JPH05272484A - Low temperature liquid transport pump - Google Patents

Low temperature liquid transport pump

Info

Publication number
JPH05272484A
JPH05272484A JP4070570A JP7057092A JPH05272484A JP H05272484 A JPH05272484 A JP H05272484A JP 4070570 A JP4070570 A JP 4070570A JP 7057092 A JP7057092 A JP 7057092A JP H05272484 A JPH05272484 A JP H05272484A
Authority
JP
Japan
Prior art keywords
impeller
superconductor
low temperature
pump
temperature liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP4070570A
Other languages
Japanese (ja)
Inventor
Naoyuki Ogawa
尚之 小川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP4070570A priority Critical patent/JPH05272484A/en
Publication of JPH05272484A publication Critical patent/JPH05272484A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Superconductive Dynamoelectric Machines (AREA)
  • Structures Of Non-Positive Displacement Pumps (AREA)

Abstract

PURPOSE:To utilize low temperature effectively and eliminate the fear of friction loss and vibration in the non-contact state by forming a part of an impeller of a superconductor, and rotating the impeller by the change of external magnetic field. CONSTITUTION:Permanent magnets 3 interlocked with a motor 4 through a gear 7 are installed along the outer circumferential face outer part of a pump casing 10. An impeller 1 disposed in the casing 10 is formed of a superconductor annulus ring part 11 and blades 12 disposed in this annulus ring. In the impeller 1 of this pump, the annulus ring part 11 becomes superconductive by supplied low temperature liquid so as to rotate the impeller 1 against the magnetic field conversion of the rotating permanent magnets 3. The low temperature liquid supplied from a lead-in port 5 by the rotation of the impeller 1 is pressed backward by the blades 12 and discharged from a delivery port 6 for transportation. Since a superconductor of strong pinning force is used in this pump, the impeller 1 can be rotated in the non-contact state without using a mechanical bearing so as to enable the stable transportation of a low temperature fluid.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は低温液体ポンプに関し、
特に、超電導体を羽根車の一部に用いると共に、液体ヘ
リウムや液体窒素等の輸送する液体の低温を有効利用す
る低温液体ポンプに関する。
FIELD OF THE INVENTION The present invention relates to a cryogenic liquid pump,
In particular, the present invention relates to a cryogenic liquid pump that uses a superconductor in a part of an impeller and effectively utilizes the low temperature of a liquid to be transported such as liquid helium and liquid nitrogen.

【0002】[0002]

【従来の技術】低温液体を輸送するためのポンプとして
は、従来、往復型及び回転型が使用されている。回転型
ポンプは羽根が流体の中で回転し、往復型ポンプはピス
トンがシリンダー中で往復運動する。これら従来の液体
輸送ポンプは、回転型においては軸受部で、また、往復
型においてはピストンとシリンダーとの接触部で、摩擦
による損失が生じると共に、輸送低温液体が加熱される
不都合が生じるおそれもある。また、往復型では脈動が
原因となり液体中に振動が起きるおそれもある。
2. Description of the Related Art Conventionally, reciprocating and rotating pumps have been used as pumps for transporting cryogenic liquids. In a rotary pump, blades rotate in a fluid, and in a reciprocating pump, a piston reciprocates in a cylinder. These conventional liquid transport pumps have a bearing portion in the rotary type and a contact portion between a piston and a cylinder in the reciprocating type, which causes a loss due to friction and may cause a disadvantage that the transport low temperature liquid is heated. is there. Further, in the reciprocating type, vibration may occur in the liquid due to pulsation.

