20 2015-04-01 Nippon Steel & Sumitomo Metal Corporation Nickel material for chemical plant
JP7015410B1 (en) * 2021-10-11 2022-02-02 日本冶金工業株式会社 Nickel alloy with excellent surface properties and its manufacturing method

Also Published As

Publication number Publication date
JPS63168259A (en) 1988-07-12

Similar Documents

Publication Publication Date Title
JP7033664B2 (en) Manufacturing method of 1XXX cathode foil for aluminum electrolytic capacitors
KR101765729B1 (en) Method for the production of a metal foil
US10134513B2 (en) High silicon steel sheet having excellent productivity and magnetic properties and method for manufacturing same
EP2034035B1 (en) Process for producing aluminum alloy plate
US10676808B2 (en) Method for producing a metal film
KR102217049B1 (en) Material for metal mask and its manufacturing method
TWI789871B (en) Manufacturing method of Wostian iron-based stainless steel strip
WO2021046927A1 (en) Nickel-rhenium alloy rotary tubular target material containing trace rare earth elements and preparation method therefor
JPH0569888B2 (en)
KR900006690B1 (en) Method of producing thin sheet of high si-fe alloy
JP2007308768A (en) Method for manufacturing aluminum alloy thick plate, and aluminum alloy thick plate
JP2007063621A (en) Sputtering target material, method for producing aluminum material for sputtering target material, and aluminum material for sputtering target material
KR101953043B1 (en) Titanium slab for hot rolling, and production method therefor
TWI602931B (en) Aluminum sputtering target
CN114807646B (en) Nickel-based alloy plate blank and preparation method thereof
JPH0527481B2 (en)
KR20170045273A (en) Cast titanium slab for use in hot rolling and unlikely to exhibit surface defects, and method for producing same
JP2007308769A (en) Method for manufacturing aluminum alloy thick plate, and aluminum alloy thick plate
JPH0424420B2 (en)
JPH0148337B2 (en)
JP4285869B2 (en) Method for producing Cr-containing thin steel sheet
WO1991010517A1 (en) METHOD OF MANUFACTURING Cr-Ni STAINLESS STEEL SHEET EXCELLENT IN SURFACE QUALITY AND MATERIAL THEREOF
JP7188480B2 (en) Hot-rolled copper alloy sheet and sputtering target
RU2481674C1 (en) Method to manufacture substrate for high-temperature thin-film superconductors and substrate
JP3711196B2 (en) Method for producing titanium for sputtering target and titanium slab used for the production