JPH05270971A - Graphite crucible for single crystal pulling process and its production - Google Patents
Graphite crucible for single crystal pulling process and its productionInfo
- Publication number
- JPH05270971A JPH05270971A JP7157692A JP7157692A JPH05270971A JP H05270971 A JPH05270971 A JP H05270971A JP 7157692 A JP7157692 A JP 7157692A JP 7157692 A JP7157692 A JP 7157692A JP H05270971 A JPH05270971 A JP H05270971A
- Authority
- JP
- Japan
- Prior art keywords
- graphite crucible
- crucible
- single crystal
- average pore
- pore diameter
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Crystals, And After-Treatments Of Crystals (AREA)
- Liquid Deposition Of Substances Of Which Semiconductor Devices Are Composed (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は単結晶引き上げ用黒鉛ル
ツボ及びその製造方法、より詳しくはSi等の半導体物
質の単結晶を成長させる時に使用する単結晶引き上げ用
ルツボ及びその製造方法に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a graphite crucible for pulling a single crystal and a method for manufacturing the same, and more particularly to a crucible for pulling a single crystal used for growing a single crystal of a semiconductor material such as Si and a method for manufacturing the same.
【0002】[0002]
【従来の技術】現在、LSI等の集積回路素子用基板を
形成するために用いられている単結晶シリコンの大部分
は、石英ルツボ内のシリコン溶融液から回転させながら
引き上げるチョクラルスキー法(CZ法)と呼ばれる回
転引き上げ法により製造されている。この方法に用いら
れる単結晶引き上げ装置は、半導体物質溶融用の石英ル
ツボと該石英ルツボを内装した黒鉛ルツボとを備えてお
り、該黒鉛ルツボのまわりから黒鉛ヒータ等の加熱手段
で、黒鉛ルツボおよび石英ルツボを加熱し、石英ルツボ
内の半導体物質を溶融液となして、この溶融液を回転さ
せながら引き上げることにより、単結晶を成長させてい
る。2. Description of the Related Art At present, most of the single crystal silicon used to form substrates for integrated circuit devices such as LSIs is manufactured by the Czochralski method (CZ) in which a silicon melt in a quartz crucible is rotated and pulled up. It is manufactured by a rotary pulling method called a method). The single crystal pulling apparatus used in this method includes a quartz crucible for melting a semiconductor material and a graphite crucible having the quartz crucible inside, and a heating means such as a graphite heater from around the graphite crucible, and the graphite crucible and A single crystal is grown by heating the quartz crucible to turn the semiconductor material in the quartz crucible into a molten liquid and pulling the molten liquid while rotating.
【0003】通常シリコン単結晶引き上げ中は、黒鉛ル
ツボがシリコンの融点以上の高温に加熱される。このた
め黒鉛ルツボと石英ルツボとの接触面で反応が起こり、
CO、SiO等が発生し、これらルツボの消耗が進行す
る。また、生成したSiOガスはさらに黒鉛ルツボと反
応し、黒鉛ルツボの表層部分がSiCに転化する。こう
して黒鉛ルツボが何度も使用されるうちに黒鉛ルツボの
消耗が進行し、その一方では、黒鉛ルツボのSiC化が
進む。またこのシリコン単結晶の引き上げ時に高温とな
る部分は黒鉛ルツボ下部であり、この黒鉛ルツボ下部に
おいてSiC化が顕著に現われる。During pulling of a silicon single crystal, the graphite crucible is usually heated to a temperature higher than the melting point of silicon. Therefore, a reaction occurs at the contact surface between the graphite crucible and the quartz crucible,
CO, SiO, etc. are generated, and the consumption of these crucibles progresses. Further, the generated SiO gas further reacts with the graphite crucible, and the surface layer portion of the graphite crucible is converted into SiC. Thus, as the graphite crucible is used many times, the consumption of the graphite crucible progresses, and on the other hand, the graphite crucible becomes SiC. Further, a portion of the silicon single crystal which becomes high temperature during pulling is a lower portion of the graphite crucible, and SiC is remarkably expressed in the lower portion of the graphite crucible.
【0004】また、Si溶融時の突沸により飛散したS
i融液や、シリコン引き上げ時発生するSi蒸気等によ
り、黒鉛ルツボの外面では液滴状にSiが付着する。こ
のSiの付着はシリコン引き上げ時に温度の低い黒鉛ル
ツボ上部において顕著に現われる。Further, S scattered by bumping when Si is melted
The i melt, the Si vapor generated when the silicon is pulled up, or the like causes Si to adhere to the outer surface of the graphite crucible in a droplet form. This adhesion of Si appears remarkably in the upper part of the graphite crucible having a low temperature when pulling up silicon.