【0003】[0003]

【発明が解決しようとする課題】磁気ベアリング等電磁
気を用い磁気的に回転機械を制御する試みが最近なされ
ているが、複雑な制御回路が必須であり、実用的でな
い。また、特開平2−188681号公報では、ダイヤ
フラムに超電導体を用いた超電導ポンプが提案されてい
る。この超電導ダイヤフラムを用いたポンプにおいて
も、上記往復型と同様に液体中に振動が生じるおそれが
ある。本発明は、超電導体のピン止め効果と、輸送する
低温液体の低温の有効な利用を図り、非接触で上記従来
ポンプの摩擦損失や振動のおそれのない低温液体用ポン
プの提供を目的とする。
Although attempts have been made recently to magnetically control a rotating machine by using an electromagnetic field such as a magnetic bearing, a complicated control circuit is indispensable and impractical. Further, Japanese Patent Laid-Open No. 2-188681 proposes a superconducting pump using a superconductor for a diaphragm. Also in the pump using this superconducting diaphragm, vibration may occur in the liquid as in the reciprocating type. It is an object of the present invention to provide a pump for a low temperature liquid which has a pinning effect of a superconductor and an effective use of low temperature of a low temperature liquid to be transported and which is non-contact and has no fear of friction loss or vibration of the conventional pump. ..

【0004】[0004]

【課題を解決するための手段】本発明によれば、低温液
体を送出する羽根車の一部を超電導体で構成してなり、
該羽根車を外部磁界の変化により回転させることを特徴
とする低温液体輸送ポンプが提供される。
According to the present invention, a part of an impeller for delivering a cryogenic liquid is constituted by a superconductor,
A cryogenic liquid transfer pump is provided, characterized in that the impeller is rotated by a change in an external magnetic field.

【0005】[0005]

【作用】本発明のポンプは上記のように構成され、超電
導体からなる羽根車を超電導体のピン止め効果により回
転させることができ、機械的軸受を不要とし摩擦損失等
の不都合が生じない。
The pump of the present invention is constructed as described above, and the impeller made of a superconductor can be rotated by the pinning effect of the superconductor, no mechanical bearing is required, and no inconvenience such as friction loss occurs.

【0006】[0006]

【実施例】以下、本発明の一実施例を、図面を参照にし
て詳細に説明する。但し、本発明は下記実施例により制
限されるものでない。図1は、本発明の低温液体輸送ポ
ンプの一実施例の概念説明図であり、図2は、図1のA
−A線における切断面説明図である。図1において、ケ
ーシング10内には、ディスク形状の超電導体である中
心部(図のハッチング部)11と羽根12からなる羽根
車1が配置され、ケーシング10の外部には超電導体1
1の軸面に対面して、モーター4により同軸回転するよ
うに永久磁石3を設置する。ケーシング10には、導入
口5及び送出口6が配設される。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described in detail below with reference to the drawings. However, the present invention is not limited to the following examples. FIG. 1 is a conceptual explanatory view of an embodiment of the cryogenic liquid transport pump of the present invention, and FIG. 2 is A of FIG.
It is a cutting plane explanatory view in the A line. In FIG. 1, an impeller 1 including a central portion (hatched portion in the drawing) 11 that is a disk-shaped superconductor and blades 12 is arranged in a casing 10, and the superconductor 1 is provided outside the casing 10.
The permanent magnet 3 is installed so as to face the shaft surface of 1 so as to be coaxially rotated by the motor 4. The casing 10 is provided with an inlet 5 and an outlet 6.

【0007】上記したように羽根車1の中心部11は超
電導体により構成される。超電導体としては、ピン止め
力の強い超電導体を用いるのが好ましい。例えば、Y−
Ba−Cu−O系超電導体で、一般に、溶融法といわれ
るMTG法や、MTG法を改良した特開平2−1538
03号公報等で提案されるQMG法、また、本出願人が
特願平2−412529号にて提案した方法等により得
られる高ピン止め力を有するY−Ba−Cu−O系超電
導体を用いることができる。
As described above, the central portion 11 of the impeller 1 is composed of a superconductor. As the superconductor, it is preferable to use a superconductor having a strong pinning force. For example, Y-
A Ba-Cu-O-based superconductor, which is generally called a melting method, is an MTG method, or an improved MTG method.
No. 03, etc., and a Y-Ba-Cu-O-based superconductor having a high pinning force obtained by the method proposed by the present applicant in Japanese Patent Application No. 2-412529. Can be used.

