JPH05273322A - Magneto-optical fault detecting method - Google Patents

Magneto-optical fault detecting method

Info

Publication number
JPH05273322A
JPH05273322A JP7199492A JP7199492A JPH05273322A JP H05273322 A JPH05273322 A JP H05273322A JP 7199492 A JP7199492 A JP 7199492A JP 7199492 A JP7199492 A JP 7199492A JP H05273322 A JPH05273322 A JP H05273322A
Authority
JP
Japan
Prior art keywords
image
magneto
magnetic field
defect
component
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP7199492A
Other languages
Japanese (ja)
Other versions
JP2665294B2 (en
Inventor
Shuji Naito
藤 修 治 内
Takashi Ohira
平 尚 大
Yoichi Naganuma
沼 洋 一 永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP7199492A priority Critical patent/JP2665294B2/en
Publication of JPH05273322A publication Critical patent/JPH05273322A/en
Application granted granted Critical
Publication of JP2665294B2 publication Critical patent/JP2665294B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To accurately and automatically detect a very small fault on the surface of a steel plate by storing the code of picture signals taken synchronously to the inversion of magnetization during the course of changing the positive and negative polarities of a magnetic field in an inverted state and taking the sum of the preceding and current signals. CONSTITUTION:When the light from a belt-like strobe diffusing light source 1 is passed through a magneto-optical effect element 3 composed of a rare-earth-iron-garnet (RIG) vertical film formed in a test piece 4 after passing through a polarizing plate 2 obtained by cutting a Polaroid'R' film for polarization into a belt-like piece so that only the linearly polarized component in one direction of the light can be passed through the element 3, the component is reflected on the bottom surface of the element 3 and only the component having the wavelength in the maximum detection sensitivity band of the element is transmitted and the component in the wavelength region which becomes a noise source is cut. During the two-way transmission of the light, the polarizing angle is detected 6 and the image of the angle is picked up with an image sensor 7 based on the transmitting distance, sensitivity constant of the element 3, and the vertical direction at the position where the element 3 exists. Therefore, magnetic fluxes are concentrated to the surface by the skin effect of the fluxes and a flaw in the thick test piece 4 can be detected with high sensitivity.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、強磁性体の表面欠陥及
び表層内部欠陥を検出する方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for detecting surface defects and surface internal defects of a ferromagnetic material.

【0002】[0002]

【従来の技術】強磁性体を磁化し、欠陥より漏洩する漏
洩磁束をホール素子や検出コイルにて検出する方法は、
磁粉探傷法に較べて検査速度が速いことと、深さに対す
る検出出力の相関性が高いうえ、渦流探傷法等のその他
の方法に比較して強磁性体材料の表面粗度、スケールや
透磁率のばらつきの影響が少ないため、鋼管の自動探傷
方法等で多数使用されている。また特開平3ー2450
52号公報には、光磁界測定法を欠陥検出に適用する方
法が開示されている。
2. Description of the Related Art A method of magnetizing a ferromagnetic material and detecting a leakage magnetic flux leaking from a defect with a Hall element or a detection coil is as follows.
Compared with other methods such as eddy current flaw detection, the surface roughness, scale, and magnetic permeability of ferromagnetic materials are higher than that of magnetic particle flaw detection. Since it is less affected by the dispersion of, it is widely used in automatic flaw detection methods for steel pipes. In addition, JP-A-3-2450
Japanese Patent Laid-Open No. 52-52 discloses a method of applying the optical magnetic field measurement method to defect detection.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は鋼板の
製造過程において生じる鋼板表面の微小欠陥を精度良く
自動的に検出することにある。
SUMMARY OF THE INVENTION An object of the present invention is to accurately and automatically detect minute defects on the surface of a steel sheet that occur during the steel sheet manufacturing process.

【0004】従来の方法では、漏洩磁束を磁界の変化分
として検出しているため、欠陥の大きさが小さくなる
と、磁界が漏れている範囲が急速に小さくなり、これを
高速に検出するためには小さな磁界検出素子を多数、被
検査材の表面に近接して配置し、相手に追従させる必要
がある。しかし数千本の信号配線を有するセンサーヘッ
ドを、高速で移動する鋼帯や厚板に高速追従する機構を
製作する事は非常に困難であった。またコスト的に非常
に困難であった。
In the conventional method, the leakage magnetic flux is detected as a change in the magnetic field. Therefore, when the size of the defect is reduced, the magnetic field leakage area is rapidly reduced, and this can be detected at high speed. It is necessary to arrange a large number of small magnetic field detecting elements close to the surface of the material to be inspected so as to follow the partner. However, it was very difficult to fabricate a mechanism that enables a sensor head having several thousand signal wires to follow a steel strip or a thick plate that moves at high speed. Moreover, it was very difficult in terms of cost.