【0005】このような黒鉛ルツボ表面のSiC化やS
iの付着に起因して、黒鉛ルツボには黒鉛と、SiCお
よびSi間の熱膨張差に基づく熱応力、歪が発生して、
黒鉛ルツボが破損するといった問題が生じていた。The surface of such a graphite crucible is made of SiC or S
Due to the adhesion of i, the graphite crucible is subject to thermal stress and strain due to the thermal expansion difference between graphite and SiC and Si.
There was a problem that the graphite crucible was damaged.
【0006】また近年においては、高収率で単結晶を得
るため、単結晶径の大型化、それに伴う黒鉛ルツボの大
型化が進んでいるが、これにより黒鉛ルツボにおける熱
応力、歪の発生が増大し、黒鉛ルツボの割損発生の確率
が高くなり、黒鉛ルツボの寿命が低下してきている。Further, in recent years, in order to obtain a single crystal with a high yield, the diameter of the single crystal has been increased and the graphite crucible has been increased in size accordingly, which causes the generation of thermal stress and strain in the graphite crucible. The probability of breakage of the graphite crucible increases, and the life of the graphite crucible decreases.
【0007】このような熱応力、歪による黒鉛ルツボの
反りを低減するために従来においては、黒鉛表面で転化
して形成されるSiCの熱膨張率が黒鉛素材より高いこ
とに起因する反りを防ぐため、黒鉛ルツボの熱膨張率を
調整し、かつ平均気孔径が小さくなるほど生成したSi
O、COガスが通りにくくなり、SiC化反応が抑制さ
れることに着目し、平均気孔径を15000Å(=1.
5μm)以下にすることにより、黒鉛ルツボ表層部のS
iC化を低減する試みがなされている(特開昭58−1
56595号公報)。In order to reduce the warp of the graphite crucible due to such thermal stress and strain, conventionally, the warp caused by the fact that the coefficient of thermal expansion of SiC formed by conversion on the graphite surface is higher than that of the graphite material is prevented. Therefore, the thermal expansion coefficient of the graphite crucible was adjusted, and the smaller the average pore diameter, the more Si produced.
Focusing on the fact that the O and CO gases are less likely to pass and the SiC formation reaction is suppressed, the average pore diameter is set to 15,000Å (= 1.
5 μm) or less, the S of the surface layer of the graphite crucible is reduced.
Attempts have been made to reduce iC conversion (Japanese Patent Laid-Open No. 58-1).
56595).
【0008】[0008]
【発明が解決しようとする課題】上記したように、Si
C化反応は温度が高いほど促進され、Siの付着は温度
の低いところで多く生じ易い。As described above, the Si
The carbonization reaction is promoted as the temperature is higher, and Si is more likely to be attached at lower temperatures.
【0009】しかしながら上記した単結晶引き上げ用黒
鉛ルツボにおいて、シリコン単結晶引き上げ中の黒鉛ル
ツボは下部において温度が高く、これに対して上部にお
いては温度が低い。この場合、温度の高い黒鉛ルツボ下
部においてはSiC化が促進されてSiC化層の厚さは
厚くなり、逆に温度の低い黒鉛ルツボ上部においてはS
iC化層の厚さは小さい。従って、この黒鉛ルツボの上
下部でのSiC化層厚みの不均一により、黒鉛ルツボに
は不均一な熱応力、歪が作用して割損発生の確率が高く
なるという課題があった。However, in the above graphite crucible for pulling a single crystal, the temperature of the graphite crucible during the pulling of the silicon single crystal is high in the lower part, whereas the temperature is low in the upper part. In this case, SiC formation is promoted in the lower part of the graphite crucible having a high temperature, and the thickness of the SiC conversion layer becomes thicker, while conversely, S is formed in the upper part of the graphite crucible having a low temperature.
The iC layer has a small thickness. Therefore, due to the non-uniformity of the thickness of the SiC layer above and below the graphite crucible, the graphite crucible is subject to non-uniform thermal stress and strain to increase the probability of cracking.
