JPH0527246B2 - - Google Patents

Info

Publication number
JPH0527246B2
JPH0527246B2 JP6849784A JP6849784A JPH0527246B2 JP H0527246 B2 JPH0527246 B2 JP H0527246B2 JP 6849784 A JP6849784 A JP 6849784A JP 6849784 A JP6849784 A JP 6849784A JP H0527246 B2 JPH0527246 B2 JP H0527246B2
Authority
JP
Japan
Prior art keywords
conductive layer
layer
type conductive
silicon
engraving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP6849784A
Other languages
Japanese (ja)
Other versions
JPS60211945A (en
Inventor
Masaki Hirata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
Nippon Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Electric Co Ltd filed Critical Nippon Electric Co Ltd
Priority to JP6849784A priority Critical patent/JPS60211945A/en
Publication of JPS60211945A publication Critical patent/JPS60211945A/en
Publication of JPH0527246B2 publication Critical patent/JPH0527246B2/ja
Granted legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical Vapour Deposition (AREA)
  • ing And Chemical Polishing (AREA)
  • Pressure Sensors (AREA)
  • Weting (AREA)

Description

【発明の詳細な説明】 (産業上の利用分野) 本発明はシリコン基板の薄膜化に関し、特に電
気化学触刻法によりシリコン薄膜を形成する方法
に関する。
DETAILED DESCRIPTION OF THE INVENTION (Field of Industrial Application) The present invention relates to thinning a silicon substrate, and particularly to a method of forming a silicon thin film by electrochemical engraving.

(従来技術とその問題点) シリコン基板を触刻溶液により触刻し薄膜化す
る技術はダイアフラム型シリコン圧力センサや加
速度センサやサーモパイル赤外線センサの製造に
使われている。例えばダイアフラム型シリコン圧
力センサは第1図に示す様にシリコン薄膜部1に
拡散抵抗2が形成された構造となつてる。拡散抵
抗2はイオン注入や熱拡散等によりシリコン基板
3と反対導電型の不純物を導入して形成される。
シリコン薄膜部1は被測定圧力が印加された時に
大きく変形し、大きな応力が発生する様に薄膜化
されている。応力の発生により拡散抵抗2の抵抗
値が変化して圧力が検出される。シリコン薄膜部
1は放電加工や化学触刻液により形成される。例
えば水酸化カリウムKOHやエチレン・ジアミ
ン・ピロカテコールEDPやヒドラジンを用いれ
ばシリコンは異方性触刻され第1図に示す傾斜部
4が形成される。(100)面シリコンウエーハを用
いれば傾斜部4は54.7°の角度を成す(111)面と
なる。あるいは硝酸HNO3やフツ酸HFを用いれ
ば等方性触刻され傾斜部は垂直となる。第1図に
示すダイアフラム型シリコン圧力センサの圧力−
電気信号返換の出力は応力に比例するが、応力が
シリコン薄膜部1の圧さの2乗に反比例する為、
小さな膜厚ばらつきでも大きな感度ばらつきを発
生する。感度ばらつかを低減する為には正確に膜
厚を制御する必要がある。従来、膜厚の制御は触
刻時間により行なわれていたがシリコン基板自身
に厚さばらつきがある為、正確な膜厚制御は困難
であつた。この為、均一な感度を有するダイアフ
ラム型圧力センサを安価にかつ大量生産すること
は困難であつた。
(Prior art and its problems) The technique of engraving a silicon substrate with an engraving solution to form a thin film is used in the manufacture of diaphragm-type silicon pressure sensors, acceleration sensors, and thermopile infrared sensors. For example, a diaphragm type silicon pressure sensor has a structure in which a diffused resistor 2 is formed in a silicon thin film portion 1, as shown in FIG. The diffused resistor 2 is formed by introducing impurities of a conductivity type opposite to that of the silicon substrate 3 by ion implantation, thermal diffusion, or the like.
The silicon thin film portion 1 is thinned so that it deforms greatly when the pressure to be measured is applied, and generates a large stress. The resistance value of the diffusion resistor 2 changes due to the generation of stress, and pressure is detected. The silicon thin film portion 1 is formed by electrical discharge machining or chemical engraving. For example, if potassium hydroxide KOH, ethylene diamine pyrocatechol EDP, or hydrazine is used, silicon is anisotropically etched to form the inclined portion 4 shown in FIG. 1. If a (100) plane silicon wafer is used, the inclined portion 4 will be a (111) plane forming an angle of 54.7°. Alternatively, if nitric acid HNO 3 or hydrofluoric acid HF is used, isotropic engraving is performed and the slope becomes vertical. Pressure of the diaphragm type silicon pressure sensor shown in Fig. 1
The output of the electric signal return is proportional to the stress, but since the stress is inversely proportional to the square of the pressure of the silicon thin film part 1,
Even small variations in film thickness cause large variations in sensitivity. In order to reduce variations in sensitivity, it is necessary to accurately control the film thickness. Conventionally, the film thickness has been controlled by the imprinting time, but since the silicon substrate itself has variations in thickness, it has been difficult to accurately control the film thickness. For this reason, it has been difficult to mass-produce diaphragm pressure sensors with uniform sensitivity at low cost.