【0008】図1における羽根車1の中心部11に使用
した超電導体は、次のようにして製造した。即ち、Ba
CO3 とCuOをモル比が2.8:3.8となるように
秤量し、イソプロピルアルコール中で、ジルコニア玉石
を用いた回転ミルで10時間混合した。得られた混合粉
末を乾燥後、この粉末を酸素中、800〜950℃で2
4時間焼成し仮焼粉末を得た。得られた仮焼粉末に、元
素比Y:Ba:Cu=1.8:2.4:3.4となるよ
うに、Y23 粉末を加え、ジルコニア玉石を用いた回
転ミルで24時間混合した。得られた混合粉末を、直径
50mm、高さ15mmの円板にプレス成形した。この
成形体を大気雰囲気の電気炉中で、1150℃で1時間
保持し分解溶融した後、1020℃から940℃まで6
0時間徐冷した。その後、酸素雰囲気中500〜350
℃で48時間、酸素アニールした。
The superconductor used for the central portion 11 of the impeller 1 in FIG. 1 was manufactured as follows. That is, Ba
CO 3 and CuO were weighed so that the molar ratio was 2.8: 3.8, and mixed in isopropyl alcohol for 10 hours on a rotary mill using zirconia boulders. After drying the obtained mixed powder, the powder was dried in oxygen at 800 to 950 ° C. for 2 hours.
It was calcined for 4 hours to obtain a calcined powder. Y 2 O 3 powder was added to the obtained calcined powder so that the element ratio was Y: Ba: Cu = 1.8: 2.4: 3.4, and the mixture was placed in a rotary mill using zirconia boulders for 24 hours. Mixed. The obtained mixed powder was press-molded into a disk having a diameter of 50 mm and a height of 15 mm. This molded body was decomposed and melted by holding it at 1150 ° C. for 1 hour in an electric furnace in the air atmosphere, and then from 1020 ° C. to 940 ° C. 6
It was gradually cooled for 0 hours. Then, 500-350 in oxygen atmosphere
Oxygen annealed at 48 ° C. for 48 hours.

【0009】羽根車1は、上記のようにその中心部11
をピン止め力の強い超電導体で構成するため、配管によ
り送られる液体ヘリウムや液体窒素等の低温液体により
超電導状態となる。ピン止め力の強い超電導体では、超
電導体内部の磁束量の変化に抗するため、羽根車1は永
久磁石3の回転に合わせて回転することになる。従っ
て、導入口5からポンプケーシング10内に供給された
低温液体は、回転する羽根12の空隙に閉じ込められ押
し動かされ、送出口6から排出輸送される。また、輸送
低温液体の輸送量は、モーターの回転数を制御すること
により行うことができ、定量的に輸送することもでき
る。
The impeller 1 has its central portion 11 as described above.
Since it is composed of a superconductor having a strong pinning force, it is brought into a superconducting state by a low temperature liquid such as liquid helium or liquid nitrogen sent through a pipe. In a superconductor having a strong pinning force, the impeller 1 rotates in accordance with the rotation of the permanent magnet 3 in order to resist the change in the amount of magnetic flux inside the superconductor. Therefore, the low-temperature liquid supplied from the inlet 5 into the pump casing 10 is trapped in the voids of the rotating blades 12 and pushed, and is discharged and transported from the outlet 6. Further, the transporting amount of the transporting low temperature liquid can be carried out by controlling the rotation speed of the motor, and the transporting can be carried out quantitatively.