【0010】一方、シリコン単結晶引き上げ中の黒鉛ル
ツボ表面へのSi付着は黒鉛ルツボ温度の低い黒鉛ルツ
ボ上部で多く、これに対して黒鉛ルツボ下部では、高温
のため付着したSiが蒸発またはSiC化し、Siはほ
とんど付着しない。従って、この黒鉛ルツボ上下部での
Si厚さの不均一により、黒鉛ルツボには不均一な熱応
力、歪が作用して割損発生の確率が高くなるという課題
があった。On the other hand, Si adheres to the surface of the graphite crucible during the pulling of the silicon single crystal mostly in the upper part of the graphite crucible having a low temperature of the graphite crucible, whereas in the lower part of the graphite crucible, the adhered Si is vaporized or becomes SiC. , Si hardly adheres. Therefore, due to the non-uniformity of the Si thickness in the upper and lower parts of the graphite crucible, there is a problem that the graphite crucible is subjected to non-uniform thermal stress and strain, which increases the probability of cracking.
【0011】本発明は上記した課題に鑑みなされたもの
であり、黒鉛ルツボの表面におけるSiC化の不均一、
およびSi付着の不均一を解消し、熱応力、歪の発生を
抑制し、黒鉛ルツボの割損を防ぐことができる単結晶引
き上げ用黒鉛ルツボ及びその製造方法を提供することを
目的としている。The present invention has been made in view of the above-mentioned problems, and the unevenness of SiC formation on the surface of the graphite crucible,
Another object of the present invention is to provide a graphite crucible for pulling a single crystal and a method for producing the same, which can eliminate non-uniformity of Si adhesion, suppress thermal stress and strain, and prevent cracking of the graphite crucible.
【0012】[0012]
【課題を解決するための手段】上記した目的を達成する
ために本発明に係る単結晶引き上げ用黒鉛ルツボは、黒
鉛ルツボ下部における平均気孔径が、その黒鉛ルツボ上
部における平均気孔径より小さいことを特徴としてい
る。In order to achieve the above-mentioned object, the graphite crucible for pulling a single crystal according to the present invention is such that the average pore diameter in the lower portion of the graphite crucible is smaller than the average pore diameter in the upper portion of the graphite crucible. It has a feature.
【0013】また上記記載の単結晶引き上げ用黒鉛ルツ
ボの製造方法においては、平均粒径の異なるメソフェー
ズ粉を含む炭素材原料を上部、下部にそれぞれ分けて配
し、これを成形した後、炭化して黒鉛化することを特徴
としている。Further, in the above-described method for producing a graphite crucible for pulling a single crystal, carbonaceous material raw materials containing mesophase powders having different average particle diameters are separately arranged in an upper portion and a lower portion, which are molded and then carbonized. The feature is that it is graphitized.
【0014】[0014]
【作用】黒鉛ルツボ表面のSiC化は、温度が高いほど
増大するので、シリコン単結晶引き上げ中に温度の高い
黒鉛ルツボ下部においてSiC化層が厚くなり、不均一
が生じる。これを防止するために、黒鉛ルツボ下部の平
均気孔径を黒鉛ルツボ上部のそれより小さくすることが
有効である。The SiC formation on the surface of the graphite crucible increases as the temperature rises. Therefore, during the pulling of the silicon single crystal, the SiC formation layer becomes thicker in the lower part of the graphite crucible having a high temperature, and unevenness occurs. In order to prevent this, it is effective to make the average pore diameter of the lower part of the graphite crucible smaller than that of the upper part of the graphite crucible.
【0015】これは平均気孔径が小さくなるほど、反応
により生成したSiO、COガスが通りにくくなり、S
iC化反応が抑制され、SiC化層が厚くなることを防
止できるからであり、また平均気孔径が小さくなるほど
黒鉛ルツボの減肉も少なくなる。This is because as the average pore diameter becomes smaller, the SiO and CO gases produced by the reaction become more difficult to pass through, and S
This is because the iC formation reaction is suppressed and the thickness of the SiC formation layer can be prevented from increasing, and the smaller the average pore diameter, the smaller the thickness reduction of the graphite crucible.
【0016】これに対して、Siは黒鉛ルツボ表面の温
度が低いところに多く凝着するので、シリコン単結晶引
き上げ中に温度の低い黒鉛ルツボ上部に多く付着して不
均一が生じる。これを防止するためには、黒鉛ルツボ上
部の平均気孔径を大きくする、すなわち、黒鉛ルツボ下
部の平均気孔径を黒鉛ルツボ上部のそれより小さくする
ことが有効である。On the other hand, since Si is mostly adhered to the surface of the graphite crucible where the temperature is low, a large amount of Si is adhered to the upper portion of the graphite crucible having a low temperature during the pulling of the silicon single crystal to cause nonuniformity. In order to prevent this, it is effective to increase the average pore diameter of the upper portion of the graphite crucible, that is, to make the average pore diameter of the lower portion of the graphite crucible smaller than that of the upper portion of the graphite crucible.