【0005】更に圧延材においては、欠陥は一般に圧延
方向に延びており、この欠陥を検出するために従来の方
法では、センサを幅方向にスキャンする必要があった。
しかし高速ラインにおいては、幅方向に機械的に走査す
る方法は実現不可能であり、検出出来るのは短い欠陥に
限られていた。
Further, in the rolled material, the defects generally extend in the rolling direction, and in order to detect the defects, it was necessary to scan the sensor in the width direction in the conventional method.
However, in a high-speed line, a method of mechanically scanning in the width direction is not feasible, and only short defects can be detected.

【0006】特開平3ー245052号公報の技術は鋼
板の欠陥の検出の為のものであり、前述の圧延方向に延
びた欠陥も検出できる様になるものの、スラブや厚板の
探傷の場合の様な、広い表面積と厚みを有する対象で
は、直流磁化では磁束が鋼片内部に拡散し減衰するた
め、漏洩磁束を発生する事が困難になる。
The technique disclosed in Japanese Patent Application Laid-Open No. 3-245052 is for detecting defects in the steel sheet, and although it is possible to detect the defects extending in the rolling direction described above, it is possible to detect flaws in slabs and thick plates. In such an object having a large surface area and thickness, it is difficult to generate leakage magnetic flux because the magnetic flux is diffused and attenuated inside the steel slab by direct current magnetization.

【0007】まず本発明に至った経緯を説明する。First, the background of the invention will be described.

【0008】本発明者らは磁気光学効果を使って広い範
囲を高速にかつ微小な欠陥まで検出する方法を研究し
た。その結果、光アイソレータや光スイッチに使われて
いる希土類・鉄・ガーネット(RIG)垂直磁化膜の中
に高感度な材料があり、かつ垂直以外の面内方向につい
ては磁化困難特性を有し、欠陥よりの漏洩磁束を発生す
るための水平磁界に依っては磁気飽和せず、かつ垂直方
向のファラデー回転は変化しないという漏洩磁束センサ
ーとしての優れた特徴を有することが判明した。RIG
垂直磁化膜は、偏光顕微鏡で見たときに白黒に見える迷
路状につらなった帯状の磁区構造を有し、一般の磁界検
出センサーとして使用する場合は、大きなスポットで、
その平均値としてファラデー回転を検出するため問題な
い。しかし、小さい欠陥の検出を目標として高感度な磁
気光学素子を本方法に適用しようとした場合、高感度な
磁気光学素子では、表面の磁区模様の幅が広く、イメー
ジセンサの磁気光学素子上の視野をズーミングすると幅
の広い白黒の磁区模様が大きなノイズ源になり精度の良
い検出が困難になるということが解った。
The present inventors have studied a method of detecting a large defect at high speed in a wide range using the magneto-optical effect. As a result, there is a highly sensitive material in the rare earth / iron / garnet (RIG) perpendicular magnetization film used for optical isolators and optical switches, and it has a difficult magnetization property in in-plane directions other than perpendicular, It was found that the magnetic flux did not saturate due to the horizontal magnetic field for generating the leakage magnetic flux from the defect, and that the Faraday rotation in the vertical direction did not change, which was an excellent characteristic as a leakage magnetic flux sensor. RIG
The perpendicular magnetization film has a band-like magnetic domain structure that is connected in a labyrinth that looks black and white when viewed with a polarization microscope, and when used as a general magnetic field detection sensor, it has a large spot.
There is no problem because the Faraday rotation is detected as the average value. However, when an attempt is made to apply a high-sensitivity magneto-optical element to the method for the purpose of detecting a small defect, the high-sensitivity magneto-optical element has a wide magnetic domain pattern on the surface, and thus the magneto-optical element on the image sensor has a large width. It was found that when the field of view is zoomed, the wide black-and-white magnetic domain pattern becomes a large noise source, making accurate detection difficult.

【0009】更に膜に垂直磁界がかかった時に磁区の成
長が起きるが、通常は大きい面内磁界がかかっても動か
ない磁区構造が、垂直磁界の存在下では、磁化困難方向
の磁界に影響され、そのときの水平磁界方向に整列しや
すいことが判明した。これらのことは光学的走査による
微小な磁界分布を検出する上で場合に依っては大きな測
定誤差を発生させることになる。
Further, magnetic domain growth occurs when a perpendicular magnetic field is applied to the film, but a magnetic domain structure that does not normally move even when a large in-plane magnetic field is applied is affected by a magnetic field in the direction of hard magnetization in the presence of a perpendicular magnetic field. , It was found that it was easy to align in the horizontal magnetic field direction at that time. These may cause a large measurement error depending on the case when detecting a minute magnetic field distribution due to optical scanning.