膜厚を正確に制御する為に様々な方法が提案さ
れているが性能や生産性や価格の点で問題があ
る。先ず高濃度ボロン層を用いる方法を第2図に
示す。シリコン基板3の表面に5×1019cm-3以上
の高濃度ボロン層5をエピタキシヤル成長あるい
は熱拡散により数μmの厚さに形成する。更にそ
の上に低濃度エピタキシヤル層6を成長させ拡散
抵抗2を形成する。低濃度エピタキシシヤル層6
を成長させるのは高濃度ボロン層5の不純物濃度
が極度に高く、この中に中濃度(約3×1018cm
-3)の拡散抵抗2を形成するのが不可能な為であ
る。触刻液は前述したKOH、EDP、ヒドラジン
である。この方法の欠点は高濃度ボロン層と低濃
度エピタキシヤル層より構成されるシリコン基板
の価格が高いことと、熱工程中に高濃度ボロン層
5のボロンが再分布し、拡散抵抗2と接触しない
様、低濃度エピタキシヤル層6の厚さを充分厚く
しなくてはならないことである。次にPN接合シ
リコン基板を電気化学触刻し薄膜を形成する方法
を第3図に示す。P型導電層7とN型導電層8と
から成る2層シリコン基板の例えばN型導電層8
の表面を保護膜9で被覆するとともに電極配線を
施す。陰極電極10は白金Ptである。触刻溶液
11中に2層シリコン基板及び陰極電極10を浸
して触刻する。触刻溶液はフツ酸HFでN型導電
層8に約0.5Vの正極性直流電圧を印加するとP
導電層7が触刻される。P型導電層7がすべて除
去されると触刻が停止し、2層シリコン基板はN
型導電層8のみが残る。この電気化学触刻法によ
り、窒化膜あるいは金属蒸着膜をマスク材として
ダイアフラム型シリコン圧力センサの薄膜を形成
することが可能である。しかし触刻溶液としてフ
ツ酸HFを用いるので等方性触刻され、第1図及
び第2図で示した傾斜部4は垂直となり薄膜端部
に応力が集中し破壊強度が弱い。
Various methods have been proposed to accurately control film thickness, but they have problems in terms of performance, productivity, and cost. First, a method using a high concentration boron layer is shown in FIG. A highly concentrated boron layer 5 of 5×10 19 cm -3 or more is formed on the surface of a silicon substrate 3 to a thickness of several μm by epitaxial growth or thermal diffusion. Further, a lightly doped epitaxial layer 6 is grown thereon to form a diffused resistor 2. Low concentration epitaxial layer 6
The impurity concentration of the high-concentration boron layer 5 is extremely high, and medium-concentration (approximately 3×10 18 cm
This is because it is impossible to form the diffused resistor 2 of -3 ). The engraving liquids are the aforementioned KOH, EDP, and hydrazine. The disadvantages of this method are that the cost of the silicon substrate, which is composed of a high concentration boron layer and a low concentration epitaxial layer, is high, and that the boron in the high concentration boron layer 5 is redistributed during the thermal process and does not come into contact with the diffused resistor 2. Therefore, the thickness of the low concentration epitaxial layer 6 must be made sufficiently thick. Next, FIG. 3 shows a method of electrochemically etching the PN junction silicon substrate to form a thin film. For example, an N-type conductive layer 8 of a two-layer silicon substrate consisting of a P-type conductive layer 7 and an N-type conductive layer 8
The surface is covered with a protective film 9 and electrode wiring is provided. The cathode electrode 10 is made of platinum (Pt). The two-layer silicon substrate and cathode electrode 10 are immersed in an engraving solution 11 and engraved. The engraving solution is hydrofluoric acid HF, and when a positive DC voltage of about 0.5 V is applied to the N-type conductive layer 8, P
The conductive layer 7 is engraved. When the P-type conductive layer 7 is completely removed, the engraving stops and the two-layer silicon substrate becomes N
Only the mold conductive layer 8 remains. By this electrochemical engraving method, it is possible to form a thin film of a diaphragm type silicon pressure sensor using a nitride film or a metal vapor deposited film as a mask material. However, since hydrofluoric acid HF is used as the engraving solution, the engraving is isotropic, and the inclined portions 4 shown in FIGS. 1 and 2 are vertical, stress is concentrated at the ends of the thin film, and the breaking strength is weak.

