JPH05273076A - Dynamic surface shape measuring equipment of polygon mirror - Google Patents

Dynamic surface shape measuring equipment of polygon mirror

Info

Publication number
JPH05273076A
JPH05273076A JP9831291A JP9831291A JPH05273076A JP H05273076 A JPH05273076 A JP H05273076A JP 9831291 A JP9831291 A JP 9831291A JP 9831291 A JP9831291 A JP 9831291A JP H05273076 A JPH05273076 A JP H05273076A
Authority
JP
Japan
Prior art keywords
polygon mirror
mirror
trigger sensor
trigger
sensor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP9831291A
Other languages
Japanese (ja)
Other versions
JP3017998B2 (en
Inventor
Katsu Tashiro
克 田代
Iwao Sugizaki
巖 杉崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nidec Copal Electronics Corp
Original Assignee
Copal Electronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Copal Electronics Co Ltd filed Critical Copal Electronics Co Ltd
Priority to JP9831291A priority Critical patent/JP3017998B2/en
Publication of JPH05273076A publication Critical patent/JPH05273076A/en
Application granted granted Critical
Publication of JP3017998B2 publication Critical patent/JP3017998B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Length Measuring Devices By Optical Means (AREA)
  • Testing Of Optical Devices Or Fibers (AREA)
  • Mechanical Optical Scanning Systems (AREA)

Abstract

PURPOSE:To measure surface shape by dividing laser beam into two parts, measuring deviation which is generated in time interval between incidence of the first beam into a first trigger sensor and that of the second beam into a second trigger sensor and then obtaining inclination of an irradiation beam due to deformation of a surface during rotation. CONSTITUTION:By moving a traveling stage, a second beam B2 is applied to a location closer to the edge of a polygon mirror 12. The mirror 12 is rotating and a trigger generation time difference between a first trigger sensor 16 and a second trigger sensor 17 is adjusted to 0 when a first beam Bl and the second beam B2 are applied to a same position. When the surface of the mirror 12 is completely flat 12a, the beams are applied to the sensors 16 and 17 simultaneously. When the surface of the mirror 12 is deformed as in 12b due to centrifugal force, the angle of reflection light of the beam B2 changes to B2b and then incidence of the beam B2b into the sensor 17 is delayed as compared with the beam B1. By detecting the delay, inclination of the surface of the mirror 12 at this position is obtained, thus measuring the surface shape.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,レーザビームプリンタ
等に使用されるポリゴンミラー回転中の面形状を測定す
る動的面形状測定器に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a dynamic surface profile measuring instrument used in a laser beam printer or the like for measuring a surface profile during rotation of a polygon mirror.

【0002】[0002]

【従来の技術】従来、ポリゴンミラーの面形状測定には
表面粗さ計、干渉計などが使用されていた。
2. Description of the Related Art Conventionally, a surface roughness meter, an interferometer, etc. have been used to measure the surface shape of a polygon mirror.

【0003】[0003]

【発明が解決しようとする課題】これらには次のような
欠点があった。 (イ)静止状態でしか測定できないため例えば高速で回
転する際に発生する遠心力による面形状変化を測定する
ことは不可能である。 (ロ)形状のみを測定するので実際に走査用光束を入射
させたとき走査光にどのような誤差が発生するかは確認
できない。そのため走査光の誤差の代表的数値であるジ
ッタとの関連が明らかでなく、また走査用ビーム径によ
る影響も明らかでなかった。 本発明はこれらの欠点を除くためになされたものであ
る。
These have the following drawbacks. (A) Since it is possible to measure only in a stationary state, it is impossible to measure a surface shape change due to a centrifugal force generated when rotating at a high speed, for example. (B) Since only the shape is measured, it is not possible to confirm what kind of error occurs in the scanning light when the scanning light beam is actually incident. Therefore, the relation with the jitter, which is a typical numerical value of the scanning light error, was not clear, and the influence of the scanning beam diameter was not clear. The present invention has been made to eliminate these drawbacks.