【0010】上記問題点がある中で磁気光学効果素子を
漏洩磁束検出素子として使用し、精度を向上させる方法
が考えられ、例えば若林らの論文(日本応用磁気学会誌
15,773−778 1991)にも掲載されている。若林らは磁
気効果素子としてGPRを用い表面画像のコントラスト
反転により背景光の影響を抑えコントラストを増す方法
を提案している。
In view of the above problems, a method of improving accuracy by using a magneto-optical effect element as a magnetic flux leakage detecting element is conceivable. For example, a paper by Wakabayashi et al.
15,773−778 1991). Wakabayashi et al. Proposed a method of suppressing the influence of background light and increasing the contrast by using GPR as a magnetic effect element and inverting the contrast of the surface image.

【0011】また、野村らの報告(第6回日本応用磁気
学会学術講演概要集1982.11)でもファラデー素子を用
い反転画像の差分をとって磁区模様のコントラストを増
加させる方法が提案されている。
Also, in a report by Nomura et al. (6th Annual Meeting of the Japan Society for Applied Magnetics, 1982.11), a method of increasing the contrast of a magnetic domain pattern by using a Faraday element to obtain the difference of an inverted image is proposed.

【0012】しかしながら本発明者らの研究によると、
磁気光学効果素子を、例えば鋼板等の欠陥検出に適用し
ようとした場合、以下の研究結果から磁区のコントラス
トを増加させる事は、検出できる欠陥の大きさを制限す
るだけでなく欠陥検出精度の劣化につながる、という知
見を得た。
However, according to the research conducted by the present inventors,
When the magneto-optical effect element is applied to detect defects such as steel plates, increasing the contrast of magnetic domains from the following research results not only limits the size of defects that can be detected but also deteriorates the defect detection accuracy. I got the knowledge that it will lead to.

【0013】図3および図4は、偏光顕微鏡で観察した
磁気光学効果素子画像の1例である。但し図3と図4で
は、磁界の極性が反転している。23は無欠陥部であ
り、迷路状の黒白の磁区模様が観察される。24は人工
欠陥(0.1mm深さのスリット)部分の磁区模様であり、
漏洩磁界の大きさと方向に応じて磁区が成長しているこ
とがはっきりと観察できる。
3 and 4 are examples of magneto-optical effect element images observed with a polarization microscope. However, in FIGS. 3 and 4, the polarities of the magnetic fields are reversed. Reference numeral 23 is a defect-free portion, and a maze-like black and white magnetic domain pattern is observed. 24 is the magnetic domain pattern of the artificial defect (slit with a depth of 0.1 mm),
It can be clearly observed that the magnetic domain grows according to the magnitude and direction of the leakage magnetic field.

【0014】従って、リニアアレイイメージセンサカメ
ラの分解能が高く、検出対象とする欠陥の大きさが磁区
模様の太さと近い場合には、無欠陥部の磁区模様が高い
周波数のパルス状の大きなノイズ源となる。またこのノ
イズは、空間ローパスフィルタによりかなり減衰させる
事も可能であるが、空間分解能を低下させ、検出可能な
欠陥の大きさを制限する要因となる、と言う知見を得
た。
Therefore, when the resolution of the linear array image sensor camera is high and the size of the defect to be detected is close to the thickness of the magnetic domain pattern, the defect-free magnetic domain pattern has a high frequency pulse-like noise source. Becomes It was also found that this noise can be considerably attenuated by a spatial low-pass filter, but it causes a reduction in spatial resolution and limits the size of a detectable defect.

【0015】更に図3と図4とを比較すると、欠陥部の
みが白黒反転し、無欠陥部の磁区模様は垂直磁界がない
ため、不変である。またこの磁区模様は安定であり、外
部磁界を取り去ると、元に戻るという事が分かった。
Further comparing FIG. 3 with FIG. 4, only the defective portion is black-white inverted, and the magnetic domain pattern of the defect-free portion is unchanged because there is no vertical magnetic field. It was also found that this magnetic domain pattern is stable and returns to its original shape when the external magnetic field is removed.

【0016】本発明は以上の知見に基づいてなされたも
のである。
The present invention is based on the above findings.

【0017】本発明はこのような問題点に鑑み、これを
抜本的に解決し、直流磁化困難な大きな検査対象であっ
ても、1つの検出部で広い範囲の漏洩磁界を検査可能に
し、高速でかつ高精度な表面および表層の欠陥の検出を
可能ならしむる画期的光磁界式欠陥検出方法を提供する
ことを課題とする。
In view of such a problem, the present invention drastically solves this problem, and enables a single detection unit to inspect a wide range of leakage magnetic fields even for a large inspection target that is difficult to be magnetized by direct current, and realizes high speed. It is an object of the present invention to provide an epoch-making optical magnetic field type defect detection method that enables high-precision detection of surface and surface layer defects.