【0017】この理由としては平均気孔径が大きくなる
ほど、黒鉛ルツボ表面に付着したSiの気孔内への侵入
が促進され、それに伴い付着したSiが液滴状になり難
くなり、Siの蒸発およびSiC化が促進され、Siの
表面付着が抑制されることが挙げられる。The reason for this is that as the average pore diameter increases, the penetration of Si adhering to the surface of the graphite crucible into the pores is promoted, and accompanying this, the adhered Si becomes less likely to be in the form of droplets, and the evaporation of Si and SiC It can be mentioned that the oxidization is promoted and the surface adhesion of Si is suppressed.
【0018】SiC化の抑制効果は平均気孔径が0.5
μm程度より小さくなると効果が顕著になり、減肉を防
止できることが実験により確認された。このため、黒鉛
ルツボ下部の平均気孔径は0.5μmより小さいことが
望ましいと考えられる。The effect of suppressing SiC formation is that the average pore diameter is 0.5.
It was confirmed by experiments that when the thickness is smaller than about μm, the effect becomes remarkable and the thickness reduction can be prevented. Therefore, it is considered preferable that the average pore diameter of the lower part of the graphite crucible is smaller than 0.5 μm.
【0019】これに対して、Si付着の抑制効果は平均
気孔径が0.5μm以上になると効果が顕著になり、割
損を防止できることが実験により確認された。このた
め、黒鉛ルツボ上部の平均気孔径は0.5μm以上であ
ることが望ましいと考えられる。On the other hand, it has been confirmed by experiments that the effect of suppressing Si adhesion becomes remarkable when the average pore diameter is 0.5 μm or more and cracking can be prevented. Therefore, it is considered preferable that the average pore diameter of the upper portion of the graphite crucible is 0.5 μm or more.
【0020】なおここでの平均気孔径は、水銀ポロシメ
ータを用いて水銀圧入法で測定した気孔分布より求めた
値である。The average pore diameter here is a value obtained from the pore distribution measured by the mercury porosimetry using a mercury porosimeter.
【0021】また、黒鉛ルツボ上部と下部との境界は特
に限定するものではないが、中央部に近いことが好ま
く、黒鉛ルツボ表層のSiC化、および黒鉛ルツボの減
肉は、黒鉛ルツボ壁面の最下部から黒鉛ルツボ底部にか
けての黒鉛ルツボ内周部で最も激しく、少なくともこの
部分より黒鉛ルツボ下部は平均気孔径を小さくすること
が望ましい。また黒鉛ルツボ中間部には、それらの中間
域が存在していてもよい。The boundary between the upper part and the lower part of the graphite crucible is not particularly limited, but it is preferable that the boundary is close to the center part. It is desirable that the innermost part of the graphite crucible from the lowermost part to the bottom part of the graphite crucible is the most vigorous, and at least the lower part of the graphite crucible has a smaller average pore diameter. In the middle portion of the graphite crucible, these intermediate regions may be present.
【0022】上記単結晶引き上げ用黒鉛ルツボの製造法
としては、たとえば、平均粒径が異なるメソフェーズ粉
を含む炭素材原料を分けて配し、これを成形した後炭化
して黒鉛化する方法が望ましい。As a method of producing the above graphite crucible for pulling a single crystal, for example, a method of separately arranging carbonaceous material containing mesophase powders having different average particle diameters, shaping the carbonaceous material, and then carbonizing to graphitize is preferable. ..
【0023】ここでメソフェーズ粉とは、石炭系または
石油系の重質油を約400〜500℃で熱処理すること
により得られる自己焼結性の炭素質原料の粉砕物のこと
をいっている。メソフェーズは、軟化溶融時に生成した
縮合多環有機芳香族化合物が固化時に層状に積層してな
る、光学的異方性を示す小球体またはその合体した相を
有し、8〜20%の揮発分を含んでいる。このメソフェ
ーズ粉をたとえば平均粒径30μmに粉砕後、成形、炭
化、黒鉛化を行なった黒鉛材表面の平均気孔径は0.5
μm以下となり、このようにメソフェーズ粉を用いれ
ば、その粉砕後の粒径により、成形、焼成後の気孔径を
制御することが可能である。粒径が増大するにつれて得
られた黒鉛材の平均気孔径は大きくなる。Here, the mesophase powder refers to a pulverized product of a self-sintering carbonaceous raw material obtained by heat-treating a coal-based or petroleum-based heavy oil at about 400 to 500 ° C. The mesophase has microspheres exhibiting optical anisotropy, which are formed by layering condensed polycyclic organic aromatic compounds produced during softening and melting during solidification, or a combined phase thereof, and have a volatile content of 8 to 20%. Is included. This mesophase powder is pulverized into particles having an average particle size of 30 μm, and then is shaped, carbonized, and graphitized.