(発明の目的) 本発明の目的は前記欠点を除去し正確に薄膜の
制御できる薄膜形成の方法を提供することにあ
る。
(Objective of the Invention) An object of the present invention is to provide a method for forming a thin film that eliminates the above-mentioned drawbacks and allows precise control of the thin film.

(発明の構成) 本発明によればP型導電層とN型導電層とより
成る2層シリコン基板の非触刻部をシリコン酸化
膜で覆い一方の導電層に直流正極性電圧を印加し
ながら他方の導電層をヒドラジンからなる触刻溶
液により触刻することを特徴とする薄膜形成の方
法が得られる。
(Structure of the Invention) According to the present invention, while the non-etched portion of a two-layer silicon substrate consisting of a P-type conductive layer and an N-type conductive layer is covered with a silicon oxide film and a DC positive polarity voltage is applied to one of the conductive layers, A method for forming a thin film is obtained, characterized in that the other conductive layer is engraved with an engraved solution consisting of hydrazine.

(実施例) 次に本発明について実施例を示す図面を参照し
て説明する。第4図は本発明の一実施例を示す触
刻装置の構成図である。特にダイアフラム型シリ
コン圧力センサの薄膜形成法を示す。2層シリコ
ン基板12はP型導電層13とN型導電層14と
から構成されている。P型導電層13の厚さは、
例えば、350μmで比抵抗は10〜15Ω−cmであり、
N型導電層14の厚さは、例えば、20μmで比抵
抗は3〜5Ω−cmである。この様な2層シリコン
基板はP型シリコン基板に燐Pあるいは砒素As
を熱拡散することにより得られるし、あるいはエ
ピタキシヤル成長技術によりP型シリコン基板上
N型シリコン層を積層して容易に形成できる。当
刻2層シリコン基板の表面の熱酸化あるいは
CVD(Chemical Vapeur Deposition)法により
シリコン酸化膜15を形成する。シリコン酸化膜
15は2層シリコン基板12の両面に形成するが
N型導電層14側のシリコン酸化膜の一部を除去
しN型導電層に電極を接続する。P型導電層13
側のシリコン酸化膜はP型導電層を触刻しない領
域のみを残して他は除去する。容器16に触刻溶
液17としてヒドラジンを満たしたヒータ18に
より加熱し液温を約90℃とする。白金Ptを陰極
電極19としてN型導電層14が陽極となる様に
約3Vの直流電圧源20を接続すると、P型導電
層13のシリコン酸化膜に被覆されてない部分が
触刻される。今P型導電層13の結晶面方位を
(100)面とするとヒドラジンには異方性があるの
で傾斜部には(111)面が現われ54.7°の角度とな
る。シリコン酸化膜に被覆されていない部分の開
口がP型導電層13の厚さに比べ充分大きいと触
刻はN型導電層14に達するまで進む。P型導電
層が除去されN型導電層が触刻溶液17と接触す
ると触刻が停止する。これは陽極酸化によりN型
導電層の表面に薄いシリコン酸化膜が形成される
為と考えられる。P型導電層13が触刻されるの
は印加電圧がPN接合に対して逆方向電圧となつ
ているのでP型導電層には電流が流れず酸化現象
が起こらない為であろう。印加電圧の大きさは
2V以上で上限は接合破壊電圧までである。
(Example) Next, the present invention will be described with reference to drawings showing examples. FIG. 4 is a block diagram of an engraving device showing an embodiment of the present invention. In particular, a method for forming a thin film of a diaphragm type silicon pressure sensor is shown. The two-layer silicon substrate 12 is composed of a P-type conductive layer 13 and an N-type conductive layer 14. The thickness of the P-type conductive layer 13 is
For example, at 350 μm, the resistivity is 10 to 15 Ω-cm,
The thickness of the N-type conductive layer 14 is, for example, 20 μm, and the specific resistance is 3 to 5 Ω-cm. Such a two-layer silicon substrate is a P-type silicon substrate with phosphorus P or arsenic As.
Alternatively, it can be easily formed by laminating an N-type silicon layer on a P-type silicon substrate using an epitaxial growth technique. Thermal oxidation or