【0018】[0018]

【課題を解決する為の手段】本発明では、強磁性の被検
査材に磁界を印加し、その欠陥部に生じた漏洩磁界を、
被探傷材と相対移動する磁気光学素子に透過させた直線
偏光の偏光面回転に基づいて検出する磁気光学式欠陥検
出方法において、光源を帯状拡散偏光光源とし、印加磁
界を交流とする。また、交流印加による磁界の正負の極
性変化過程の中で、磁化の反転に同期して、磁気光学効
果素子表面の画像を撮像する。撮影された磁気光学効果
素子表面の画像は、例えば、正方向磁化の場合に正常
(ポジ)画像、負方向磁化の場合に白黒反転(ネガ)画
像として記憶し、ポジ画像とネガ画像の信号の加算結果
より欠陥検出を行う事を特徴とする。
In the present invention, a magnetic field is applied to a ferromagnetic material to be inspected, and the leakage magnetic field generated in the defective portion is
In a magneto-optical defect detection method for detecting based on the polarization plane rotation of linearly polarized light transmitted through a magneto-optical element that moves relative to a material to be inspected, the light source is a band-shaped diffuse polarization light source and an applied magnetic field is an alternating current. Also, in the process of changing the polarity of the magnetic field due to the application of alternating current, an image of the surface of the magneto-optical effect element is captured in synchronization with the reversal of magnetization. The captured image of the surface of the magneto-optical effect element is, for example, stored as a normal (positive) image in the case of positive magnetization and a black-and-white inverted (negative) image in the case of negative magnetization, and is stored as a signal of the positive image and the negative image. The feature is that the defect is detected from the addition result.

【0019】[0019]

【実施例】以下、本発明方法の実施例について図面に基
づいて作用と共に説明する。
Embodiments of the method of the present invention will be described below with reference to the drawings.

【0020】図1は、本発明に用いる光学部の1実施例
を示している。
FIG. 1 shows an embodiment of the optical section used in the present invention.

【0021】帯状ストロボ拡散光源1は、棒状のクセノ
ンストロボランプの全面に乳白色の透過拡散板を配置す
る事によって構成される。偏光板2は偏光用のポラロイ
ドフィルムを帯状に切断した物であり、照明光の1方向
の直線偏光成分のみを透過する。3は希土類鉄ガーネッ
トの垂直磁化膜であり、面に垂直な方向以外は難磁化特
性を有し500〜1000エルステッド程度の水平磁界
では磁区の移動や磁気飽和が起きない物を使用する。ま
た膜の上面には無反射コーティング、底面には全反射コ
ーティングが施されており、膜内に入射した光は底面で
反射されてでて行くが、光はこの往復透過の間にファラ
デー効果により、透過距離,膜の感度常数,および膜の
存在する位置の垂直方向の磁束により偏光角度を検出す
る。4は被検査材、5は干渉フィルタであり磁気光学効
果素子の最高検出感度帯の波長のみを透過し、他のノイ
ズ源となる波長域はカットしている。本方法例では、中
心波長800nm、半値幅は100nmを使用している、6は偏光
板であり偏光板2とは透過する光の角度が45度に設定さ
れ、磁気光学効果素子上で反射された照明光を透過して
いる。7はイメージセンサであり磁気光学効果素子の表
面を、磁化器からの同期信号にあわせて撮影している。
The strip-shaped strobe diffusion light source 1 is constructed by disposing a milky white transmission diffusion plate on the entire surface of a rod-shaped xenon strobe lamp. The polarizing plate 2 is a polarizing polaroid film cut into strips, and transmits only the linearly polarized light component in one direction of the illumination light. Reference numeral 3 denotes a rare earth iron garnet perpendicularly magnetized film, which has a non-magnetizing property except in a direction perpendicular to the plane and which does not cause magnetic domain movement or magnetic saturation in a horizontal magnetic field of about 500 to 1000 oersteds. The top surface of the film has a non-reflective coating, and the bottom surface has a total reflection coating. The light incident on the film is reflected by the bottom surface and goes out. The polarization angle is detected by the transmission distance, the sensitivity constant of the film, and the magnetic flux in the vertical direction at the position where the film exists. Reference numeral 4 is a material to be inspected, and 5 is an interference filter, which transmits only the wavelength in the maximum detection sensitivity band of the magneto-optical effect element and cuts off the wavelength range that becomes another noise source. In this example of the method, the center wavelength is 800 nm and the half-value width is 100 nm. 6 is a polarizing plate, and the angle of light passing through the polarizing plate 2 is set to 45 degrees, and reflected on the magneto-optical effect element. The illumination light is transmitted. Reference numeral 7 denotes an image sensor, which photographs the surface of the magneto-optical effect element in accordance with the synchronization signal from the magnetizer.