【0004】[0004]

【課題を解決するための手段】本発明を実施例に対応す
る図1で説明すると、本発明によるポリゴンミラーの動
的面形状測定器は、レーザ1の出射ビームを2分割する
第1ビームスプリッタ2と、分割された第1ビームB1
の径を広げる第1ビームエキスパンダ4と、第1ビーム
B1をポリゴンミラー12にあてた反射光を集光する第
1レンズ6と、集光された第1ビームB1を電気信号に
変換する第1トリガセンサ16と、第1ビームスプリッ
タで分割された第2ビームB2の径を増減させる第2ビ
ームエキスパンダ7と、第2ビームB2を第1ビームB
1が第1トリガセンサ16に入射する瞬間のポリゴンミ
ラー12の反射面と平行な方向にするビーム折り返し手
段3,8と、第1ビームB1が第1トリガセンサ16に
入射する瞬間のポリゴンミラー12の反射面と平行方面
に移動可能な移動ステージ9と、第2ビームB2を折り
返してポリゴンミラー12に入射させる移動ステージ9
上の2個のミラー10,11と、ポリゴンミラー12か
らの反射光を折り返して第1ビームB1が第1トリガセ
ンサ16に入射する瞬間のポリゴンミラー12の反射面
と平行方向に出射させる、移動ステージ9上の2個のミ
ラー13,14と、その出射光を集光する第2レンズ5
と、集光された第2ビームB2を電気信号に変換する第
2トリガセンサ17と、で構成されたものである。
The present invention will be described with reference to FIG. 1, which corresponds to an embodiment. A polygon mirror dynamic surface shape measuring instrument according to the present invention is a first beam splitter for splitting an output beam of a laser 1 into two. 2 and the split first beam B1
A first beam expander 4 for expanding the diameter of the first beam B1, a first lens 6 for condensing the reflected light that impinges the first beam B1 on the polygon mirror 12, and a first lens B1 for converting the condensed first beam B1 into an electric signal. 1 trigger sensor 16, a second beam expander 7 for increasing or decreasing the diameter of the second beam B2 split by the first beam splitter, and a second beam B2
Beam folding means 3 and 8 for directing 1 in a direction parallel to the reflecting surface of the polygon mirror 12 at the moment when the first trigger sensor 16 is incident, and the polygon mirror 12 at the moment when the first beam B1 is incident on the first trigger sensor 16. Moving stage 9 which is movable in a direction parallel to the reflection surface of the second moving stage 9 and the moving stage 9 which causes the second beam B2 to return and enter the polygon mirror 12.
A movement in which the reflected light from the upper two mirrors 10 and 11 and the polygon mirror 12 is folded back and emitted in a direction parallel to the reflecting surface of the polygon mirror 12 at the moment when the first beam B1 enters the first trigger sensor 16. Two mirrors 13 and 14 on the stage 9 and a second lens 5 that collects the emitted light
And a second trigger sensor 17 for converting the collected second beam B2 into an electric signal.

【0005】[0005]

【作用】移動ステージ9を移動すると第1ビームB1の
ポリゴンミラー12への入射位置が変化する。このとき
反射面が平行でない場合、第1ビームB1が第1トリガ
センサ16に入射する時点と第2ビームB2が第2トリ
ガセンサ17に入射する時点の時間間隔にずれが生じ、
そのずれを測定することで回転中の面の変形による出射
ビームの傾きを知ることができる。
When the moving stage 9 is moved, the incident position of the first beam B1 on the polygon mirror 12 is changed. If the reflecting surfaces are not parallel at this time, a time interval between the time when the first beam B1 is incident on the first trigger sensor 16 and the time when the second beam B2 is incident on the second trigger sensor 17 is displaced,
By measuring the deviation, it is possible to know the tilt of the emitted beam due to the deformation of the rotating surface.