When the mesophase powder is used as described above, it is possible to control the pore size after molding and firing depending on the particle size after pulverization. The average pore diameter of the obtained graphite material increases as the particle diameter increases.
【0024】メソフェーズ粉を使用した製造法では、小
さな平均気孔径の黒鉛材を含浸させてから、焼成する工
程を繰り返すなどの煩雑な工程を省略でき、前記した黒
鉛ルツボを容易に作製することができる。In the production method using the mesophase powder, complicated steps such as repeating a step of impregnating a graphite material having a small average pore size and then firing can be omitted, and the above graphite crucible can be easily produced. it can.
【0025】以上上記した構成によれば、黒鉛ルツボ下
部における平均気孔径が、その黒鉛ルツボ上部における
平均気孔径より小さいので、黒鉛ルツボ下部において生
成したSiO、COガスが通りにくくなり、SiC化反
応が抑制され、黒鉛ルツボ上部においては、Siの付着
が抑制される。According to the above-mentioned structure, since the average pore diameter in the lower portion of the graphite crucible is smaller than the average pore diameter in the upper portion of the graphite crucible, SiO and CO gas generated in the lower portion of the graphite crucible are hard to pass through, and the SiC formation reaction occurs. Is suppressed, and adhesion of Si is suppressed in the upper part of the graphite crucible.
【0026】また上記記載の単結晶引き上げ用黒鉛ルツ
ボの製造方法においては、平均粒径の異なるメソフェー
ズ粉を含む炭素材原料を上部、下部にそれぞれ分けて配
し、これを成形した後、炭化して黒鉛化するので、前記
黒鉛ルツボが容易に製作される。Further, in the above-described method for producing a graphite crucible for pulling a single crystal, carbonaceous material raw materials containing mesophase powders having different average particle sizes are separately arranged in the upper part and the lower part, which are molded and then carbonized. Since the graphite crucible is graphitized, the graphite crucible can be easily manufactured.
【0027】[0027]
【実施例及び比較例】以下、本発明に係る単結晶引き上
げ用黒鉛ルツボ及びその製造方法の実施例及び比較例を
説明する。EXAMPLES AND COMPARATIVE EXAMPLES Examples and comparative examples of a graphite crucible for pulling a single crystal and a method for producing the same according to the present invention will be described below.
【0028】[実施例1]まず、コールタールを真空度
50Torr、温度430℃で約3時間熱処理して揮発
分18.2%のメソフェーズを作製し、該メソフェーズ
に微粉砕処理を施し、平均粒径10μm及び42μmの
メソフェーズ粉を作製した。Example 1 First, coal tar was heat-treated at a vacuum degree of 50 Torr and a temperature of 430 ° C. for about 3 hours to prepare a mesophase having a volatile content of 18.2%. Mesophase powders with diameters of 10 μm and 42 μm were produced.
【0029】次に前記メソフェーズ粉を配合した炭素材
原料をラバー容器に充填し、ラバープレス成形を行な
う。このときに使用するラバー容器の一例の模式的断面
を図1に示す。図中11はラバー容器を示しており、ラ
バー容器11は円板形状に形成された底面部12と円筒
状の側面部13と断面凹形状に形成された上面部14と
で構成されている。上記ラバープレス成形方法は、まず
圧力容器中に水を張り、ラバー容器11には前記メソフ
ェーズ粉を入れ、この水を張った圧力容器内にラバー容
器11を入れて、静水圧成形を行なう。この静水圧成形
により圧力1500kg/cm2 をラバー容器11にか
ける。このときラバー容器11の下部にラバー容器11
高さの1/2まで、平均粒径10μmのメソフェーズ粉
16を配合した炭素材原料を充填し、ラバー容器11の
上部に平均粒径42μmのメソフェーズ粉17を配合し
た炭素材原料を充填し、成形を行なう。また充填の際に
は、充填密度が上下で同一になるように調整する。Next, a carbon material raw material containing the mesophase powder is filled in a rubber container, and rubber press molding is performed. A schematic cross section of an example of the rubber container used at this time is shown in FIG. Reference numeral 11 in the figure denotes a rubber container, which is composed of a bottom surface portion 12 formed in a disc shape, a cylindrical side surface portion 13 and an upper surface portion 14 formed in a concave shape in cross section. In the rubber press molding method, water is first poured into a pressure container, the mesophase powder is put into the rubber container 11, and the rubber container 11 is put into the pressure container filled with water to perform hydrostatic molding. A pressure of 1500 kg / cm 2 is applied to the rubber container 11 by this hydrostatic molding. At this time, the rubber container 11 is attached to the bottom of the rubber container 11.