A silicon oxide film 15 is formed by a CVD (Chemical Vapeur Deposition) method. The silicon oxide film 15 is formed on both sides of the two-layer silicon substrate 12, but a portion of the silicon oxide film on the N-type conductive layer 14 side is removed to connect an electrode to the N-type conductive layer. P-type conductive layer 13
The silicon oxide film on the side is removed except for the region where the P-type conductive layer is not etched. A container 16 is filled with hydrazine as an engraving solution 17 and heated by a heater 18 to bring the temperature of the solution to about 90°C. When a DC voltage source 20 of approximately 3 V is connected using platinum Pt as the cathode electrode 19 and the N-type conductive layer 14 as the anode, the portion of the P-type conductive layer 13 not covered with the silicon oxide film is etched. Now, if the crystal plane orientation of the P-type conductive layer 13 is the (100) plane, since hydrazine has anisotropy, a (111) plane appears in the inclined portion, resulting in an angle of 54.7°. If the opening in the portion not covered by the silicon oxide film is sufficiently large compared to the thickness of the P-type conductive layer 13, the engraving progresses until it reaches the N-type conductive layer 14. The engraving stops when the P-type conductive layer is removed and the N-type conductive layer comes into contact with the engraving solution 17. This is considered to be because a thin silicon oxide film is formed on the surface of the N-type conductive layer by anodic oxidation. The reason why the P-type conductive layer 13 is engraved is probably because the applied voltage is in the opposite direction to the PN junction, so no current flows through the P-type conductive layer and no oxidation phenomenon occurs. The magnitude of the applied voltage is
Above 2V, the upper limit is the junction breakdown voltage.

第4図は本発明の概念を示す簡単な構成図であ
り、実際には触刻溶液17が蒸発して濃度が変化
しない様還流装置を用い、また触刻が均一に進行
する様触溶液をスターラ等で撹拌することが望ま
しい。また図には明示されていないが2層シリコ
ン基板12は両面とも鏡面研摩されており、N型
導電層14の表面にはP型不純物が拡散され感圧
抵抗が形成されている。また電極接続部はN型高
濃度不純物が拡散されオーム性接触が成されてい
る。
FIG. 4 is a simple configuration diagram showing the concept of the present invention. In reality, a reflux device is used to prevent the concentration of the engraving solution 17 from evaporating, and the engraving solution is heated so that the engraving progresses uniformly. It is desirable to stir with a stirrer or the like. Although not clearly shown in the figure, both surfaces of the two-layer silicon substrate 12 are mirror-polished, and a P-type impurity is diffused into the surface of the N-type conductive layer 14 to form a pressure-sensitive resistor. In addition, N-type high-concentration impurities are diffused in the electrode connection portions to establish ohmic contact.