【0006】[0006]

【実施例】以下、図面を参照しながら本発明について説
明する。図1は本発明による一実施例の構成図で、レー
ザ1から出射したビームは第1ビームスプリッタ2によ
って第1ビームB1と第2ビームB2とに分割される。
第1ビームB1は第2ビームエキスバンダ4によってそ
の径を拡大される。これは径を拡大することにより第1
ビームB1がポリゴンミラー12のミラー面の表面状態
の影響を受けにくくするためである。そのあと第1ビー
ムB1は、第2ビームスプリッタ5を通過し、第1シリ
ンドリカルレンズ18によりポリゴンミラー12上に副
走査方向のみ集光されて入射する。その反射光は再び第
1シリンドリカルレンズ18を透過する。第1、第2、
第3シリンドリカルレンズ18,19,20はポリゴン
ミラー12の各面の面倒れによるトリガの立ち上がり誤
差を補正するためのものである。ポリゴンミラー12を
反射した第1ビームB1はそのあと第2ビームスプリッ
タ5に再び入射し、反射されて第1レンズ6で集光され
て第1トリガセンサ16に入射し、電気信号に変換され
てカウンタ21に送られる。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram of an embodiment according to the present invention. A beam emitted from a laser 1 is split by a first beam splitter 2 into a first beam B1 and a second beam B2.
The diameter of the first beam B1 is expanded by the second beam expander 4. This is the first by increasing the diameter
This is for making the beam B1 less susceptible to the surface condition of the mirror surface of the polygon mirror 12. After that, the first beam B1 passes through the second beam splitter 5 and is condensed and incident on the polygon mirror 12 by the first cylindrical lens 18 only in the sub-scanning direction. The reflected light again passes through the first cylindrical lens 18. First, second,
The third cylindrical lenses 18, 19 and 20 are for correcting the rising error of the trigger due to the surface tilt of each surface of the polygon mirror 12. The first beam B1 reflected by the polygon mirror 12 then enters the second beam splitter 5 again, is reflected, is condensed by the first lens 6, enters the first trigger sensor 16, and is converted into an electric signal. It is sent to the counter 21.

【0007】一方、第2ビームB2は第1ミラー3で反
射され、第2ビームエキスパンダ7でビーム径を調節さ
れる。第2ビームB2のビーム径は移動平均幅と似たよ
うな意味をもち、大きくすれば面形状のマクロ的変形が
読み取れる。その後第2ビームB2は第2ミラー8で反
射されて、第1ビームB1が第1トリガセンサ16に入
射する瞬間のポリゴンミラー12の反射面と平行方向に
なる。
On the other hand, the second beam B2 is reflected by the first mirror 3 and the beam diameter is adjusted by the second beam expander 7. The beam diameter of the second beam B2 has a similar meaning to the moving average width, and if it is increased, the macroscopic deformation of the surface shape can be read. After that, the second beam B2 is reflected by the second mirror 8 and becomes parallel to the reflecting surface of the polygon mirror 12 at the moment when the first beam B1 enters the first trigger sensor 16.

【0008】その後、同方向に移動可能な移動ステージ
9上の第2シリンドリカルレンズ19、第3ミラー1
0、第4ミラー11を経てポリゴンミラー12に入射す
る。その反射光は同じく移動ステージ9上の第5ミラー
13、第6ミラー14、第3シリンドリカルレンズ20
を通過した後第1ビームB1が第1トリガセンサ16に
入射する瞬間のポリゴンミラー12の反射面と平行方向
にされ、固定された第2レンズ15で集光され、第2ト
リガセンサ17に入射し、電気信号に変換され、カウン
タ21に入力される。
After that, the second cylindrical lens 19 and the third mirror 1 on the moving stage 9 which can move in the same direction.
0, and then enters the polygon mirror 12 through the fourth mirror 11. The reflected light is similarly reflected by the fifth mirror 13, the sixth mirror 14, and the third cylindrical lens 20 on the moving stage 9.
After passing through the first beam B1, the first beam B1 is made parallel to the reflecting surface of the polygon mirror 12 at the moment when the first beam B1 is incident on the first trigger sensor 16, is condensed by the fixed second lens 15, and is incident on the second trigger sensor 17. Then, it is converted into an electric signal and input to the counter 21.