【0010】図3は、本発明の低温液体輸送ポンプの他
の実施例の概念説明図であり、図4は、図3のB−B線
における切断面説明図である。図3及び図4において、
上記図1及び図2と同一符号は同一構成部材を示す。図
3においては、ポンプケーシング10の外円周面外部に
沿って、ギアー7を介してモーター4に連動する永久磁
石3を設置する。ケーシング10内に配置した羽根車1
は、超電導体で構成される円環状部(図のハッチング
部)11とその円環内に配設された羽根12から構成さ
れる。上記のように構成されたポンプの羽根車1は、図
1及び2に示した例と同様に供給される低温液体により
円環状部11が超電導状態になり、回転する永久磁石3
の磁場変換に抗して回転する。羽根車1の回転により導
入口5から供給された低温液体は、羽根12により後方
に押され、送出口6から排出輸送される。図3における
超電導体の円環状部11は、外径30mm、内径20、
高さ15mmの円環状体を上記と同様に混合粉末を成形
し、分解溶融、徐冷、酸素アニールして製造して用い
た。
FIG. 3 is a conceptual explanatory view of another embodiment of the cryogenic liquid transport pump of the present invention, and FIG. 4 is a sectional view taken along the line BB in FIG. 3 and 4,
The same reference numerals as those in FIGS. 1 and 2 indicate the same components. In FIG. 3, a permanent magnet 3 that interlocks with a motor 4 via a gear 7 is installed along the outside of the outer circumferential surface of the pump casing 10. Impeller 1 arranged in casing 10
Is composed of an annular portion (hatched portion in the figure) 11 made of a superconductor and blades 12 arranged in the annular portion. In the impeller 1 of the pump configured as described above, the annular portion 11 is brought into a superconducting state by the low temperature liquid supplied in the same manner as in the example shown in FIGS.
Rotates against the magnetic field conversion of. The low-temperature liquid supplied from the inlet 5 by the rotation of the impeller 1 is pushed backward by the blades 12 and discharged and transported from the outlet 6. The annular portion 11 of the superconductor in FIG. 3 has an outer diameter of 30 mm, an inner diameter of 20,
A ring-shaped body having a height of 15 mm was manufactured by forming a mixed powder, decomposing and melting, gradually cooling and oxygen annealing as in the above.

【0011】本発明における外部磁場の変化は、上記実
施例に示した永久磁石を回転して行う方法のほか、電磁
石を配置しその電磁石の極性を連続的に変化させる方法
でもよく、羽根車を構成する超電導体に作用しポンプの
羽根車を回転させられる方法であればいずれでもよい。
The change of the external magnetic field in the present invention may be carried out by rotating the permanent magnet shown in the above embodiment, or by a method of disposing an electromagnet and continuously changing the polarity of the electromagnet. Any method may be used as long as it can act on the constituent superconductor and rotate the impeller of the pump.

【0012】[0012]

【発明の効果】本発明の低温液体ポンプは、超電導体、
特にY−Ba−Cu−O系超電導体を用い、そのピン止
め力により磁気軸受するため、磁気ベアリング等の複雑
な制御回路も不要であり、非接触にて摩擦損失を生じる
ことなく安定して羽根車を回転することができ、また、
モーターの回転数を制御することにより液体窒素等の低
温液体を定量的に安定して輸送することができる。
The cryogenic liquid pump of the present invention comprises a superconductor,
In particular, since a Y-Ba-Cu-O-based superconductor is used and magnetic bearing is performed by its pinning force, a complicated control circuit such as a magnetic bearing is not necessary, and it is stable without contact and friction loss. You can rotate the impeller,
By controlling the number of rotations of the motor, a low temperature liquid such as liquid nitrogen can be quantitatively and stably transported.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の低温液体輸送ポンプの一実施例の概念
説明図
FIG. 1 is a conceptual explanatory view of an embodiment of a cryogenic liquid transport pump of the present invention.

【図2】図1のA−A線における切断面説明図FIG. 2 is an explanatory view of a cross section taken along the line AA in FIG.