上記説明は(100)面2層シリコン基板を例に
とつてなされたが勿論面方位は(100)面に限定
されるものではなく他の方位であつても良い。ま
たP型導電層及びN型導電層の厚さと比抵抗も上
述の値に限定されるものではない。更に印加電圧
の極性についても逆方向として説明したが、順方
向極性で触刻することも可能と考えられる。この
場合P型導電層に電極を接続しN型導電層を触刻
することになる。但しN型導電層もバイアスされ
順方向電流が流されるので印加電圧の大きさには
制限があり、N型導電層が陽極酸化されることな
く触刻されP型導電層のみが陽極酸化されるよう
な値となる。
Although the above description has been made using a (100) plane two-layer silicon substrate as an example, the plane orientation is of course not limited to the (100) plane, and may be other orientations. Further, the thickness and specific resistance of the P-type conductive layer and the N-type conductive layer are not limited to the above-mentioned values. Furthermore, although the polarity of the applied voltage has been explained as being in the opposite direction, it is also possible to perform marking with the polarity in the forward direction. In this case, an electrode is connected to the P-type conductive layer and the N-type conductive layer is engraved. However, since the N-type conductive layer is also biased and a forward current flows, there is a limit to the magnitude of the applied voltage, so the N-type conductive layer is etched without being anodized, and only the P-type conductive layer is anodized. The value is as follows.

(発明の効果) 本発明の薄膜形成の方法を用いてダイアフラム
型シリコン圧力センサを製造すれば薄膜部の厚さ
は触刻時間に関係なくエピタキシヤル層の厚さ精
度あるいは拡散層の深さ精度により決まる。エピ
タキシヤル層の厚さ及び拡散層の深さは現在の集
積回路技術で高精度にかつ均一に制御することが
可能で従来の触刻時間制御法では得られない高精
度、均一な薄膜が得られ、高精度なダイアフラム
型シリコン圧力センサを大量に安価に提供でき
る。
(Effect of the invention) If a diaphragm type silicon pressure sensor is manufactured using the method of forming a thin film of the present invention, the thickness of the thin film portion will be the same as the thickness accuracy of the epitaxial layer or the depth accuracy of the diffusion layer, regardless of the imprinting time. Determined by The thickness of the epitaxial layer and the depth of the diffusion layer can be controlled with high precision and uniformity using current integrated circuit technology, making it possible to obtain highly precise and uniform thin films that cannot be obtained with conventional imprinting time control methods. This makes it possible to provide high-precision diaphragm-type silicon pressure sensors in large quantities at low cost.

本発明の薄膜形成の方法はダイアフラム型シリ
コン圧力センサだけに適用されるものではなく、
シリコン加速度センサやサーモパイル赤外線セン
サの薄膜形成に応用することが可能である。更に
センサデパイズだけでなく他の薄膜機能デバイス
への応用も可能である。
The thin film forming method of the present invention is not only applicable to diaphragm type silicon pressure sensors;
It can be applied to thin film formation for silicon acceleration sensors and thermopile infrared sensors. Furthermore, the present invention can be applied not only to sensor deposition but also to other thin film functional devices.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は通常のダイアフラム型シリコン圧力セ
ンサの構造断面図である。第2図は高濃度ボロン
層により膜厚制御したダイアフラム型シリコン圧
力センサの構造断面図である。第3図は従来の電
気化学触刻法の構成図である。第4図は本発明の
一実施例を示す薄膜形成法の構成図である。 1……シリコン薄膜部、2……拡散抵抗、3…
…シリコン基板、4……傾斜部、5……高濃度ボ
ロン層、6……低濃度エピタキシヤル層、7……
P型導電層、8……N型導電層、9……保護膜、
10……陰極電極、11……触刻溶液、12……
2層シリコン基板、13……P型導電層、14…
…N型導電層、15……シリコン酸化膜、16…
…容器、17……触刻溶液、18……ヒータ、1
9……陰極電極、20……直流電圧源。
FIG. 1 is a structural sectional view of a conventional diaphragm type silicon pressure sensor. FIG. 2 is a structural cross-sectional view of a diaphragm type silicon pressure sensor whose thickness is controlled by a high concentration boron layer. FIG. 3 is a block diagram of a conventional electrochemical engraving method. FIG. 4 is a block diagram of a thin film forming method showing an embodiment of the present invention. 1...Silicon thin film part, 2...Diffusion resistance, 3...
...Silicon substrate, 4...Slope portion, 5...High concentration boron layer, 6...Low concentration epitaxial layer, 7...
P-type conductive layer, 8...N-type conductive layer, 9...protective film,
10... cathode electrode, 11... engraving solution, 12...
Two-layer silicon substrate, 13... P-type conductive layer, 14...
...N-type conductive layer, 15...Silicon oxide film, 16...
...container, 17... engraving solution, 18... heater, 1
9...Cathode electrode, 20...DC voltage source.