【0009】第2レンズ15はポリゴンミラー12の面
の位置の変化を補正する効果がある。また移動ステージ
9は機械的移動となるため移動の際のガタは避けられな
いが、移動ステージ9上で入射光を2回(ミラー10,
11)、出射光を2回(ミラー13,14)折り返すこ
とで、移動ステージ9のガタを補正することができる。
The second lens 15 has an effect of correcting a change in the position of the surface of the polygon mirror 12. In addition, since the moving stage 9 is mechanically moved, it is inevitable that the moving stage 9 moves, but the incident light is moved twice on the moving stage 9 (the mirror 10,
11), the play of the moving stage 9 can be corrected by returning the emitted light twice (mirrors 13 and 14).

【0010】カウンタ21では第1トリガセンサ16と
第2トリガセンサ17のトリガ信号の入力時間間隔を測
定し、その時間間隔からポリゴンミラー12面上で発生
した角度ずれ量をコンピュータ22で算出し、面形状を
測定することができる。
The counter 21 measures the input time interval of the trigger signals of the first trigger sensor 16 and the second trigger sensor 17, and the computer 22 calculates the amount of angular deviation generated on the surface of the polygon mirror 12 from the time interval. The surface shape can be measured.

【0011】次に本測定器の測定原理を図2を参照しな
がら説明する。移動ステージ9を動かして第2ビームB
2をポリゴンミラー12の端近くに入射させる状態を考
える。ポリゴンミラー12は時計方向に回転しており、
第1ビームB1と第2ビームB2が同じ位置に入射して
いるときには第1トリガセンサ16と第2トリガセンサ
17のトリガ発生時間差は0に調整してあるものとす
る。もし、ポリゴンミラー12面が完全な平面12aで
あるならば図2の実線に示すように、第2ビームB2
は、常に第1ビームB1が第1トリガセンサ16に入射
するのと同時に第2トリガセンサ17に入射するはずで
ある。ところが、図2の点線に示すように遠心力により
ミラー面が12bのように変形すると第2ビームB2の
反射光はB2bのように角度が変わり、その結果第2ト
リガセンサ17に第2ビームB2bが入射するのが第1
ビームB1に比べ遅れる。この遅れを検出することによ
りポリゴンミラー12面のこの位置における走査方向の
傾きを求めることができる。
Next, the measuring principle of the measuring instrument will be described with reference to FIG. Move the moving stage 9 to move the second beam B.
Consider a state in which 2 is incident near the end of the polygon mirror 12. The polygon mirror 12 is rotating clockwise,
When the first beam B1 and the second beam B2 are incident on the same position, the trigger generation time difference between the first trigger sensor 16 and the second trigger sensor 17 is adjusted to 0. If the surface of the polygon mirror 12 is a perfect plane 12a, as shown by the solid line in FIG.
Should always be incident on the second trigger sensor 17 at the same time that the first beam B1 is incident on the first trigger sensor 16. However, as shown by the dotted line in FIG. 2, when the mirror surface is deformed like 12b by the centrifugal force, the angle of the reflected light of the second beam B2 changes like B2b, and as a result, the second beam B2b is transmitted to the second trigger sensor 17. Is the first incident
It lags behind beam B1. By detecting this delay, the inclination of the surface of the polygon mirror 12 at this position in the scanning direction can be obtained.

【0012】[0012]

【発明の効果】以上、詳細に説明したように、本発明に
よればミラーの回転中の変形を測定することができるの
でミラーが高速回転したときの遠心力による変形を測定
できる。また、走査光学系と同様な光学系となっている
ので、面の形状やビームの径が走査ジッタにどのように
関係するのかを測定することができる。
As described above in detail, according to the present invention, since the deformation of the mirror during rotation can be measured, the deformation due to the centrifugal force when the mirror rotates at a high speed can be measured. Moreover, since the optical system is the same as the scanning optical system, it is possible to measure how the shape of the surface and the beam diameter relate to the scanning jitter.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成を示す平面図である。FIG. 1 is a plan view showing a configuration of the present invention.