【0022】図2に、本発明に用いる信号処理部の構成
の一例を示す。図2中の8は、図1に示した光学系全体
に対応する。
FIG. 2 shows an example of the configuration of the signal processing section used in the present invention. Reference numeral 8 in FIG. 2 corresponds to the entire optical system shown in FIG.

【0023】9は発振器であり、その出力は、イメージ
センサの画像の水平同期信号に同期させた三角波を非線
形化して正弦波または方形波に加工している。発信器9
の出力は、電力増幅器の信号源およびの極性変換器16の
極性変換トリガ信号源となる。10は電力増幅器であり、
増幅された交流は磁化コイル11に送られる。磁化コイル
11は交流磁束を発生し被検査物を磁化する。交流磁化に
よる表皮効果により、磁束が表面に集中し、厚手被探傷
材の探傷が可能となる。12は磁化コイルの鉄心である。
13は移相器、14はストロボ制御電源、15はAD変換器で
ありイメージセンサ7で計測した画像をAD変換する。
その一例として、図3に磁化極性が正の場合の磁気光学
効果素子の表面画像を、また、図4に図3の時点から交
流周期の半周期経過した後の、磁化極性が負の場合の磁
気光学効果素子の表面画像を示す。23は正常部分、24は
欠陥の部分を示す。
Reference numeral 9 denotes an oscillator, the output of which is processed into a sine wave or a square wave by nonlinearizing a triangular wave synchronized with the horizontal synchronizing signal of the image of the image sensor. Transmitter 9
The output of is the signal source of the power amplifier and the polarity conversion trigger signal source of the polarity converter 16. 10 is a power amplifier,
The amplified alternating current is sent to the magnetizing coil 11. Magnetizing coil
11 generates an AC magnetic flux to magnetize the inspection object. Due to the skin effect due to the alternating-current magnetization, the magnetic flux is concentrated on the surface, and it is possible to detect a thick material to be inspected. 12 is the iron core of the magnetizing coil.
13 is a phase shifter, 14 is a strobe control power supply, and 15 is an AD converter, which AD-converts the image measured by the image sensor 7.
As an example, FIG. 3 shows a surface image of the magneto-optical effect element when the magnetization polarity is positive, and FIG. 4 shows a case where the magnetization polarity is negative after a half cycle of the AC cycle has elapsed from the point of FIG. The surface image of a magneto-optical effect element is shown. 23 indicates a normal portion and 24 indicates a defective portion.

【0024】16は極性変換器でありAD変換器15で変換
された画像の極性反転(ポジ→ネガ)を半周期おきに行
う。例えば、極性変換器は極性検出器17の信号が正の場
合だけ極性を反転させる操作を行う。その例として、図
5に図4の反転(ネガ)画像を示す。図5では、磁区模
様の白黒は反転し、また欠陥部分の白黒の割合は、磁化
極性が反転した場合の図3の画像と同様になっている。
Reference numeral 16 denotes a polarity converter, which performs polarity inversion (positive → negative) of the image converted by the AD converter 15 every half cycle. For example, the polarity converter performs the operation of inverting the polarity only when the signal of the polarity detector 17 is positive. As an example, FIG. 5 shows the inverted (negative) image of FIG. In FIG. 5, the black and white of the magnetic domain pattern is reversed, and the black and white ratio of the defective portion is the same as the image of FIG. 3 when the magnetization polarity is reversed.

【0025】極性検出器17は、現在の磁化方向の正/負
を発信器9からの信号から判定する。18はフレームバッ
ファであり、半周期毎に同時に画像の掃き出しと取り込
みを行う。19は加算器であり、フレームバッファ18に蓄
積されている半周期前の画像と、AD変換器により変換
された直後の画像信号を加算する。その例として、図3
と図5を加え合わせた画像の欠陥パターンを図6に模式
的に示す。図6では、反転した磁区模様の加算によっ
て、磁区模様がほとんど打ち消され、ノイズは画期的に
低下する。さらに欠陥部分の白黒のコントラストは倍増
されるという効果がある。
The polarity detector 17 determines whether the current magnetization direction is positive or negative from the signal from the oscillator 9. Reference numeral 18 denotes a frame buffer, which simultaneously sweeps out and captures an image every half cycle. Reference numeral 19 denotes an adder that adds the image stored in the frame buffer 18 before the half cycle and the image signal immediately after being converted by the AD converter. As an example, FIG.
The defect pattern of the image obtained by adding FIG. 5 and FIG. 5 is schematically shown in FIG. In FIG. 6, the addition of the reversed magnetic domain patterns almost cancels the magnetic domain patterns, and the noise is significantly reduced. Further, there is an effect that the black and white contrast of the defective portion is doubled.