Up to ½ of the height, the carbon material raw material containing the mesophase powder 16 having an average particle diameter of 10 μm is filled, and the carbon material raw material containing the mesophase powder 17 having an average particle diameter of 42 μm is filled in the upper part of the rubber container 11. Perform molding. Further, at the time of filling, the filling density is adjusted to be the same in the upper and lower parts.
【0030】次いでラバープレス成形により得られた成
形体を窒素雰囲気の電気炉に入れ、1000℃まで加熱
して炭化を行なった後、得られた炭素材をAr雰囲気の
黒鉛化炉で2500℃まで加熱して黒鉛化を行った。こ
のようにして得られた黒鉛材を図2に示したように、直
径12インチ(内径310mm)の縦に2分割した黒鉛
ルツボ15に加工した。Then, the molded body obtained by the rubber press molding is put into an electric furnace in a nitrogen atmosphere and carbonized by heating it to 1000 ° C. Then, the obtained carbon material is heated to 2500 ° C. in a graphitizing furnace in an Ar atmosphere. It heated and graphitized. The graphite material thus obtained was processed into a graphite crucible 15 having a diameter of 12 inches (inner diameter 310 mm), which was divided into two vertically, as shown in FIG.
【0031】[実施例2]上部に平均粒径42μm、下
部に平均粒径19μmのメソフェーズ粉を配合した炭素
材料を充填した他は、実施例1と同様にして黒鉛ルツボ
を製造した。[Example 2] A graphite crucible was manufactured in the same manner as in Example 1 except that the upper portion was filled with a carbon material containing an average particle diameter of 42 µm and the average particle diameter of 19 µm.
【0032】[実施例3]上部に平均粒径35μm、下
部に平均粒径19μmのメソフェーズ粉を配合した炭素
材料を充填した他は、実施例1と同様にして黒鉛ルツボ
を製造した。[Example 3] A graphite crucible was manufactured in the same manner as in Example 1, except that the upper part was filled with a carbon material containing an average particle size of 35 µm and the average particle size of 19 µm was mixed.
【0033】[比較例1〜5]表1に示すような、上下
同じ平均気孔径のメソフェーズ粉を配合した炭素材料を
充填したものを製造した。[Comparative Examples 1 to 5] As shown in Table 1, those filled with a carbon material mixed with mesophase powder having the same average pore size in the upper and lower sides were manufactured.
【0034】[0034]
【表1】 [Table 1]
【0035】このようにして製造した黒鉛ルツボの平均
気孔径と、該黒鉛ルツボを用いてチョクラルスキー法シ
リコン単結晶引き上げ装置によってシリコン単結晶を製
造した場合の黒鉛ルツボの寿命及び使用終了時の黒鉛ル
ツボ表面の状況を併せて表2に示した。なお黒鉛ルツボ
の寿命は、シリコン単結晶引き上げを反復して行ない、
黒鉛ルツボが変形、損傷するまでの反復回数を表わして
いる。The average pore diameter of the graphite crucible thus produced and the life and end of use of the graphite crucible when a silicon single crystal is produced by a Czochralski method silicon single crystal pulling apparatus using the graphite crucible The condition of the surface of the graphite crucible is also shown in Table 2. The life of the graphite crucible is determined by repeatedly pulling up the silicon single crystal.
It represents the number of repetitions until the graphite crucible is deformed and damaged.
【0036】[0036]
【表2】 [Table 2]
【0037】表2から明らかなように、実施例に係る単
結晶引き上げ用黒鉛ルツボは、黒鉛ルツボ上部の平均気
孔径が黒鉛ルツボ下部の平均気孔径よりも大きく、しか
も黒鉛ルツボ上部は平均気孔径は0.5μm以上、下部
の平均気孔径は0.5μm以下となっており、黒鉛ルツ
ボ表面へのSi付着は少なく、しかもSiC化は黒鉛ル
ツボ全体に均一的に生じ、ルツボの減肉も少ない。この
ため黒鉛ルツボの寿命15回以上と長くなっている。As is clear from Table 2, in the graphite crucible for pulling a single crystal according to the example, the average pore diameter of the upper portion of the graphite crucible is larger than the average pore diameter of the lower portion of the graphite crucible, and the upper portion of the graphite crucible has an average pore diameter. Is 0.5 μm or more, and the average pore diameter of the lower part is 0.5 μm or less. Si adhesion to the surface of the graphite crucible is small, and the formation of SiC uniformly occurs throughout the graphite crucible, and the thinning of the crucible is also small. .. Therefore, the life of the graphite crucible is extended to 15 times or more.