【図2】本発明の原理を示す構成図である。FIG. 2 is a configuration diagram showing the principle of the present invention.

【符号の説明】[Explanation of symbols]

1 レーザ 2 第1ビームスプリッタ 3 第1ミラー 4 第1ビームエキスパンダ 5 第2ビームスプリッタ 6 第1レンズ 7 第2ビームエキスパンダ 8 第2ミラー 9 移動ステージ 10 第3ミラー 11 第4ミラー 12 ポリゴンミラー 13 第5ミラー 14 第6ミラー 15 第2レンズ 16 第1トリガセンサ 17 第2トリガセンサ 18 第1シリンドリカルレンズ 19 第2シリンドリカルレンズ 20 第3シリンドリカルレンズ 21 カウンタ 22 コンピュータ B1 第1ビーム B2 第2ビーム 1 Laser 2 1st Beam Splitter 3 1st Mirror 4 1st Beam Expander 5 2nd Beam Splitter 6 1st Lens 7 2nd Beam Expander 8 2nd Mirror 9 Moving Stage 10 3rd Mirror 11 4th Mirror 12 Polygon Mirror 13 5th mirror 14 6th mirror 15 2nd lens 16 1st trigger sensor 17 2nd trigger sensor 18 1st cylindrical lens 19 2nd cylindrical lens 20 3rd cylindrical lens 21 Counter 22 Computer B1 1st beam B2 2nd beam

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 レーザ(1)の出射ビームを2分割する
第1ビームスプリッタ(2)と、分割された第1ビーム
(B1)の径を広げる第1ビームエキスパンダ(4)
と、第1ビーム(B1)をポリゴンミラー(12)にあ
てた反射光を集光する第1レンズ(6)と、集光された
第1ビーム(B1)を電気信号に変換する第1トリガセ
ンサ(16)と、第1ビームスプリッタで分割された第
2ビーム(B2)の径を増減させる第2ビームエキスパ
ンダ(7)と、第2ビーム(B2)を第1ビーム(B
1)が第1トリガセンサ(16)に入射する瞬間のポリ
ゴンミラー(12)の反射面と平行な方向にするビーム
折り返し手段(3),(8)と、第1ビーム(B1)が
第1トリガセンサ(16)に入射する瞬間のポリゴンミ
ラー(12)の反射面と平行方面に移動可能な移動ステ
ージ(9)と、第2ビーム(B2)を折り返してポリゴ
ンミラー(12)に入射させる移動ステージ(9)上の
2個のミラー(10),(11)と、ポリゴンミラー
(12)からの反射光を折り返して第1ビーム(B1)
が第1トリガセンサ(16)に入射する瞬間のポリゴン
ミラー(12)の反射面と平行方向に出射させる、移動
ステージ(9)上の2個のミラー(13),(14)
と、その出射光を集光する第2レンズ(15)と、集光
された第2ビーム(B2)を電気信号に変換する第2ト
リガセンサ(17)とで構成されたことを特徴とするポ
リゴンミラーの動的面形状測定器。
1. A first beam splitter (2) for splitting a beam emitted from a laser (1) into two, and a first beam expander (4) for expanding the diameter of the split first beam (B1).
A first lens (6) for converging the first beam (B1) on the polygon mirror (12) and condensing the reflected light; and a first trigger for converting the converging first beam (B1) into an electric signal. The sensor (16), the second beam expander (7) for increasing or decreasing the diameter of the second beam (B2) split by the first beam splitter, and the second beam (B2) for the first beam (B2).
The first beam (B1) and the beam folding means (3) and (8) for making the direction 1) parallel to the reflection surface of the polygon mirror 12 at the moment of incidence on the first trigger sensor 16. A moving stage (9) capable of moving in a direction parallel to the reflecting surface of the polygon mirror (12) at the moment of entering the trigger sensor (16), and a movement in which the second beam (B2) is folded and made to enter the polygon mirror (12). The reflected light from the two mirrors (10) and (11) on the stage (9) and the polygon mirror (12) is turned back to produce the first beam (B1).
Two mirrors (13), (14) on the moving stage (9), which emits light in a direction parallel to the reflecting surface of the polygon mirror (12) at the moment when the light enters the first trigger sensor (16).
And a second lens (15) that collects the emitted light and a second trigger sensor (17) that converts the collected second beam (B2) into an electric signal. Dynamic surface shape measuring instrument of polygon mirror.
JP9831291A 1991-01-31 1991-01-31 Dynamic surface shape measuring device for polygon mirror Expired - Fee Related JP3017998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9831291A JP3017998B2 (en) 1991-01-31 1991-01-31 Dynamic surface shape measuring device for polygon mirror