【0026】20は画像処理装置であり、ローパスフィル
タ,縦平均,ハイパスフィルタ等の処理を行う。その例
として、画像処理を行った後の1ラインの輝度分布信号
を図7に示す。ローパスフィルタにより前の処理でわず
かに残った磁区模様のノイズは平滑化され、さらに縦方
向平均により欠陥信号のS/Nが改善される。またハイ
パスフィルタにより磁化器による緩やかな垂直磁界分布
による画像全面の輝度むらを除去し、欠陥のみを抽出す
る。25は画像処理前の1ラインの輝度分布信号であり、
磁区模様に対応した輝度がノイズとなり、欠陥部分の信
号がわかりにくい。
Reference numeral 20 denotes an image processing device, which performs processing such as low-pass filter, vertical averaging, and high-pass filter. As an example, FIG. 7 shows a luminance distribution signal of one line after image processing. The low-pass filter smoothes the magnetic domain pattern noise slightly left in the previous process, and further improves the S / N of the defect signal by the vertical averaging. Further, the high-pass filter removes the uneven brightness on the entire surface of the image due to the gentle vertical magnetic field distribution by the magnetizer, and extracts only the defect. 25 is the brightness distribution signal of one line before image processing,
The brightness corresponding to the magnetic domain pattern becomes noise, making it difficult to understand the signal at the defective portion.

【0027】26は画像処理後の1ラインの輝度分布信号
であり、画像処理により、いままで大きなノイズ源とな
り問題となっていた磁区模様のノイズを完全に打ち消す
事ができ、欠陥部の信号をS/N良く検出することがで
きる。22は欠陥表示器、21は欠陥弁別器である。以降同
様に、反転器16は印加磁界周波数に同期して正常画像、
または反転画像を交互にフレームメモリ18に送り出す。
フレームメモリでは、1画像を取り込むと同時にその直
前に記録した画像を加算器19に送り出す。加算器19はそ
の時点での生画像とフレームメモリからの画像の加算を
行い画像処理装置20へ画像信号を送る事により、前に述
べた磁区部分のノイズを完全に打ち消す事が可能となり
欠陥部の信号をS/N良く検出することができる。
Reference numeral 26 denotes a 1-line luminance distribution signal after image processing. By image processing, it is possible to completely cancel the magnetic domain pattern noise, which has been a problem until now and has become a large noise source, and the signal of the defective portion can be eliminated. S / N can be detected well. 22 is a defect indicator and 21 is a defect discriminator. Similarly thereafter, the inverter 16 synchronizes with the applied magnetic field frequency to obtain a normal image,
Alternatively, the reversed images are alternately sent to the frame memory 18.
In the frame memory, at the same time that one image is captured, the image recorded immediately before that is sent to the adder 19. The adder 19 adds the raw image at that time and the image from the frame memory and sends an image signal to the image processing device 20, whereby it is possible to completely cancel the noise in the magnetic domain part described above, and the defective part Can detect the signal of S / N well.

【0028】[0028]

【発明の効果】以上のように本発明にあっては、磁束の
表皮効果により、磁束が表面に集中し、厚手被探傷材の
探傷が可能になると同時に、逆極性磁化状態の磁区模様
ノイズを減算する事により、完全に打ち消すと同時に、
欠陥信号を倍増させ、更に感度の良い光磁気効果素子を
利用可能にすることともあいまって、微小欠陥の検出が
可能になる。本発明方法の構成では磁気光学効果素子と
イメージセンサのみを被測定対象材に追従させるだけで
よく、従来方法に比べはるかに軽量コンパクト化し追従
性能の大幅な向上とセンサー及び配線系統の故障トラブ
ルを減少させるという効果を得る事が出来る。
As described above, according to the present invention, due to the skin effect of the magnetic flux, the magnetic flux is concentrated on the surface, and it becomes possible to detect a thick material to be inspected. By subtracting, it completely cancels,
With the doubling of the defect signal and the use of a more sensitive magneto-optical effect element, it becomes possible to detect a minute defect. In the configuration of the method of the present invention, only the magneto-optical effect element and the image sensor need be made to follow the material to be measured, which is much lighter and more compact than the conventional method, and the following performance is greatly improved, and the trouble of the sensor and the wiring system is reduced. You can get the effect of reducing.

【0029】また本発明では、光学的に幅方向に高速走
査するため圧延材の長手方向に長く延びた欠陥でも検出
できるという、画期的な特徴を備えている。
Further, the present invention has an epoch-making feature that it is possible to detect even a defect extending long in the longitudinal direction of the rolled material because it is optically scanned at high speed in the width direction.

【0030】更に本発明においては、光学的に走査する
ため走査速度は対象部材の振動に比較して充分速くする
事が可能で、光学系の倍率を変えることにより従来より
小さな欠陥も検出できるようになり、検出精度も向上し
た。
Further, in the present invention, since scanning is performed optically, the scanning speed can be made sufficiently higher than the vibration of the target member, and by changing the magnification of the optical system, it is possible to detect even smaller defects than before. And the detection accuracy has improved.