【0038】一方、比較例1、2のように黒鉛ルツボ上
部及び下部の平均気孔径が0.5μm以上となるように
作製された黒鉛ルツボにおいては、黒鉛ルツボ下部にお
いてSiC化が大きく、減肉も大きくなってしまい、ま
た黒鉛ルツボの寿命においては10回以下というような
結果が得られた。On the other hand, in the graphite crucibles produced as in Comparative Examples 1 and 2 so that the average pore diameters of the upper and lower portions of the graphite crucible were 0.5 μm or more, the lower portion of the graphite crucible had a large amount of SiC, and the thickness reduction occurred. And the life of the graphite crucible was 10 times or less.
【0039】また比較例3〜5のように、黒鉛ルツボ上
部及び下部の平均気孔径が0.5μm以下となるように
作製された黒鉛ルツボにおいては、黒鉛ルツボ表面への
Siの付着は大きく、付着したSiの熱膨張率と黒鉛ル
ツボの炭素材の熱膨張率の差により割損を生じてしまう
ため、使用寿命が短くなっている。In addition, as in Comparative Examples 3 to 5, in the graphite crucibles manufactured so that the average pore diameters of the upper and lower portions of the graphite crucible were 0.5 μm or less, the adhesion of Si to the surface of the graphite crucible was large, Since the difference in the coefficient of thermal expansion of the adhered Si and the coefficient of thermal expansion of the carbon material of the graphite crucible causes fracture, the service life is shortened.
【0040】従って、黒鉛ルツボ上部の平均気孔径が黒
鉛ルツボ下部の平均気孔径よりも大きくなるように黒鉛
ルツボを作製することにより、従来のものに比べて黒鉛
ルツボ表面へのSi付着を少なくすることができ、しか
も黒鉛ルツボ全体に均一的にSiC化を生じさせること
ができるため、黒鉛ルツボの寿命を約1.5倍に延ばす
ことができる。Therefore, by making the graphite crucible so that the average pore diameter of the upper portion of the graphite crucible is larger than the average pore diameter of the lower portion of the graphite crucible, Si adhesion on the surface of the graphite crucible is reduced as compared with the conventional one. In addition, since the entire graphite crucible can be uniformly turned into SiC, the life of the graphite crucible can be extended to about 1.5 times.
【0041】[0041]
【発明の効果】以上の説明により明らかなように、本発
明に係る単結晶引き上げ用黒鉛ルツボは、黒鉛ルツボ下
部における平均気孔径が、その黒鉛ルツボ上部における
平均気孔径より小さいので、黒鉛ルツボ表面におけるS
iC化、Si付着の不均一を抑制することができ、熱膨
張係数差に基づく黒鉛ルツボの変形、破損を防止するこ
とができ、黒鉛ルツボの長寿命化を図ることができる。As is apparent from the above description, the graphite crucible for pulling a single crystal according to the present invention has the average pore diameter in the lower portion of the graphite crucible smaller than the average pore diameter in the upper portion of the graphite crucible. At S
It is possible to suppress iC and non-uniform adhesion of Si, prevent deformation and damage of the graphite crucible due to the difference in thermal expansion coefficient, and prolong the life of the graphite crucible.
【0042】また上記記載の単結晶引き上げ用黒鉛ルツ
ボの製造方法においては、平均粒径の異なるメソフェー
ズ粉を含む炭素材原料を上部、下部にそれぞれ分けて配
し、これを成形した後、炭化して黒鉛化するので、上記
黒鉛ルツボを容易に製造することができる。Further, in the above-mentioned method for producing a graphite crucible for pulling a single crystal, carbonaceous material raw materials containing mesophase powders having different average particle diameters are separately arranged in the upper and lower parts, which are molded and then carbonized. Since it is graphitized by using the above method, the graphite crucible can be easily manufactured.
【図1】メソフェーズ粉が充填された状態のラバー容器
を示す断面図である。FIG. 1 is a cross-sectional view showing a rubber container filled with mesophase powder.
【図2】(a)は本発明に係る黒鉛ルツボの一例を示す
斜視図であり、(b)は断面図である。FIG. 2A is a perspective view showing an example of a graphite crucible according to the present invention, and FIG. 2B is a sectional view.