【図3】本発明の低温液体輸送ポンプの他の実施例の概
念説明図
FIG. 3 is a conceptual explanatory view of another embodiment of the cryogenic liquid transport pump of the present invention.

【図4】図3のB−B線における切断面説明図FIG. 4 is an explanatory view of a cross section taken along the line BB in FIG.

【符号の説明】[Explanation of symbols]

1 羽根車 3 永久磁石 4 モーター 5 導入口 6 送出口 7 ギア 10 ポンプケーシング 11 超電導体(中心部
または円環状部) 12 羽根
DESCRIPTION OF SYMBOLS 1 Impeller 3 Permanent magnet 4 Motor 5 Inlet 6 Outlet 7 Gear 10 Pump casing 11 Superconductor (center part or annular part) 12 Blade

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 低温液体を送出する羽根車の一部を超電
導体で構成してなり、該羽根車を外部磁界の変化により
回転させることを特徴とする低温液体輸送ポンプ。
1. A cryogenic liquid transport pump, characterized in that a part of an impeller for delivering a cryogenic liquid is composed of a superconductor, and the impeller is rotated by a change of an external magnetic field.
【請求項2】 該超電導体が高ピン止め力を有するY−
Ba−Cu−O系超電導体である請求項1記載の低温液
体輸送ポンプ。
2. The Y-wherein the superconductor has a high pinning force.
The cryogenic liquid transport pump according to claim 1, which is a Ba-Cu-O-based superconductor.
JP4070570A 1992-03-27 1992-03-27 Low temperature liquid transport pump Withdrawn JPH05272484A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4070570A JPH05272484A (en) 1992-03-27 1992-03-27 Low temperature liquid transport pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4070570A JPH05272484A (en) 1992-03-27 1992-03-27 Low temperature liquid transport pump

Publications (1)

Publication Number Publication Date
JPH05272484A true JPH05272484A (en) 1993-10-19

Family

ID=13435344

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4070570A Withdrawn JPH05272484A (en) 1992-03-27 1992-03-27 Low temperature liquid transport pump

Country Status (1)

Country Link
JP (1) JPH05272484A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999059237A1 (en) * 1998-05-14 1999-11-18 Isis Innovation Limited A pump

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1999059237A1 (en) * 1998-05-14 1999-11-18 Isis Innovation Limited A pump

Similar Documents

Publication Publication Date Title
US5126317A (en) Bearing system employing a superconductor element
US4702090A (en) Magnetic refrigeration apparatus with conductive heat transfer
US4892863A (en) Electric machinery employing a superconductor element
US20030184176A1 (en) Device comprising a rotor and a magnetic suspension bearing for the contactless bearing of the rotor
JP2007020387A (en) Superconductive non-contact rotation device
JP2004507685A (en) Magnetic bearing supporting a rotating shaft using high Tc superconducting material
JPH05272484A (en) Low temperature liquid transport pump
JP2006122785A (en) Non-contact stirring machine
JP2009148709A (en) Magnetic levitation rotation apparatus
JPH08296648A (en) Bearing device and its starting method
JP2006173639A (en) Magnetization device for bulk superconductor, method for magnetization, and superconducting synchronous machine
JP2004039949A (en) Superconductive member and magnetic levitation device
JP2004236446A (en) Generator using high-temperature superconducting bulk material
JPH08298745A (en) Flywheel device
JPH06165478A (en) Superconducting rotating machine
KR101178260B1 (en) pump for using superconducting electromagnet and magnet
JP2010019164A (en) Pump device
JPH02125107A (en) Turning device
JP2676359B2 (en) Position detector for magnetic bearings
JPH081475A (en) Turntable device
JPH01277185A (en) Insulation vessel
JPH04296218A (en) Superconductive bearing device
JPH01203715A (en) Bearing device
JP3114175B2 (en) Shaft and bearing
JP2659747B2 (en) Superconducting bearing

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 19990608