【0031】また、後処理において通常の画像信号と同
じ信号処理が適用可能であり、従来の方法に比べて欠陥
のパターン認識や欠陥種判別が可能になる。
In addition, the same signal processing as a normal image signal can be applied in the post-processing, and it becomes possible to recognize a defect pattern and determine a defect type as compared with the conventional method.

【0032】近年オプトエレクトロニクス分野の進歩は
めざましく、高感度垂直磁化膜、イメージセンサ7とし
て1万画素レベルの広幅のリニアアレイイメージセンサ
カメラのいずれもが安価に実現可能であり、従来の小型
センサーを多数並列化したものに比べて回路数にして数
百分の1になり、画期的に経済性を向上できる。また、
構成部品数が少なくなった為故障が減り、保守性が画期
的に向上した。
In recent years, advances in the field of optoelectronics have been remarkable, and both a high-sensitivity perpendicular magnetized film and a linear array image sensor camera having a wide width of 10,000 pixels as the image sensor 7 can be realized at low cost. The number of circuits is reduced to one hundredth of that of a large number of parallel circuits, and the economical efficiency can be improved epoch-making. Also,
Since the number of components is reduced, breakdowns are reduced and maintainability has been dramatically improved.

【0033】本発明により、経済的困難性から精度の良
い漏洩磁気探傷法を適用できていなかった領域に例えば
厚板の表面自動探欠陥方法に適用可能であり、省力化や
自動化を通しての生産性向上効果は大きい。
The present invention can be applied to a surface automatic flaw detection method for a thick plate, for example, in a region where the accurate leakage magnetic flaw detection method could not be applied due to economical difficulty, and labor-saving and productivity through automation. The improvement effect is great.

【図面の簡単な説明】[Brief description of drawings]

【図1】 実施例の装置の光学部を示す斜視図である。FIG. 1 is a perspective view showing an optical section of an apparatus according to an embodiment.

【図2】 実施例の装置の計測制御部を示すブロック図
である。
FIG. 2 is a block diagram showing a measurement control unit of the apparatus of the embodiment.

【図3】 磁化極性が正の場合の磁気光学効果素子の表
面画像を示す平面図である。
FIG. 3 is a plan view showing a surface image of the magneto-optical effect element when the magnetization polarity is positive.

【図4】 図3から交流周期の半周期後経過した後の磁
化極性が負の場合の磁気光学効果素子の表面画像を示す
平面図である。
FIG. 4 is a plan view showing a surface image of the magneto-optical effect element in the case where the magnetization polarity is negative after a lapse of a half cycle of the AC cycle from FIG.

【図5】 図4の反転(ネガ)画像を示す平面図であ
る。
5 is a plan view showing an inverted (negative) image of FIG.

【図6】 図3と図5を加え合わせた欠陥画像を示す模
式図である。
FIG. 6 is a schematic diagram showing a defect image obtained by adding FIGS. 3 and 5 together.

【図7】 第6図に画像処理装置により画像処理を行っ
た後の横方向輝度分布の波形と画像処理前の横方向輝度
分布の波形を示す波形図である。
FIG. 7 is a waveform diagram showing a waveform of a lateral luminance distribution after image processing by the image processing device and a waveform of a lateral luminance distribution before image processing in FIG.

【符号の説明】[Explanation of symbols]

1:帯状ストロボ拡散光源 2:偏光
板 3:光磁気効果素子 4:被検査材 5:干渉
フィルタ 6:検光子 7:イメージセンサ 8:光学
系全体 9:発振器 10:電力増幅器 11:磁化
コイル 12:鉄心 13:移相器 14:スト
ロボ制御電源 15:AD変換器 16:極性変換器 17:極性
検出器 18:フレームバッファ 19:加算
器 20:画像処理装置 21:欠陥表示器 22:欠陥
弁別器 23:正常部分 24:欠陥の部分 25:画像処理後の横方向輝度分布の波形 26:画像処理前の横方向輝度分布の波形
1: Striped strobe diffused light source 2: Polarizer 3: Magneto-optical effect element 4: Inspected material 5: Interference filter 6: Analyzer 7: Image sensor 8: Optical system 9: Oscillator 10: Power amplifier 11: Magnetization coil 12 : Iron core 13: Phase shifter 14: Strobe control power supply 15: AD converter 16: Polarity converter 17: Polarity detector 18: Frame buffer 19: Adder 20: Image processing device 21: Defect indicator 22: Defect discriminator 23: Normal part 24: Defect part 25: Waveform of horizontal luminance distribution after image processing 26: Waveform of horizontal luminance distribution before image processing