15 黒鉛ルツボ 16、17 メソフェーズ粉 15 Graphite crucible 16, 17 Mesophase powder
Claims (2)
その黒鉛ルツボ上部における平均気孔径より小さいこと
を特徴とする単結晶引き上げ用黒鉛ルツボ。1. The average pore diameter in the lower part of the graphite crucible is
A graphite crucible for pulling a single crystal, which is smaller than the average pore diameter in the upper part of the graphite crucible.
炭素材原料を上部、下部にそれぞれ分けて配し、これを
成形した後、炭化して黒鉛化することを特徴とする請求
項1記載の単結晶引き上げ用黒鉛ルツボの製造方法。2. The carbonaceous material raw material containing mesophase powders having different average particle diameters is separately arranged in an upper part and a lower part, which are molded and then carbonized to be graphitized. A method for manufacturing a graphite crucible for pulling a single crystal.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7157692A JPH05270971A (en) | 1992-03-27 | 1992-03-27 | Graphite crucible for single crystal pulling process and its production |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP7157692A JPH05270971A (en) | 1992-03-27 | 1992-03-27 | Graphite crucible for single crystal pulling process and its production |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH05270971A true JPH05270971A (en) | 1993-10-19 |
Family
ID=13464669
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP7157692A Pending JPH05270971A (en) | 1992-03-27 | 1992-03-27 | Graphite crucible for single crystal pulling process and its production |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH05270971A (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0810305A1 (en) * | 1996-05-31 | 1997-12-03 | Ibiden Co, Ltd. | An apparatus for pulling silicon single crystal |
KR100818859B1 (en) * | 2002-07-25 | 2008-04-01 | 도요탄소 가부시키가이샤 | Graphite material for pulling up single crystal and process for manufacturing it |
-
1992
- 1992-03-27 JP JP7157692A patent/JPH05270971A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0810305A1 (en) * | 1996-05-31 | 1997-12-03 | Ibiden Co, Ltd. | An apparatus for pulling silicon single crystal |
US5954875A (en) * | 1996-05-31 | 1999-09-21 | Ibiden Co., Ltd. | Apparatus for pulling silicon single crystal |
KR100818859B1 (en) * | 2002-07-25 | 2008-04-01 | 도요탄소 가부시키가이샤 | Graphite material for pulling up single crystal and process for manufacturing it |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3934695B2 (en) | Method for producing high-purity silicon carbide powder for producing silicon carbide single crystal | |
JP2854201B2 (en) | Vitreous carbon-coated graphite part used for silicon crystal production and method for producing the same | |
JP4444559B2 (en) | Method for strengthening quartz glass crucible and method for pulling silicon single crystal | |
KR100310317B1 (en) | apparatus for pulling silicon single crystall | |
JP2009173501A (en) | Method of manufacturing high purity silicon carbide powder for silicon carbide single crystal manufacture and silicon carbide single crystal | |
JP5230882B2 (en) | Method for producing silicon carbide powder and silicon carbide single crystal | |
JP3198914B2 (en) | Graphite crucible for pulling single crystal and method for producing the same | |
US5783255A (en) | Method for producing shaped article of silicon carbide | |
JPH05270971A (en) | Graphite crucible for single crystal pulling process and its production | |
US7998584B2 (en) | High-purity carbon fiber-reinforced carbon composite and method for producing the same | |
JPH0826709A (en) | Production of carbon material | |
JP2000351689A (en) | Carbon fiber-reinforced carbon composite material coated with pyrolyzed carbon and part for single crystal-pulling device | |
JP2000007436A (en) | Graphite material and its production | |
JPH10130055A (en) | Production of electrode plate for plasma treatment device | |
JPH10101471A (en) | Graphite crucible for pulling up monocrystal | |
JP2919901B2 (en) | Melting crucible equipment | |
JPH10158090A (en) | Manufacture of c/c material (carbon fiber-carbon composite material) crucible for pulling up semiconductor single crystal | |
CN111575801B (en) | Preparation method and wafer growth raw material | |
JP3189037B2 (en) | Carbon saucer for silicon single crystal puller | |
JPH04139085A (en) | Graphite crucible for pulling up single crystal and its production | |
JP4170426B2 (en) | High temperature member for single crystal pulling apparatus and manufacturing method thereof | |
JP4198806B2 (en) | Rotating shaft for silicon single crystal pulling device | |
JP4673459B2 (en) | Thermal insulation cylinder for single crystal pulling apparatus and single crystal pulling apparatus | |
JP4529158B2 (en) | Single crystal pulling crucible | |
KR20130122476A (en) | Method of fabricating silicon carbide powder |