Claims (1)

【特許請求の範囲】[Claims] 1 P型導電層とN型導電層とより成る2層シリ
コン基板の非触刻部をシリコン酸化膜で覆い一方
の導電層に直流正極性電圧を印加しながら他方の
導電層をヒドラジンからなる触刻溶液により触刻
することを特徴とする薄膜形成の方法。
1. The non-etched part of a two-layer silicon substrate consisting of a P-type conductive layer and an N-type conductive layer is covered with a silicon oxide film, and while a DC positive voltage is applied to one conductive layer, the other conductive layer is touched with a hydrazine layer. A method for forming a thin film characterized by engraving with an engraving solution.
JP6849784A 1984-04-06 1984-04-06 Method for formation of thin film Granted JPS60211945A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6849784A JPS60211945A (en) 1984-04-06 1984-04-06 Method for formation of thin film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6849784A JPS60211945A (en) 1984-04-06 1984-04-06 Method for formation of thin film

Publications (2)

Publication Number Publication Date
JPS60211945A JPS60211945A (en) 1985-10-24
JPH0527246B2 true JPH0527246B2 (en) 1993-04-20

Family

ID=13375388

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6849784A Granted JPS60211945A (en) 1984-04-06 1984-04-06 Method for formation of thin film

Country Status (1)

Country Link
JP (1) JPS60211945A (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6376440A (en) * 1986-09-19 1988-04-06 Nec Corp Etching

Also Published As

Publication number Publication date
JPS60211945A (en) 1985-10-24

Similar Documents

Publication Publication Date Title
US5167778A (en) Electrochemical etching method
US3997381A (en) Method of manufacture of an epitaxial semiconductor layer on an insulating substrate
JPS6197572A (en) Manufacture of semiconductor acceleration sensor
US4275406A (en) Monolithic semiconductor pressure sensor, and method of its manufacture
EP0050136A1 (en) Silicon pressure sensor
JPH0527970B2 (en)
WO2000034754A1 (en) Semiconductor pressure sensor and its manufacturing method
US4995953A (en) Method of forming a semiconductor membrane using an electrochemical etch-stop
JPH0527246B2 (en)
JPH01136378A (en) Manufacture of pressure transducer
JP2803321B2 (en) Semiconductor strain sensor
JPH0230188A (en) Manufacture of semiconductor pressure sensor
JPH0527971B2 (en)
JPH0510830B2 (en)
JP2894478B2 (en) Capacitive pressure sensor and method of manufacturing the same
Gealer et al. The Effect of an Interfacial P‐N Junction on the Electrochemical Passivation of Silicon in Aqueous Ethylenediamine‐Pyrocatechol
JPS58100472A (en) Temperature sensor and manufacture thereof
JPH0573276B2 (en)
JPH0528898B2 (en)
JPH0340959B2 (en)
JPH0645617A (en) Manufacture of single-crystal thin-film member
JPH02137273A (en) Manufacture of silicon diaphragm
JPH0337749B2 (en)
EP0428175B1 (en) Method of making a semiconductor sensor having funnel-shaped apertures in the semiconductor substrate
JPH03208375A (en) Semiconductor pressure sensor

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term