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 強磁性の被検査材に磁界を印加し、その
欠陥部に生じた漏洩磁界を、被探傷材と相対移動する磁
気光学効果素子に透過させた直線偏光の偏光面回転に基
づいて検出する磁気光学式欠陥検出方法において、光源
を帯状拡散偏光光源とし、印加磁界を交流とし、磁界の
正負の極性変化過程の中で、磁化の反転に同期して、磁
気光学効果素子の像を撮像し、順次極性反転毎に撮像し
た画像信号の符号を反転記憶し、今回と前回の信号の加
算結果より欠陥検出を行う事を特徴とする磁気光学式欠
陥検出方法。
1. A magnetic field is applied to a ferromagnetic material to be inspected, and a leakage magnetic field generated in a defect portion thereof is transmitted to a magneto-optical effect element that moves relative to the material to be inspected, based on rotation of a plane of polarization of linearly polarized light. In the magneto-optical defect detection method of detecting by means of a band-diffuse polarized light source, the applied magnetic field is an alternating current, and the image of the magneto-optical effect element is synchronized with the reversal of magnetization in the process of changing the polarity of the magnetic field. Is detected, the sign of the image signal is sequentially inverted and stored for each polarity inversion, and the defect is detected based on the addition result of the current signal and the previous signal.
JP7199492A 1992-03-30 1992-03-30 Magneto-optical defect detection method Expired - Lifetime JP2665294B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7199492A JP2665294B2 (en) 1992-03-30 1992-03-30 Magneto-optical defect detection method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7199492A JP2665294B2 (en) 1992-03-30 1992-03-30 Magneto-optical defect detection method

Publications (2)

Publication Number Publication Date
JPH05273322A true JPH05273322A (en) 1993-10-22
JP2665294B2 JP2665294B2 (en) 1997-10-22

Family

ID=13476541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7199492A Expired - Lifetime JP2665294B2 (en) 1992-03-30 1992-03-30 Magneto-optical defect detection method

Country Status (1)

Country Link
JP (1) JP2665294B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013544352A (en) * 2010-10-12 2013-12-12 インディアン インスティテュート オブ テクノロジー カーンプル System and method for imaging sample characteristics and identifying areas of damage within a sample
KR20150036805A (en) * 2012-09-28 2015-04-07 제이에프이 스틸 가부시키가이샤 Steel sheet inspection apparatus, steel sheet inspection method, and steel sheet manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013544352A (en) * 2010-10-12 2013-12-12 インディアン インスティテュート オブ テクノロジー カーンプル System and method for imaging sample characteristics and identifying areas of damage within a sample
US9778202B2 (en) 2010-10-12 2017-10-03 Indian Institute Of Technology Kanpur Systems and methods for imaging characteristics of a sample and for identifying regions of damage in the sample
KR20150036805A (en) * 2012-09-28 2015-04-07 제이에프이 스틸 가부시키가이샤 Steel sheet inspection apparatus, steel sheet inspection method, and steel sheet manufacturing method

Also Published As

Publication number Publication date
JP2665294B2 (en) 1997-10-22

Similar Documents

Publication Publication Date Title
JP5441214B2 (en) Magneto-optical defect detection method
JP4911489B2 (en) Flaw detector
JPH03221804A (en) Method for detecting ruggedness of magnetic metal plate
JP2665294B2 (en) Magneto-optical defect detection method
JP2671243B2 (en) Optical magnetic field distribution measuring device
JP2672912B2 (en) Optical magnetic field flaw detection method
JP2873450B2 (en) Defect inspection device using light
JPH06118060A (en) Magnetic optical defect inspecting device
JP3201031B2 (en) Magneto-optical flaw detection method and apparatus
JPH081458B2 (en) Optical magnetic field distribution measuring device
JPH06201654A (en) Method and apparatus for magneto-optical flaw detection
JP2731039B2 (en) Flaw detector
JP2860336B2 (en) Steel plate magnetic inspection equipment
JPS62185162A (en) Method for non-destructive measurement of surface flaw according to leakage flux flaw detection method
JPH02253152A (en) Method and device for flaw detection
JPH1026608A (en) Nondestructive inspecting method
JPH08145953A (en) Apparatus and method for measuring crystalline grain size of steel plate
JPH03245052A (en) Method and apparatus for magnetooptic flaw detection
Lee et al. Application of magneto-optical method for inspection of the internal surface of a tube
JPH0862185A (en) Magneto-optical defect detection apparatus
JPH03276050A (en) Magneto-optical flaw detecting device
JPH06109654A (en) Magneto-optic defect inspecting apparatus
JPH02227655A (en) Method and device for magneto-optic flaw detection
JPH0862184A (en) Magneto-optical defect detection apparatus
JPH04130265A (en) Magnetic flaw detecting apparatus for steel plate

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19970603