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9831291A JP3017998B2 (en) 1991-01-31 1991-01-31 Dynamic surface shape measuring device for polygon mirror

Publications (2)

Publication Number Publication Date
JPH05273076A true JPH05273076A (en) 1993-10-22
JP3017998B2 JP3017998B2 (en) 2000-03-13

Family

ID=14216410

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9831291A Expired - Fee Related JP3017998B2 (en) 1991-01-31 1991-01-31 Dynamic surface shape measuring device for polygon mirror

Country Status (1)

Country Link
JP (1) JP3017998B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234423A (en) * 2009-03-31 2010-10-21 Hitachi Via Mechanics Ltd Laser beam drilling method
JP2014098814A (en) * 2012-11-15 2014-05-29 Ricoh Co Ltd Inspection device and inspection method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010234423A (en) * 2009-03-31 2010-10-21 Hitachi Via Mechanics Ltd Laser beam drilling method
JP2014098814A (en) * 2012-11-15 2014-05-29 Ricoh Co Ltd Inspection device and inspection method

Also Published As

Publication number Publication date
JP3017998B2 (en) 2000-03-13

Similar Documents

Publication Publication Date Title
CN107219378B (en) Large range high precision acceleration measurement system and measurement method based on dual wavelength interference
US4897536A (en) Optical axis displacement sensor with cylindrical lens means
CN106997051B (en) Laser vector wind measurement method and wind measurement radar based on polarization effect and self-mixing effect
JPH10325874A (en) Speed measuring method based on laser doppler principle
JP3323510B2 (en) Laser beam splitter producing multiple parallel beams
JPH0379642B2 (en)
JPH07190714A (en) Interferometer
JP3017998B2 (en) Dynamic surface shape measuring device for polygon mirror
JPH116719A (en) Interference measuring apparatus
EP2259009B1 (en) Arrangement and method for measuring relative movement
JPH0256604B2 (en)
JP4204803B2 (en) Laser measuring instrument
WO2021055715A1 (en) Laser interferometry systems and methods
JP2011164090A (en) Heterodyne laser interferometric measuring machine
CN111121983A (en) Real-time wavelength detection device adopting laser interference principle and use method thereof
JP3061160B2 (en) Laser interference displacement measurement device
JPH09280827A (en) Laser interference length measuring device
JPH07325096A (en) Speed meter and position information detecting device
JPH04130239A (en) Apparatus for measuring outward position and inward position of dynamic surface
JP2002508838A (en) Interferometer
JPH0599612A (en) Laser interferometer
JP2591143B2 (en) 3D shape measuring device
JP2981927B2 (en) Multi-phase splitting optical system
JP2002267426A (en) Shape-measuring instrument and method
JPH04109129A (en) Polarization detection optical system

Legal Events

Date Code Title Description
R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090107

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100107

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110107

Year of fee payment: 11

LAPS Cancellation because of no payment of annual fees